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Graphs
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Graphs

Figure: Each circuit can be represented by a network graph if each element is replaced with an edge having two
ending nodes. The nature of elements is discarded in the network graph. A circuit may have a unconnected
graph.
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Graphs

Definition (graph)

A graph is mathematically described by G (N ,E ), where N is the set of nodes and
the set of edges E = {(ei , ej)|ei , ej ∈ N}.

Figure: Graphs with isolated node and self-loop along with a complete graph.
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Graphs

Figure: A graph and some of its subgraphs.
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Graphs

Figure: Associated reference directions for an element and for a branch.

Figure: A network and its corresponding directed graph.
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KCL
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Cut Sets

Figure: Connected and unconnected graphs. A unconnected graph have two or more separated parts.

Figure: Branch removal operation.
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Cut Set

Definition (Cut Set)

A cut set is the set of branches such that

The removal of all the branches of the set adds a new separated part to the
graph.

The removal of all but any one of the branches of the set adds no new separated
part to the graph.

Figure: Example of cut sets.
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Node and Gaussian surface

Statement (Node)

A node is a special cut set that only surrounds a node.

Statement (Gaussian surface)

A Gaussian surface is a generalized cut set that decomposes the graph into two or
more separated parts.

Figure: Examples of node and Gaussian surface.
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KCL

Definition (KCL)

For any lumped network and at any time, the algebraic sum of all the branch
currents entering (exiting) a cut set (node, Gaussian surface) branches is zero.

Figure: KCL for the shown cut set yields j1(t)− j2(t) + j3(t) = 0, ∀t.
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KCL

KCL equations

originate from change conservation.

are independent of the nature of the elements.

are linear homogeneous equations with real coefficient −1, 0, 1.

are dependent equations.
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KVL

Mohammad Hadi Circuit Theory Fall 2021 14 / 74



Loop

Definition (Loop)

A subgraph of a graph is a loop if

The subgraph is connected.

Two branches of the subgraph are incident with each node of the subgraph.

Figure: Example of loop.
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Mesh and Super-mesh

Statement (Mesh)

A mesh is a loop of a planar graph without any inner branch.

Statement (Closed Chain)

A closed chain is a generalized loop of a planar graph that creates a closed path.

Figure: Examples of mesh and closed chain.
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KVL

Definition (KVL)

For any lumped network and at any time, the algebraic sum of the aligned branch
voltages around a loop (mesh, closed chain) is zero.

Figure: KVL for the shown loop yields v4(t) + v2(t)− v5(t)− v7(t) + v8(t) = 0, ∀t.
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KVL

KVL equations

originate from conservativity of electric field.

are independent of the nature of the elements.

are linear homogeneous equations with real constant coefficient −1, 0, 1.

are dependent equations.
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Node-based Description
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Number of Independent KCLs and Voltages

Theorem (Number of Independent KCLs)

In a connected graph, the nt − 1 linear homogeneous algebraic equations obtained
by applying KCL to each node except the reference node, constitute a set of linearly
independent equations.

Theorem (Number of Independent Voltages)

In a connected graph, the nt − 1 node voltages e measured with respect to the
reference node constitute a set of linearly independent voltages.
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Node-to-branch Incidence Matrix

Definition (Node-to-branch Incidence Matrix)

The node-to-branch incidence matrix Aa is a rectangular matrix whose (i , k)th
element aik is defined by

aik =


1, if branch k leaves node i

−1, if branch k enters node i

0, if branch k is not incident with node i

The matrix Aa has dimension nt×b and rank nt−1, where nt and b are the number
of nodes and branches, respectively.

Definition (Reduced Node-to-branch Incidence Matrix)

The reduced node-to-branch incidence matrix A is obtained from Aa by eliminating
the row corresponding to the reference node. The matrix A has dimension (nt −
1)× b and is of full rank nt − 1.
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KCL Matrix Equation for Nodes

Statement (KCL Matrix Equation for Nodes)

Aaj = 0 describes nt KCL equations of the nodes, where j denotes branch currents
vector.

Statement (KCL Matrix Equation for Nodes)

Aj = 0 describes nt − 1 linearly independent KCL equations of the nodes.

