Question 1

For the circuit of Fig. 1, find an expression for $i_{L}(t)$ valid for all $t 0$.

Figure 1: A circuit for which the current $i_{L}(t)$ is desired.

Figure 2: Labeling the nodes in the circuit of Fig. 1

Label the circuit as shown in Fig. 2 The voltage at non-inverting leg of the left Op Amp is $v(t)=u(t-1)$. Writing a KCL for the inverting input,

$$
\frac{v(t)-0}{1}+\frac{v(t)-e_{1}(t)}{1}=0 \Rightarrow e_{1}(t)=2 v(t)
$$

Similarly, we write a KCL for the inverting leg of the next Op Amp, whose voltage is 0 V .

$$
\frac{0-e_{1}(t)}{1}+\frac{0-e_{2}(t)}{1}=0 \Rightarrow e_{2}(t)=-e_{1}(t)=-2 v(t)
$$

Now, we get the equivalent RL circuit of Fig. 3 where we have merged the inductors as $L_{e q}=2 \| 2+1=2 \mathrm{H}$. This is a simple series RL circuit driven with the DC voltage $e_{2}(t)=-2 v(t)=-2 u(t-1)$. For $t<1$, the voltage is zero and therefore, $i_{L}\left(1^{-}\right)=0$. The inductor keeps the current continuous when the voltage source switches to -2 V . So,

Figure 3: Equivalent circuit of Fig. 17
$i_{L}\left(1^{+}\right)=i_{L}\left(1^{-}\right)=i_{L}(1)=0$. When the circuit gets into its steady state, the inductor is short circuit and consequently, $i_{L}(\infty)=\frac{-2}{1}=-2$ A. Finally, for $t \geq 1$,

$$
i_{L}(t)=i_{L}(\infty)+\left(i_{L}(1)-i_{L}(\infty)\right) e^{-\frac{t-1}{\tau}}=-2\left(1-e^{-\frac{t-1}{2}}\right)
$$

, where $\tau=\frac{L_{e q}}{R_{e q}}=\frac{2}{1}=2$. Overall,

$$
i(t)=\left\{\begin{array}{ll}
0 & , t<1 \\
-2\left(1-e^{-\frac{t-1}{2}}\right) & , t \geq 1
\end{array}=-2\left(1-e^{-\frac{t-1}{2}}\right) u(t-1)\right.
$$

