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Substitution Theorem
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Substitution Theorem

Theorem (Sufficient Condition for Unique Solution)

Suppose that N is a strictly passive LTI RLCMT network, such that all its resistors
have positive resistances, all its capacitors have positive capacitances, all its induc-
tors have positive inductances. Suppose further that every set of coupled inductors
has a positive definite inductance matrix. Under these conditions, given any initial
state and any set of inputs, the network N has a unique solution.

Proof: Non-singularity of the admittance matrix Y n(s).

Common LTI circuits: Strictly passive LTI RLCMT networks.

Degenerate LTI circuits: LTI circuits with unit coupling factor, dependent
sources, negative resistors, ...
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Substitution Theorem

Theorem (Substitution Theorem)

Consider an arbitrary network which contains a number of independent sources.
Suppose that for these sources and for the given initial conditions the network
has a unique solution for all its branch voltages and branch currents. Consider
a particular branch, say branch k , which is not coupled to other branches of the
network. Let jk and vk be the current and voltage waveforms of branch k. Suppose
that branch k is replaced by either an independent current source with waveform
jk or an independent voltage source with waveform vk . If the modified network has
a unique solution for all its branch currents and branch voltages, then these branch
currents and branch voltages are identical with those of the original network.

Proof: Same KCL and KVL equations for the original and modified networks.

Coupled branch: Dependent source or coupled inductive element.

Circuits with unique solution: Strictly passive LTI RLCMT networks.

Circuits without unique solution: Nonlinear or time-varying circuits as well as
degenerate LTI circuits.
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Substitution Theorem

Figure: The three networks have unique solutions and branch k is not a coupled element or dependent source.
The three networks have the same set of branch voltages and currents.

Figure: The three networks have unique solutions and sub-networks N and N′ are not coupled. The sub-network
N has the same solution in all three scenarios.
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Substitution Theorem

Example (Tunnel diode circuit)

The tunnel diode can be replaced by a current or voltage source according to the
substitution theorem.
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Substitution Theorem

Example (Tunnel diode diode)

The resistor cannot be replaced by a current source due to failure of solution unique-
ness condition required for the substitution theorem.
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Substitution Theorem

Example (Admittance and impedance)

The admittance of a port is the inverse of the corresponding impedance of the port.

Y (s) =
I (s)

E0(s)
, Z(s) =

V (s)

I0(s)

I0(s) = I (s)⇒ V (s) = E0(s)⇒ Y (s) =
I (s)

E0(s)
=

I0(s)

V (s)
=

1

Z(s)
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Substitution Theorem

Example (Ladder network)

The ladder network shown below is in the sinusoidal steady state. If iL(t) =
0.01 cos(377t) mA, then v0(t) = 4.45 cos(377t − 0.74).

V0 =

1
j4×10−6×377

1
j4×10−6×377

+ 600
× 0.01× 600 = 4.45 −42.14◦ ⇒ v0(t) = 4.45 cos(377t − 0.74)

Mohammad Hadi Circuit Theory Fall 2021 10 / 35



Superposition Theorem
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Superposition Theorem

Theorem (Superposition Theorem)

Let N be a linear network; i.e., let each of its elements be either an independent
source or a linear element (linear resistor, linear inductor, linear capacitor, linear
transformer, or linear dependent source). The elements may be time-varying. We
further assume that N has a unique zero-state response to the independent source
waveforms, whatever they may be. Let the response of N be either the current in
a specific branch of N, or the voltage across any specific node pair of N, or more
generally any linear combination of currents and voltages. Under these conditions,
the zero state response of N due to all the independent sources acting simulta-
neously is equal to the sum of the zero-state responses due to each independent
source acting one at a time.

Proof: Linearity of KCL, KVL, and LTI elements.
Linear circuits: LTI or LTV circuits.
Nonlinear networks: Superposition may not apply to nonlinear networks.
Sinusoidal steady state: Superposition applies to sinusoidal steady state.

Laplace analysis: Y (s) =
∑

i Hi (s)Wi (s), Hi (s) = Y (s)
Wi (s)
|Wk (s)=0,k 6=i .

Initial conditions: Can be modeled by independent sources.
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Superposition Theorem

Example (Transfer function)

Superposition theorem can be described in terms of transfer functions.