Statement (Branch Voltages)

The branch voltages v are obtained from the linearly-independent node voltages e
by the equation v = ATe, where AT is the transpose of A.
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KCL Matrix Equation for Nodes

Example (KCL Equation Matrix)

The circuit below has 3 independent KCL equations at its nodes.

A =

1 1 0 0 0
0 −1 1 1 0
0 0 0 −1 1

 , j =


j1
j2
j3
j4
j5

 , Aj = 0,


j1 + j2 = 0

−j2 + j3 + j4 = 0

−j4 + j5 = 0
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KCL Matrix Equation for Nodes

Example (Branch Voltages)

The circuit below has 5 branch voltages.

AT =


1 0 0
1 −1 0
0 1 0
0 1 −1
0 0 1

 , e =

e1

e2

e3

 , v =


v1

v2

v3

v4

v5

 , v = AT e,



v1 = e1

v2 = e1 − e2

v3 = e2

v4 = e2 − e3

v5 = e3
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Mesh-based Description
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Topological Graphs

Definition (Topological Graph)

Each different representation of a graph is called topological graph.

Figure: Three different topological graphs corresponding to a same graph. A loop remains unchanged for
different topological graphs while a mesh may change.
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Planar Graphs

Definition (Planar Graph)

A graph is planar if it can be drawn on the plane in such a way that no two branches
intersect at a point which is not a node.

Definition (Mesh and Outer-Mesh)

Any loop of a planar graph for which there is no branch in its interior is called a
mesh. The loop of a planar graph for which there is no branch in its exterior is
called the outer-mesh.

Figure: Examples of planar and non-planar graphs.
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Hinged Graphs

Definition (Hinged Graph)

A graph is hinged if it can be partitioned into two non-isolated sub-graphs which
are connected together by one node.

Figure: Examples of hinged and unhinged graphs. Circuit analysis of a hinged graph simplifies to separate
analysis of its unhinged sub-graphs provided that there is no coupling between the unhinged sub-graphs.
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Number of Meshes

Theorem (Number of Meshes)

For a connected unhinged planar graph, the number of meshes is equal l = b−nt+1,
where b is the number of branches and nt is the number of nodes.

Figure: A planar unhinged graph with nt = 9 nodes, b = 14 branches, and l = 14− 9 + 1 = 6 meshes.
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Number of Independent KVLs and Currents

Theorem (Number of Independent KVLs)

In a connected planar unhinged graph, the b− nt + 1 linear homogeneous algebraic
equations obtained by applying KVL to each mesh except the outer mesh constitute
a set of linearly independent equations.

Theorem (Number of Independent Currents)

In a connected planar unhinged graph, the b − nt + 1 mesh currents i constitute a
set of linearly independent currents.
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Mesh-to-branch Incidence Matrix

Definition (Mesh-to-branch Incidence Matrix)

The mesh-to-branch incidence matrix Ma is a rectangular matrix whose (i , k)th
element mik is defined by

mik =
1, if branch k is in mesh or outer-mesh i and their directions coincide

−1, if branch k is in mesh or outer-mesh i and their directions don’t coincide

0, if branch k does not belong to mesh or outer-mesh i

The matrix Ma has dimension (l + 1)×b and rank l , where l and b are the number
of meshes and branches, respectively.

Definition (Reduced Mesh-to-branch Incidence Matrix)

The reduced mesh-to-branch incidence matrix M is obtained from Ma by eliminating
the row corresponding to the outer mesh. The matrix M has dimension l × b and
is of full rank l .

Mohammad Hadi Circuit Theory Fall 2021 31 / 74



KVL Matrix Equation for Meshes

Statement (KVL Matrix Equation for Meshes)

Mav = 0 describes l + 1 KVL equations of the meshes, where v denotes branch
voltages vector.

Statement (KVL Matrix Equation for Meshes)

Mv = 0 describes l linearly independent KVL equations of the meshes.

Statement (Branch Currents)

The branch currents j are obtained from the linearly-independent mesh currents i
by the equation j = MT i , where MT is the transpose of M .
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KVL Matrix Equation for Meshes

Example (KVL matrix equation)

The circuit below has 3 independent KVL equations at its meshes.

M =

1 1 0 0 0
0 −1 1 1 0
0 0 0 −1 1

 , v =


v1

v2

v3

v4

v5

 , Mv = 0,


v1 + v2 = 0

−v2 + v3 + v4 = 0

−v4 + v5 = 0
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KVL Matrix Equation for Meshes

Example (Branch currents)

The circuit below has 5 branch currents.

