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Transfer Functions
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Complete Response

Figure: Laplace analysis confirms that for linear systems, the complete response is the sum of zero-input and
zero-state responses. Further, it confirms that the zero-state response of an LTI system is totally described by
a transfer function.
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k=0

aky
(k)(t) =
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blw
(l)(t), y(0−), y ′(0−), · · · , y (n−1)(0−)

n∑
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m∑
l=0

bl s
lW (s)

Y (s)
n∑

k=0

ak s
k − F0(s) = W (s)
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k=0 ak s

k
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Zero-state Response

Figure: Transfer function for zero-state response of LTI systems.

Laplace-domain zero-state response: Y (s) = H(s)W (s)

Transfer function: H(s) =
∑m

l=0 bl s
l∑n

k=0 ak s
k

Time-domain zero-state response: y(t) = h(t) ∗ w(t), h(t) = L−1[H(s)]

Frequency response: H(jω) = H(s)|s=jω

Multi-input zero-state response:

Y (s) =
∑

i Hi (s)Wi (s), Hi (s) = Y (s)
Wi (s) |Wk (s)=0,k 6=i
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Transfer Function

Figure: Transfer function for a network without internal independent sources.

Transfer function: H(s) = Yzs (s)
W (s)

Real rational function: H(s) =
∑m

l=0 bl s
l∑n

k=0 ak s
k

Transfer function zeros: {si ∈ C|H(si ) = 0}
Transfer function poles: {si ∈ C|H(si ) =∞}

Zero-pole decomposition: H(s) = b0

a0

∏m
l=1(s−zl )∏n
k=1(s−pk )
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Transfer Function

Figure: Types of Transfer functions.

Input impedance: H(s) = V1(s)
Is (s)

Transfer impedance: H(s) = V2(s)
Is (s)

Input admittance: H(s) = I1(s)
Vs (s)

Transfer impedance: H(s) = I2(s)
Vs (s)

Voltage gain: H(s) = V2(s)
Vs (s)

Current gain: H(s) = I2(s)
Is (s)
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Transfer Function

Example (Node analysis)

Node analysis can be used to find the transfer functions of the node voltages in the
circuit below.

[
1 + 1 + 1

s −1− 1
s

−1− 1
s 1 + 1 + s + 1

s

] [
V1

V2

]
=

[
Is
0

]
⇒
{
V1 = 1

2 Is
V2 = 1

2(s+1) Is
⇒
{
H1 =

V1
Is

= 1
2

H2 =
V2
Is

= 1
2(s+1){

H1 =
V1
Is

= Zin = Z1||(Z2 + Z3) = 1
2

H2 =
V2
Is

=
V1
Is

V2
V1

= Zin
Z2

Z2+Z3
= 1

2(s+1)

S1(s) = H1(s)
1

s
=

1

2s
⇒ s1(t) = 0.5u(t), H2(s) =

1

2(s + 1)
⇒ h2(t) = 0.5e−tu(t)
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Transfer Function

Example (Mesh analysis)

Node analysis can be used to find the transfer functions of the mesh currents in the
circuit below.

[
2 + 1 −1
−1 1 + 2 + s

] [
I1
I2

]
=

[
Vs − sI2
sI2 + 3I1

]
⇒
[

3 −1 + s
−1− 3 s + 3− s

] [
I1
I2

]
=

[
Vs

0

]

⇒
{
I1 = 3

4s+5 Vs

I2 = 4
4s+5 Vs

⇒
{
H1 =

I2
Vs

= 3
4s+5

H2 =
I2
Vs

= 4
4s+5

H3 =
V2

Vs
= s

I2

Vs
=

4s

4s + 5
⇒ S3(s) =

s

s + 1.25

1

s
⇒ s3(t) = e−1.25tu(t)
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Frequency Response
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Frequency Response

Figure: Frequency response for a network without internal independent sources.