H1(s) =
V (s)

E1(s)
|I2(s)=0 =

R2|| 1
Cs

R2|| 1
Cs + R1 + Ls

H2(s) =
V (s)

I2(s)
|E1(s)=0 = R2

(R1 + Ls)|| 1
Cs

(R1 + Ls)|| 1
Cs + R2

V (s) = H1(s)E1(s) + H2(s)I2(s)
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Superposition Theorem

Example (Nonlinear circuit)

In general, superposition does not apply to nonlinear circuits.


is = 10, es = 0⇒ v = 10

is = 0, es = 10⇒ v = 0

is = 10, es = 10⇒ v = 5
is = 10, es = 0⇒ v = 10

is = 0, es = −10⇒ v = 5

is = 10, es = −10⇒ v = 15
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Thevenin-Norton
Equivalent Network Theorem
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Thevenin-Norton Equivalent Network Theorem

Theorem (Thevenin-Norton Equivalent Network Theorem)

Let the linear network N be connected by two of its terminals 1− 1′ to an arbitrary
load. Let N consist of independent sources and linear resistors, linear capacitors,
linear inductors, linear transformers, and linear dependent sources. The elements
may be time-varying. We further assume that N has a unique solution when it is
terminated by the load, and when the load is replaced by an independent source.
Let N0 be the network obtained from N by setting all independent sources to zero
and all initial conditions to zero. Let eoc be the open-circuit voltage of N observed
at terminals 1 − 1′. Let isc be the short circuit current of N flowing out of 1 into
1′. Under these conditions, whatever the load may be, the voltage waveform v(t)
across 1 − 1′ and the current waveform i(t) through 1 and 1′ remain unchanged
when the network N is replaced by either its Thevenin equivalent or by its Norton
equivalent network.

Proof: Superposition theorem.

Arbitrary load: Nonlinear time-varying load.

Terminal interaction: Exclusive interaction with the load through the terminal.
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Thevenin-Norton Equivalent Network Theorem

Figure: Thevenin equivalent circuit for a linear circuit.

Figure: Norton equivalent circuit for a linear circuit.
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Thevenin-Norton Equivalent Network Theorem

Figure: Thevenin equivalent circuit in Laplace domain for an LTI circuit. Clearly, Voc = Zeq Isc .

Figure: Norton equivalent circuit in Laplace domain for an LTI circuit. Clearly, Voc = Zeq Isc .
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Thevenin-Norton Equivalent Network Theorem

Example (Nonlinear load)

Thevenin equivalent circuit can be used to determine the working point of the
nonlinear circuit below with only one nonlinear load element.

Req =
R1R2

R1 + R2
+ R3, eoc =

R2

R1 + R2
E , v = eoc − Req i
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Thevenin-Norton Equivalent Network Theorem

Example (Sensitivity analysis)

Thevenin equivalent circuit can facilitate sensitivity analysis.

S
I1
Z =

dI1

dZ
=

d

dZ

[ Voc

Zeq + Z

]
= −

Voc

(Zeq + Z)2
= −

I1

Zeq + Z
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Thevenin-Norton Equivalent Network Theorem

Example (Laplace analysis)

Laplace analysis can be used to obtained the Thevenin or Norton equivalent circuits.

V1(s) = H1(s)Is1 (s) + H2(s)Is2 (s) +
F0(s)

A2(s)
= Zeq(s)Is1 + Voc (s)
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Reciprocity Theorem
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Reciprocity Theorem

Theorem (Reciprocity Theorem (first statement))

Consider a linear time-invariant network N; which consists of resistors, inductors,
coupled inductors, capacitors, and transformers only. N is in the zero state and is
not degenerate. Connect four wires to N thus obtaining two pairs of terminals 1−1′

and 2 − 2′. Now, connect a voltage source e0(t) to terminals 1 − 1′ and observe
the zero state current response j2(t) in a short circuit connected to 2 − 2′. Next,
connect the same voltage source e0(t) to terminals 2 − 2′ and observe the zero-
state current response ĵ1(t) in a short circuit connected to 1− 1′. The reciprocity
theorem asserts that whatever the topology and the element values of the network
N and whatever the waveform e0(t) of the source, j2(t) = ĵ1(t).

Proof: Tellegen’s theorem.

Reciprocal circuit: Any circuit for which reciprocity is held.

Common reciprocal circuits: RLCMT network in zero-state without indepen-
dent and dependent sources

Nonreciprocal circuits: Gyrator, dependent sources, independent sources, ...
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Reciprocity Theorem

Figure: First statement of the reciprocity theorem assures j2(t) = ĵ1(t).

Figure: Second statement of the reciprocity theorem assures v2(t) = v̂1(t).