MT =


1 0 0
1 −1 0
0 1 0
0 1 −1
0 0 1

 , i =

i1
i2
i3

 , j =


j1
j2
j3
j4
j5

 , j = MT i ,



j1 = i1
j2 = i1 − i2
j3 = i2
j4 = i2 − i3
j5 = i3
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Cut Set-based Description
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Trees

Definition (Tree of a Connected Graph)

A graph is called the tree of a connected graph if

1 It is a connected sub-graph.

2 It contains all the nodes of the connected graph.

3 It contains no loops.

Figure: Examples of trees of a graph.
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Trees

Definition (Tree Branch)

The branches of a tree of a connected graph are called tree branch.

Definition (link Branch)

The branches of a connected graph not in its associated tree are called link branch.

Figure: Examples of trees of a graph.
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Trees

Theorem (Fundamental Theory of Graphs)

Given a connected graph G of nt nodes and b branches, and a tree T of G ,

There is a unique path along the tree between any pair of nodes.

There are nt − 1 tree branches and b − nt + 1 links.

Every link of G and the unique tree path between its nodes constitute a unique
loop (this is called the fundamental loop associated with the link).

Every tree branch of T together with some links defines a unique cut set. This
cut set is called a fundamental cut set associated with the tree branch.

Corollary (Fundamental Theory of Graphs)

Suppose that G has nt nodes, b branches, and s separate parts. Let Tl ,T2, · · · ,Ts

be trees of each separate part, respectively. The set {Tl ,T2, · · · ,Ts} is called a
forest of G . Then the forest has nt − s branches, G has b − nt + s links, and the
remaining statements of the fundamental theorem are true.
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Trees

Example (Fundamental cut sets)

The circuit below has 4 fundamental cut sets. The direction of each cut set is
inherited from the direction of its associated tree branch.
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Trees

Example (Fundamental loops)

The circuit below has 4 fundamental loops. The direction of each loop is inherited
from the direction of its associated link branch.
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Number of Independent KCLs and Voltages

Theorem (Number of Independent KCLs)

In a connected graph, the nt − 1 linear homogeneous algebraic equations obtained
by applying KCL to the fundamental cut sets of a tree of the graph, constitute a
set of linearly independent equations.

Theorem (Number of Independent Voltages)

In a connected graph, the nt − 1 tree branch voltages constitute a set of linearly
independent voltages.
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Fundamental Cut Set Matrix

Definition (Fundamental Cut Set Matrix)

The fundamental cut set matrix Q is a rectangular matrix whose (i , k)th element
qik is defined by

qik =
1, if branch k belongs to cut set i and has the same direction

−1, if branch k belongs to cut set i and has the opposite direction

0, if branch k does not belong to cut set i

The matrix Q has dimension (nt − 1)× b and is of full rank nt − 1, where nt − 1
and b are the number of tree branches and branches, respectively.
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KCL Matrix Equation for Cut Sets

Statement (KCL Matrix Equation for Cut Sets)

Qj = 0 describes nt − 1 linearly independent KCL equations of the cut sets, where
j denotes branch currents vector.

Statement (Branch Voltages)

The branch voltages v are obtained from the linearly-independent tree branch volt-
ages e by the equation v = QTe, where QT is the transpose of Q.
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KCL Matrix Equation for Cut Sets

Example (KCL matrix equation)

The circuit below has 4 independent KCL equations at its cut sets.

Q =

 1 −1 0 0 1 0 0 0
−1 1 1 1 0 1 0 0
0 −1 −1 −1 0 0 1 0
0 −1 −1 0 0 0 0 1

 , j =



j1
j2
j3
j4
j5
j6
j7
j8


, Qj = 0,


j1 − j2 + j5 = 0

−j1 + j2 + j3 + j4 + j6 = 0

−j2 − j3 − j4 + j7 = 0

−j2 − j3 + j8 = 0
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KCL Matrix Equation for Cut Sets

Example (Branch voltages)

The circuit below has 8 branch voltages.

