Question 1

For the circuit shown in Fig. 1 ,

Figure 1: Lattice network.
(a) Find the transfer function $H(s)=\frac{V_{2}(s)}{V_{1}(s)}$, where $Z(s)$ and $Y(s)$ denote impedance and admittance of two single-port passive network.

$$
V_{2}(s)=\frac{Y^{-1}+Z}{Y^{-1}+Z+Z} V_{1}(s)-\frac{Z}{Y^{-1}+Z+Z} V_{1}(s)=\frac{Y^{-1}}{Y^{-1}+2 Z} V_{1}(s)=\frac{1}{1+2 Z Y} V_{1}(s)
$$

So,

$$
H(s)=\frac{V_{2}(s)}{V_{1}(s)}=\frac{1}{1+2 Z(s) Y(s)}
$$

(b) Let $Z=s+\frac{1}{s}$ and $Y=s+\frac{1}{s}$ be a series and a parallel LC network, respectively. Find the simplified transfer function $H(s)=\frac{V_{2}(s)}{V_{1}(s)}$ and the corresponding frequency response $H(j \omega)=$ $\frac{V_{2}(j \omega)}{V_{1}(j \omega)}$.

$$
\begin{gathered}
H(s)=\frac{V_{2}(s)}{V_{1}(s)}=\frac{1}{1+2 Z(s) Y(s)}=\frac{1}{1+2\left(s+\frac{1}{s}\right)\left(s+\frac{1}{s}\right)}=\frac{s^{2}}{2 s^{4}+5 s^{2}+2} \\
H(j \omega)=\left.H(s)\right|_{s=j \omega}=\frac{-\omega^{2}}{2 \omega^{4}-5 \omega^{2}+2}
\end{gathered}
$$

(c) Draw the zero-pole diagram of $H(s)$ calculated in part (b)

The transfer function has two repeated zeros at $z_{1,2}=0$ and four simple imaginary conjugate poles at $p_{1,2}= \pm j \sqrt{2}$ and $p_{3,4}= \pm j \frac{1}{\sqrt{2}}$. The zero-pole diagram is shown in Fig. 2

Figure 2: Zero-pole diagram.
(d) Draw the approximated amplitude and phase response of $H(j \omega)$ calculated in part (b)

Magnitude and phase responses are shown in Fig. 3 and Fig. 4 respectively. The magnitude has two vertical asymptote lines at $\omega=\frac{1}{\sqrt{2}}$ and $\omega=\sqrt{2}$ due to the poles. The magnitude is zero at $\omega=0$ due to the zeros. The magnitude also approaches zero for $\omega \rightarrow \infty$ since the number of poles is more than the number of zeros. The phase experiences sudden jumps at the pole frequencies $\omega=\frac{1}{\sqrt{2}}$ and $\omega=\sqrt{2}$.

Figure 3: Magnitude response curve.
\qquad

Figure 4: Phase response curve.