Figure: Third statement of the reciprocity theorem assures j2(t) ≡ v̂1(t) if i0(t) ≡ e0(t).
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Reciprocity Theorem

Figure: First statement of the reciprocity theorem assures
J2(s)

V1(s)
=

Ĵ1(s)

V̂2(s)
.

Figure: Second statement of the reciprocity theorem assures
V2(s)

J1(s)
=

V̂1(s)

Ĵ2(s)
.

Figure: Third statement of the reciprocity theorem assures
J2(s)

J1(s)
=

V̂1(s)

V̂2(s)
.
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Reciprocity Theorem

Figure: Reciprocity theorem for an RLCMT network.

b∑
k=1

Vk Ik = 0,
b∑

k=1

V̂k Ik = 0,
b∑

k=1

Vk Îk = 0,
b∑

k=1

V̂k Îk = 0

b∑
k=1

Vk Îk =
b∑

k=1

V̂k Ik ⇒ V1 Î1 + V2 Î2 +
b∑

k=3

Vk Îk = V̂1I1 + V̂2I2 +
b∑

k=3

V̂k Ik
R,L,C: V̂k Ik = Zk Îk Ik = Zk Ik Îk = Vk Îk
M: V̂mIm + V̂nIn = (Lm Îm + Mmn În)Im + (Mmn Îm + Ln În)In = Vm Îm + Vn În
T: V̂mIm + V̂nIn = 0 = Vm Îm + Vn În

⇒ V1 Î1 + V2 Î2 = V̂1I1 + V̂2I2{
V̂1 = 0, Î1 = Ĵ1, V̂2, Î2 = Ĵ2
V1, I1 = J1,V2 = 0, I2 = J2

⇒ J2V̂2 = V1Ĵ1 ⇒
J2(s)

V1(s)
=

Ĵ1(s)

V̂2(s)
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Reciprocity Theorem

Example (Reciprocity theorem for an RLC network)

The RLC network below is reciprocal.

j2 = ĵ1
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Reciprocity Theorem

Example (Reciprocity theorem for an RLC network (cont.))

The RLC network below is reciprocal.

v2 = v̂1
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Reciprocity Theorem

Example (Reciprocity theorem for an RLC network (cont.))

The RLC network below is reciprocal.

j2 ≡ v̂1
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Reciprocity Theorem

Example (Circuit with dependent source)

In general, reciprocity does not apply to the circuits with dependent sources.

v2(t) = −R1gmR2I (1− e−t/R2C2 ), t ≥ 0; v̂1(t) = 0, t ≥ 0
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Reciprocity Theorem

Example (Nonlinear circuit)

In general, reciprocity does not apply to the nonlinear circuits.

v2(t) = 0.5, t ≥ 0; v̂1(t) = 0, t ≥ 0
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Reciprocity Theorem

Example (Gyrator)

Gyrator is a passive LTI non-reciprocal circuit.

{
v1(t) = αi2(t)

v2(t) = −αi1(t)
⇒ v1(t)i1(t) + v2(t)i2(t) = 0

i1(t) = i0(t)⇒ v2(t) = −αi0(t)

î2(t) = i0(t)⇒ v̂1(t) = αi0(t)
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Reciprocity Theorem

Example (Two-measurement experiment)

The network theorems can be used to find unknown network variables in a two-
measurement experiment.



v1(t) = (−6e−t + 14e−2t)u(t)

v2(t) = 0

v3(t) = (−6e−t + 12e−2t)u(t)

i1(t) = δ(t)

i2(t) = −2e−2tu(t)

i3(t) = 0

,



v̂1(t) =?

v̂2(t) = 24u(t)

v̂3(t) = (−12e−t + 24e−2t)u(t)

î1(t) = 0

î2(t) = 24e−2tu(t)

î3(t) = 2δ(t)
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Reciprocity Theorem

Example (Two-measurement experiment)

The network theorems can be used to find unknown network variables in a two-
measurement experiment.

V̂1(s) = H1(s)V̂2(s) + H2(s)Î3(s)

H1(s) =
V̂1(s)

V̂2(s)
|Î3(s)=0 =

−I2
I1

=
2

s + 2

H2(s) =
V̂1(s)

Î3(s)
|V̂2(s)=0 =

V3

I1
=
−6
s + 1

+
12

s + 2

V̂1(s) =
24

s
−

12

s + 1
⇒ v̂2(t) = (24− 12e−t)u(t)
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The End
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