QT =



1 −1 0 0
−1 1 −1 −1
0 1 −1 −1
0 1 −1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, e =

e1

e2

e3

e4

 , v =



v1

v2

v3

v4

v5

v6

v7

v8


, v = QT e,



v1 = e1 − e2

v2 = −e1 + e2 − e3 − e4

v3 = e2 − e3 − e4

v4 = e2 − e3

v5 = e1

v6 = e2

v7 = e3

v8 = e4
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Loop-based Description
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Number of Independent KVLs and Currents

Theorem (Number of Independent KVLs)

In a connected graph, the l = b − nt + 1 linear homogeneous algebraic equations
obtained by applying KVL to the fundamental loops of a tree of the graph, constitute
a set of linearly independent equations.

Theorem (Number of Independent Currents)

In a connected graph, the l = b − nt + 1 link branch currents constitute a set of
linearly independent voltages.
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Fundamental Loop Matrix

Definition (Fundamental Loop Matrix)

The fundamental loop matrix B is a rectangular matrix whose (i , k)th element bik
is defined by

bik =
1, if branch k is in loop i and their directions agree

−1, if branch k is in loop i and their directions don’t agree

0, if branch k is not in loop i

The matrix B has dimension l × b and is of full rank l , where l and b are the
number of link branches and branches, respectively.
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KVL Matrix Equation for Loops

Statement (KVL Matrix Equation for Loops)

Bv = 0 describes l = b − nt + 1 linearly independent KVL equations of the loops,
where v denotes branch voltages vector.

Statement (Branch Current)

The branch currents j are obtained from the linearly-independent tree link currents
i by the equation j = BT i , where BT is the transpose of B.
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KVL Matrix Equation for Loops

Example (KVL matrix equation)

The circuit below has 4 independent KVL equations at its loops.

B =

1 0 0 0 −1 1 0 0
0 1 0 0 1 −1 1 1
0 0 1 0 0 −1 1 1
0 0 0 1 0 −1 1 0

 , v =



v1

v2

v3

v4

v5

v6

v7

v8


, Bv = 0,


v1 − v5 + v6 = 0

−v2 + v5 − v6 + v7 + v8 = 0

v3 − v6 + v7 + v8 = 0

v4 − v6 + v7 = 0
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KVL Matrix Equation for Loops

Example (Branch currents)

The circuit below has 8 branch currents.

BT =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−1 1 0 0
1 −1 −1 −1
0 1 1 1
0 1 1 0


, i =

i1
i2
i3
i4

 , j =



j1
j2
j3
j4
j5
j6
j7
j8


, j = BT i ,



j1 = i1
j2 = i2
j3 = i3
j4 = i4
j5 = −i1 + i2
j6 = i1 − i2 − i3 − i4
j7 = i2 + i3 + i4
j8 = i2 + i3
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Comparison of
Different Descriptions
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Different Equations

Node-based:

{
KCL : Aj = 0

KVL : v = ATe

Mesh-based:

{
KVL : Mv = 0

KCL : j = MT i

Cut Set-based:

{
KCL : Qj = 0

KVL : v = QTe

Loop-based:

{
KVL : Bv = 0

KCL : j = BT i
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Number of Items

Number of linearly independent KCLs: n = nt − 1

Number of linearly independent voltages: n = nt − 1

Number of tree branches: n = nt − 1

Number of linearly independent KVLs: l = b − nt + 1

Number of linearly independent currents: l = b − nt + 1

Number of link branches: l = b − nt + 1

Number of trees: |AAT | = |MMT | = |QQT | = |BBT |
Number of trees in complete graph: nnt−2

t
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Relationship of Matrices

Statement (KVL Matrix Equation for Loops)

Call B the fundamental loop matrix and Q the fundamental cut-set matrix of
the same directed graph G , and let both matrices pertain to the same tree T .
Then, BQT = 0 and QBT = 0. Furthermore, if we number the links from 1
to l and number the tree branches from l + 1 to b, then B l×b = [I l×l |F ] and
Q(nt−1)×b = [−FT |I (nt−1)×(nt−1)].

Qj = 0⇒ Q(BT i ) = 0⇒ (QBT )i = 0⇒ QBT = 0⇒ BQT = 0

BQT = 0⇒
[
I l×l | F l×(nt−1)

]  ET
l×(nt−1)

I (nt−1)×(nt−1)

 = ET
l×(nt−1) +F l×(nt−1) = 0
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Relationship of Matrices

Example (Possible equality of A and Q)

There may be a special tree for which the node-to-branch incident matrix A and
fundamental cut set matrix Q are the same.