Measurable frequency response: H(jω) = H(s)
∣∣
s=jω

Hermitian symmetry: H(−jω) = H∗(jω)

Even magnitude response: |H(jω)| = |H(−jω)|
Odd phase response: H(jω) = − H(−jω)

Even real-part response: <{|H(jω)} = <{|H(−jω)}
Odd imaginary-part response: ={|H(jω)} = −={|H(−jω)}
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Bode Diagram

Figure: Frequency response represented in Bode diagram.

Bode diagram: Curves of magnitude and phase responses for ω ≥ 0

Axis scale: Linear or logarithmic

Output frequency response: Y (jω) = H(jω)W (jω)

Output magnitude response: |Y (jω)| = |H(jω)||W (jω)|
Output phase response: Y (jω) = H(jω) + W (jω)

Sinusoidal steady state response: y(t) = A|H(jω)| cos(ωt + θ + H(jω))
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Zero-Pole Diagram

Frequency response:
H(jω) =

b0
a0

∏m
l=1(jω−zl )∏n
k=1

(jω−pk )

Magnitude response:
|H(jω)| =

∣∣ b0
a0

∣∣ ∏m
l=1 |jω−zl |∏n
k=1
|jω−pk |

=
∣∣ b0
a0

∣∣ ∏m
l=1 ll∏n
k=1

dk

Phase response:
H(jω) =

b0
a0

+
∑m

l=1
jω − zl −∑n

k=1
jω − pk =

b0
a0

+
∑m

l=1 φl −
∑n

k=1 θk

Pole close to the jω axis: High
magnitude and rapid phase change

Zero close to the jω axis: Low
amplitude and rapid phase change

Figure: Interpretation of frequency response in
zero-pole diagram.

Mohammad Hadi Circuit Theory Fall 2021 13 / 41



Filters

Figure: Frequency response of different filters.

Filter types

Lowpass filter (LPF)
Highpass filter (HPF)
Bandpass filter (BPF)
Bandstop filter (Notch)

3-dB cut off frequency: |H(jωc)| = max{|H(jω)|}√
2
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Filters

Example (Parallel RC LPF)

A parallel RC circuit can act like a lowpass filter.

H(s) =
V

I
= Zin =

1

Yin
=

1

G + Cs
=

1

C

1

s + 1
RC

h(t) =
1

C
e−

t
RC

H(jω) =
1

C

1

jω − (− 1
RC )

|H(jω)| =
R√

1 + (RCω)2
=

1

C

1√
ω2 + ( 1

RC )2
=

1

C

1

d1

H(jω) = − tan−1(RCω) = −θ1
|H(j0)| = R

|H(j∞)| = 0

|H(jωc )| = |H(j 1
RC )| = R√

2
H(j0) = 0

H(j∞) = −π2
H(jωc ) = H(j 1

RC ) = −π4
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Filters

Example (Parallel RC LPF (cont.))

A parallel RC circuit can act like a lowpass filter.
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Filters

Example (Parallel RC LPF (cont.))

A parallel RC circuit can act like a lowpass filter.
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Filters

Example (Parallel RLC BPF)

A parallel RLC circuit can act like a bandpass filter.

H(s) =
V

I
= Zin =

1

Yin
=

1
1
R + 1

Ls + Cs

α =
1

2RC
< ω0 =

1
√
LC

,Q =
ω0

2α
, ωd =

√
ω2

0 − α2

H(s) =
s/C

s2 + 2αs + ω2
0

=
1

C

s

(s + α + jωd )(s + α− jωd )

h(t) =
1

C
e−αt [cos(ωd t)− sin(ωd t)]u(t)

H(jω) =
1

C

jω − 0

[jω − (−α + jωd )][jω − (−α− jωd )]

|H(jω)| =
R√

1 + Q2
(
ω
ω0
− ω0

ω

)2
=

1

C

l1

d1d′1

H(jω) = − tan−1 [Q( ω
ω0
−
ω0

ω

)]
= φ1 − θ1 − θ′1
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Filters

Example (Parallel RLC BPF)

A parallel RLC circuit can act like a bandpass filter.


|H(j0)| = 0

|H(j∞)| = 0

|H(jωd )| ≈ 1
C

ωd
2ωdα

= R, ωd � α


H(j0) = π

2

H(j∞) = −π2
H(jωd ) ≈ 0, ωd � α
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Filters

Example (Parallel RLC BPF (cont.))

