Question 1

Consider the circuit shown in Fig. 1 that is made by interconnection of several two-ports and one-ports. Let the transmittance matrix of the two-port N_{0} be $\boldsymbol{T}_{0}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. Further, assume that the interconnection of the two-ports does not violate two-port current conditions.

Figure 1: A circuit made from several internal two-ports.

Figure 2: Two-port extension of the circuit shown in Fig. 1
(a) Find as much as you can the natural frequencies of the circuit.

Clearly, the poles of the impedance matrix elements of the two-port shown in Fig. 2give the natural frequencies of the circuit. So, we should find the impedance matrix of the two-port in Fig. 2

$$
\boldsymbol{T}_{0}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \Rightarrow \boldsymbol{H}_{0}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]
$$

Noting the series-parallel interconnection,

$$
\boldsymbol{H}_{1}=\boldsymbol{H}_{0}+\boldsymbol{H}_{0}=\left[\begin{array}{cc}
2 & 0 \\
-2 & 2
\end{array}\right] \Rightarrow \boldsymbol{T}_{1}=\left[\begin{array}{cc}
2 & 1 \\
1 & 0.5
\end{array}\right]
$$

Now, we have a cascade interconnection.

$$
\boldsymbol{T}_{2}=\boldsymbol{T}_{1} \boldsymbol{T}_{0}=\left[\begin{array}{cc}
3 & 3 \\
-1.5 & 1.5
\end{array}\right] \Rightarrow \boldsymbol{Y}_{2}=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
-\frac{1}{3} & 1
\end{array}\right]
$$

Finally, the desired two-port is created by adding the parallel admittances to the ports. So,

$$
\boldsymbol{Y}=\left[\begin{array}{cc}
\frac{1}{2}+s & 0 \\
-\frac{1}{3} & 1+1
\end{array}\right] \Rightarrow \boldsymbol{Z}=\boldsymbol{Y}^{-1}\left[\begin{array}{cc}
\frac{2}{2 s+1} & 0 \\
\frac{1}{3(2 s+1)} & \frac{s+0.5}{2 s+1}
\end{array}\right]
$$

So, the natural frequency is

$$
2 s+1=0 \Rightarrow s=-0.5
$$

(b) Now, consider the two-port shown in Fig. 2. Thw two-port is made from the circuit of Fig. 1 by adding the shown ports. How many descriptions does the two-port have? Determine which descriptions exist and which does not exist. Obtain two descriptions if the two-port has more than two descriptions.

We have already obtained the impedance and admittance descriptions in the previous part. Noting the table of "descriptions interrelation", since the element z_{12} of the impedance matrix is zero, the $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ description does not exist. The determinant of the impedance matrix and three of its elements are nonzero. So, the two-port has 5 descriptions among which the impedance and admittance descriptions are calculated.