A = Q =

 1 −1 0 0 1 0 0 0
−1 0 0 1 0 1 0 0
0 0 1 −1 0 0 1 0
0 1 −1 0 0 0 0 1
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Relationship of Matrices

Example (Possible equality of M and B)

There may be a special tree for which the mesh-to-branch incident matrix M and
fundamental loop matrix B are the same.

A = Q =

 1 −1 0 0 1 0 0 0
−1 0 0 1 0 1 0 0
0 0 1 −1 0 0 1 0
0 1 −1 0 0 0 0 1



M = B =

1 0 0 0 −1 1 0 0
0 1 0 0 1 0 0 −1
0 0 1 0 0 0 −1 1
0 0 0 1 0 −1 1 0
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Relationship of Matrices

Example (Desired set of independent voltages)

The shown tree corresponds to a set of independent voltages that includes v2 and
v6 and does not include v1, v3, and v7.

Mohammad Hadi Circuit Theory Fall 2021 58 / 74



Relationship of Matrices

Example (Desired set of independent currents)

The shown tree corresponds to a set of independent currents that includes j4 and
j6 and does not include j2 and j7.
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Duality
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Dual Graphs

Statement (Dual Graphs)

Two connected, unhinged, and planar topological graphs G and Ĝ are dual if,

There is a one-to-one correspondence between the meshes of G (including
the outer mesh) and the nodes of Ĝ .

There is a one-to-one correspondence between the meshes of Ĝ (including
the outer mesh) and the nodes of G .

There is a one-to-one correspondence between the branches of each graph in
such a way that whenever two meshes of one graph have the corresponding
branch in common, the corresponding nodes of the other graph have the
corresponding branch connecting these nodes.
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Dual Graphs

Example (Dual Graphs)

The two graphs below are dual of each other.
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Dual Graphs

Example (Dual Directed Graphs)

The two directed graphs below are dual of each other.
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Dual Circuits

Statement (Dual Circuits)

Two circuits are dual if,

Their associative graphs, G and Ĝ , are dual.

The governing circuit equations of Ĝ are obtained by the following replacement
from governing circuit equations of G .

j → v̂

v → ĵ

q → φ̂

φ→ q̂
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Dual Circuits

G Ĝ

KVL KCL
KCL KVL
Node Mesh
Mesh Node

Refrence Node Outer Mesh
Outer Mesh Reference Node

Parallel Connection Series Connection
Series Connection Parallel Connection

Link Branch Tree Branch
Tree Branch Link Branch
Open Circuit Short Circuit
Short Circuit Open Circuit

Table: Dual items.

G Ĝ

v ĵ
j v̂

e î
i ê

A M̂
M Â
Q B̂
B Q̂

Table: Dual items.

G Ĝ

q φ̂
φ q̂

R Ĝ

G R̂

L Ĉ

C L̂

Z Ŷ

Y Ẑ

Table: Dual items.
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Dual Circuits

Example (Dual Graphs)

Two circuits below are dual.

−1

jωL
E1 + (jωC2 + G +

1

jωL
)E2 = 0,

−1

jωĈ
Î1 + (jωL̂2 + R̂ +

1

jωĈ
)Î2 = 0

Mohammad Hadi Circuit Theory Fall 2021 66 / 74



Tellegen’s Theorem
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Tellegen’s Theorem

Theorem (Tellegen’s Theorem)

Consider an arbitrary lumped network whose graph G has b branches and nt nodes.
Suppose that to each branch of the graph we assign arbitrarily a branch voltage vk
and a branch current jk for k = 1, 2 · · · , b, and suppose that they are measured with
respect to arbitrarily picked associated reference directions. If the branch voltages
v1, v2, · · · , vb satisfy all the constraints imposed by KVL and if the branch currents
j1, j2, · · · , jb, satisfy all the constraints imposed by KCL, then

b∑
k=1

vk jk = 0

Mohammad Hadi Circuit Theory Fall 2021 68 / 74



Tellegen’s Theorem

If the voltage sets {vk |k = 1, · · · , b} and {v̂k |k = 1, · · · , b} and the current

sets {jk |k = 1, · · · , b} and {ĵk |k = 1, · · · , b} satisfy KVL and KCL require-
ments, then

b∑
k=1

vk jk = 0,
b∑

k=1

v̂k jk = 0,
b∑

k=1

vk ĵk = 0,
b∑

k=1

v̂k ĵk = 0

Tellegen’s theorem is independent of the nature of elements.