A parallel RLC circuit can act like a bandpass filter.
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Filters

Example (Parallel RLC BPF (cont.))

A parallel RLC circuit can act like a bandpass filter.
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Frequency Response

Example (Approximated Frequency Response)

Frequency response can be approximately plotted using the corresponding zero-pole
diagram.





j

| ( ) |H j
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Frequency Response

Example (Approximated Zero-Pole Diagram)

Zero-pole diagram can be approximately plotted using the corresponding frequency
response.





j

| ( ) |H j
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Filters

Example (Series RC LPF)

A series RC circuit can act like a lowpass filter.

H(jω) =
Vc

Vs
=

1

1 + jRCω
=

1

1 + j ωωc

=

{
1 , |ω| � ωc

1
j ω
ωc

, |ω| � ωc
, ω =

1

RC

20 log |H(jω)| =

{
0 , |ω| � ωc

20 log(ωc )− 20 log(ω) , |ω| � ωc
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Filters

Example (Series RC LPF)

A series RC circuit can act like a lowpass filter.
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Poles
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Poles

Statement (Poles of Network Function)

Any pole of a network function is a natural frequency of the corresponding network
variable.

Statement (Natural Frequencies of a Network)

For an unforced network, appropriate independent sources can be applied to intro-
duce various network functions. Natural frequencies of the unforced network is the
union of the poles of the appropriate network functions.

Figure: Illustration of adding independent sources to an unforced network. The application of the independent
sources does not alter the topology nor the element values of the unforced network, and hence it does not alter
its natural behavior.
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Types of Poles

Figure: Poles can be simple or repeated, real, imaginary, or complex, and located in LHS, RHS, or jω axis of
the complex plane.
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Types of Poles

Figure: Types of poles.

Transfer function denominator factors: s, (s + α), (s + α)m, (s2 + ω2)
, (s2 + ω2)m, (s + α)2 + ω2], [(s + α)2 + ω2]m

Time-domain behavior of impulse response: 1, e−αt , tme−αt , cos(ωt + θ),
tm cos(ωt + θ), e−αt cos(ωt + θ), tme−αt cos(ωt + θ)
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Types of Poles

Figure: Impact of poles on zero-state response stability.

Stable circuit (strictly passive circuit): <{si} < 0,∀i
Marginally stable circuit (passive circuit): <{si} ≤ 0,∀i
Unstable circuit (active circuit): <{si} ≥ 0,∃i
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Poles

Example (Poles and natural frequencies)

The number of poles is less than the number of natural frequencies of a circuit
variable which in turn is less than the number of natural frequencies of the circuit
network.

[
s + 2 + 1

s −1− 1
s

−1− 1
s s + 2 + 1

s

] [
V1

V2

]
=

Is + v1(0−)− iL(0−)

s

v2(0−) +
iL(0−)

s


∆n(s) =

(s + 2)(s + 1)2

s
= 0⇒ s = −1,−1,−2V1 = 1

s+2 Is +
(s+1)v1(0−)+v2(0−)−iL(0−)

(s+1)(s+2)

V2 = 1
(s+1)(s+2) Is +

(s+1)v2(0−)+v1(0−)+iL(0−)

(s+1)(s+2)

⇒
{
H1 =

V1
Is

= 1
s+2

H2 =
V2
Is

= 1
(s+1)(s+2)
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Poles

Example (Driving-point impedance)

The number of poles is less than the number of natural frequencies of a circuit
variable which in turn is less than the number of natural frequencies of the circuit
network.

∆m(s) =
s2 + 2s + 2

s
= 0⇒ s = −1± jVc = 2(s+1)

s2+2s+2
Is +

(s+1)vc (0−)−2iL(0−)

s2+2s+2

V1 = (s+1)(s+2)

s2+2s+2
Is +

0.5vc (0−)−(s+2)iL(0−)

s2+2s+2

⇒ Zin =
(s + 1)(s + 2)

s2 + 2s + 2
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Poles

Example (Driving-point admittance)

The number of poles is less than the number of natural frequencies of a circuit
variable which in turn is less than the number of natural frequencies of the circuit
network.

∆m1
(s) =

s + 2

s
= 0⇒ s = −2, ∆m2(s) = s + 1 = 0⇒ s = −1Vc = 2

s+2 Vs + vc (0−)
s+2

I1 = s2+2s+2
(s+1)(s+2) Vs +

−(s+1)vc (0−)+(s+2)iL(0−)

(s+1)(s+2)

⇒ Yin =
s2 + 2s + 2

(s + 1)(s + 2)
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Zeros
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Zeros

Figure: A simple zero can block an exponential input while a pair of imaginary conjugate zeros can block a
sinusoidal input. A set of initial conditions and a suitable input can make a circuit complete response zero,
especially when the corresponding transfer function has a zero.

Y (s) = H(s)W (s) +
F0(s)∑n
k=0 ak s

k
=

B1(s)(s − z1)

A1(s)
W (s) +

F0(s)∑n
k=0 ak s

k

w(t) = Aezi tu(t)⇒ Y (s) =
B1(s)(s − z1)

A1(s)

A

s − zi
+

F0(s)∑n
k=0 ak s

k
= A

B1(s)

A1(s)
+

F0(s)∑n
k=0 ak s

k

Y (s) = H(s)W (s) +
F0(s)∑n
k=0 ak s

k
=

B1(s)(s2 + ω2
0)

A1(s)
W (s) +

F0(s)∑n
k=0 ak s

k

w(t) = A cos(ω0t + φ)u(t)⇒ Y (s) =
B1(s)(s2 + ω2

0)

A1(s)

as + b

s2 + ω2
0

+
F0(s)∑n
k=0 ak s

k
=

B1(s)(as + b)

A1(s)
+

F0(s)∑n
k=0 ak s

k
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Zeros

Figure: Different zeros can be realized using shunt and series arms in a ladder network. A zero may be simplified
with a factor in the denominator.

H(s) =
Vo(s)

Is (s)
=

Z1(s)Z3(s)Z5(s)Z7(s)

(· · · )(· · · )(· · · )(· · · )(· · · )

H(s) =
Vo(s)

Is (s)
=

Y2(s)Y4(s)Y6(s)

(· · · )(· · · )(· · · )(· · · )(· · · )
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Zeros

Example (A transfer function with zero)

A non-singular function and a set of initial conditions can make the capacitor voltage
zero.

Vc (s) =
2(s + 1)

s2 + 2s + 2
Is (s) +

(s + 1)vC (0−)− 2iL(0−)

s2 + 2s + 2

is (t) = e−tu(t)⇒ Vc (s) =
2

s2 + 2s + 2
+

(s + 1)vC (0−)− 2iL(0−)

s2 + 2s + 2

is (t) = e−tu(t), vC (0−) = 0, iL(0−) = 1⇒ Vc (t) = 0⇒ vC (t) = 0, t > 0
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Zeros

Example (A transfer function without zero)

A singular function and a set of initial conditions can make the capacitor voltage
zero.

Vc (s) =
1

s + 1
Vs (s) +

vc (0−)

s + 1

vs (t) = −vc (0−)δ(t)⇒ Vc (s) = 0⇒ vc (t) = 0, t > 0
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Zeros

Example (LPF/HPF using ladder network)

A highpass or a lowpass filter can be implemented using a ladder network.
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Zeros

Example (BPF/BSF using ladder network)

A bandpass or a bandstop filter can be implemented using a ladder network.
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The End
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