Instantaneous and apparent power conservation are special cases of Tellegen’s
theorem.
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Tellegen’s Theorem

Example (Two-measurement experiment)

For the LTI RLC network below, Tellegen’s theorem forces Ĵ1 = J2 in the two
illustrated measurement scenarios.

V1Ĵ1 + V2Ĵ2 +
b∑

k=3

Vk Ĵk = V1Ĵ1 + V2Ĵ2 +
b∑

k=3

ZK Jk Ĵk = 0

V̂1J1 + V̂2J2 +
b∑

k=3

V̂kJk = V̂1J1 + V̂2J2 + +
b∑

k=3

ZK ĴkJk = 0

V1Ĵ1 + V2Ĵ2 = V̂1J1 + V̂2J2

Vs Ĵ1 = VsJ2

Ĵ1 = J2
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Driving-point Impedance

Figure: Driving-point impedance of a passive RLCMT network. Coupled inductors are replaced with their passive
equivalent circuits. Tranformers do not consume power.

Complex power conservation: −0.5V1J
∗
1 + 0.5

∑b
k=2 VkJ

∗
k = 0

Complex power conservation:
0.5Zin(jω)|J1|2 = 0.5

∑
R Rk |Jk |2 + 0.5jω

∑
L Lk |Jk |2 − 0.5jω−1 ∑

C C−1
k |Jk |

2

Driving-point impedance:

Zin(jω) =
∑

R Rk |Jk |
2

|J1|2
+ j

∑
L ωLk |Jk |

2−
∑

C ω−1C
−1
k
|Jk |

2

|J1|2
= <{Zin(jω)} + j={Zin(jω)}

Passivity condition: <{Zin(jω)} ≥ 0, ={Zin(jω)} ∈ R, | Zin(jω)| ≤ π/2
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Driving-point Impedance

Figure: Driving-point impedance of a passive RLCMT network. Coupled inductors are replaced with their passive
equivalent circuits. Tranformers do not consume power.

Average dissipated power: Pavk
= 0.5Rk |Jk |2

Average stored magnetic energy: ĒLk = 0.25Lk |Jk |2

Average stored electrical energy: ĒCk = 0.25Ck |Vk |2 = 0.25C−1
k ω−2|Jk |2

Complex power conservation:
0.5Zin(jω)|J1|2 = 0.5

∑
R Rk |Jk |2 + 0.5jω

∑
L Lk |Jk |2 − 0.5jω−1 ∑

C C−1
k |Jk |

2

Complex power conservation:
S =

∑
R Pavk

+ 2jω(
∑

L ĒLk −
∑

C ĒCk ) = Pav + 2jω(ĒL − ĒC )

Driving-point impedance: Zin(jω) =
2Pav +4jω(ĒL−ĒC )

|J1|2
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Driving-point Impedance

Circuit Type <{Zin(jω)} ={Zin(jω)} Zin(jω)

RT <{Zin(jω)} ≥ 0 ={Zin(jω)} = 0 Zin(jω) = 0
RLMT <{Zin(jω)} ≥ 0 ={Zin(jω)} ≥ 0 0 ≤ Zin(jω) ≤ π/2
RCT <{Zin(jω)} ≥ 0 ={Zin(jω)} ≤ 0 −π/2 ≤ Zin(jω) ≤ 0

RLCMT <{Zin(jω)} ≥ 0 ={Zin(jω)} ∈ R −π/2 ≤ Zin(jω) ≤ π/2
LCMT <{Zin(jω)} = 0 ={Zin(jω)} ∈ R Zin(jω) = ±π/2
LMT <{Zin(jω)} = 0 ={Zin(jω)} ≥ 0 Zin(jω) = π/2
CT <{Zin(jω)} = 0 ={Zin(jω)} ≤ 0 Zin(jω) = −π/2

Table: Driving-point impedance of passive networks.
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The End
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