MATHEMATICAL QUESTIONS

Question 1

Find the equivalent resistance of the ladder network in Fig. (1.

Figure 1: Ladder resistor network.

Let R be the equivalent resistor seen from the terminal point A and B . Since the ladder has infinite length, the same equivalent resistor R is seen from each vertical resistor R_{2}. Therefore, $R=R_{1}+R_{2} \| R=R_{1}+R_{2} R /\left(R_{2}+R\right)$. This is a second-order equation, whose acceptable solution is

$$
R=\frac{R_{1}+\sqrt{R_{1}^{2}+4 R_{1} R_{2}}}{2}
$$

Question 2

How are Δ and T resistor networks in Fig. 2 equivalent? (Hint: If two circuits are equivalent, the terminal voltages and currents must be equal.)

(a)

(b)

Figure 2: Two well-known equivalent resistor circuits. (a) Δ network. (b) T network.

The networks should behave the same for any values of $i_{a}, i_{b}, i_{c}, i_{d}$ and $v_{a}, v_{b}, v_{c}, v_{d}$. Especially, when $i_{b}=0$, then $v_{c}-v_{a}=i_{a} R_{1}+i_{a} R_{3}=i_{a} R_{A} \|\left(R_{B}+R_{C}\right)$, which results in $R_{1}+R_{3}=R_{A} \|\left(R_{B}+R_{C}\right)$. Similarly, if $i_{a}=0, R_{2}+R_{3}=R_{C} \|\left(R_{B}+R_{A}\right)$, and if $i_{c}+i_{d}=0$, $R_{1}+R_{2}=R_{B} \|\left(R_{C}+R_{A}\right)$. These equations lead to

$$
\begin{aligned}
R_{1} & =\frac{R_{A} R_{B}}{R_{A}+R_{B}+R_{C}} \\
R_{2} & =\frac{R_{B} R_{C}}{R_{A}+R_{B}+R_{C}}
\end{aligned}
$$

, and

$$
R_{3}=\frac{R_{A} R_{C}}{R_{A}+R_{B}+R_{C}}
$$

Further,

$$
\begin{aligned}
& R_{A}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{2}} \\
& R_{B}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{3}}
\end{aligned}
$$

, and

$$
R_{C}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{1}}
$$

Question 3

Determine the Thevenin equivalent seen by $-j 10 \Omega$ impedance of Fig. 3 and use this to compute V_{1}.

Figure 3: A circuit for which Thevenin equivalent seen by $-j 10 \Omega$ impedance is desired.

Figure 4: (a) The Thevenin equivalent seen by the - $j 10 \Omega$ impedance is desired. (b) $V_{o c}$ is defined. (c) $Z_{t h}$ is defined. (d) The circuit is redrawn using the Thevenin equivalent.

The open-circuit voltage, defined in Fig. 4(b), is

$$
V_{o c}=\left(1 \angle 0^{\circ}\right)(4-j 2)-\left(-0.5 \angle-90^{\circ}\right)(2+j 4)=4-j 2+2-j 1=6-j 3 \vee
$$

The impedance of the inactive circuit of Fig. $4(\mathrm{c})$ as viewed from the load terminals is simply the sum of the two remaining impedances. Hence,

$$
Z_{t h}=6+j 2 \Omega
$$

When we reconnect the circuit as in Fig. 4(d), the current directed from node 1 toward node 2 through the $-j 10 \Omega$ load is

$$
I_{12}=\frac{6-j 3}{6+j 2-j 10}=0.6+j 0.3 \mathrm{~A}
$$

We now know the current flowing through the $-j 10 \Omega$ impedance of Fig. [4(a). Note that we are unable to compute V_{1} using the circuit of Fig. 4 (d) as the reference node no longer exists. Returning to the original circuit, then, and subtracting the $0.6+j 0.3 \mathrm{~A}$ current from the left source current, the downward current through the $4-j 2 \Omega$ branch is found

$$
I_{1}=1-0.6-j 0.3=0.4-j 03 \mathrm{~A}
$$

and, thus,

$$
V_{1}=(4-j 2)(0.4-j 03)=1-j 2 \mathrm{~V}
$$

Question 4

Household electrical voltages are typically quoted as 220 V in Iran. However, these values do not represent the peak ac voltage. Rather, they represent what is known as the root mean square of the voltage, defined as

$$
V_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} V_{m}^{2} \cos ^{2}(\omega t) d t}
$$

where $T=\frac{1}{f}$ is the period of the waveform, V_{m} is the peak voltage, and $\omega=2 \pi f$ is the waveform angular frequency, where $f=50 \mathrm{~Hz}$ in Iran.
(a) Perform the indicated integration, and show that for a sinusoidal voltage $V_{r m s}=\frac{V_{m}}{\sqrt{2}}$.

$$
V_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} V_{m}^{2} \cos ^{2}(\omega t) d t}=\sqrt{\frac{1}{T} \int_{0}^{T} V_{m}^{2} \frac{1+\cos (2 \omega t)}{2} d t}=\sqrt{\frac{1}{T} V_{m}^{2} \frac{T+0}{2}}=\frac{V_{m}}{\sqrt{2}}
$$

(b) Compute the peak voltages corresponding to the rms voltage 220 V .

$$
V_{m}=220 \sqrt{2}=311.13 \mathrm{~V}
$$

Question 5

Consider the circuit shown in Fig. 5, where $V_{r e f}$ is provided by a regulated voltage source. Show that the circuit can act like a current source and find the constant current I_{s} flowing to the resistive load R_{L}.

Figure 5: An Op Amp-based current source.

The voltage at the inputs of the Op Amp is 0 . A KCL at the inverting leg of the Op Amp results in $\frac{V_{\text {ref }}}{R_{\text {ref }}}=I_{S}$. Clearly, the constant current I_{S} does not depend on R_{L} and flows through the load resistor R_{L}, regardless of its value.

Question 6

Find the differential equation relating $i_{x}(t)$ to $v_{s}(t)$ for the circuit displayed in Fig. 6 and obtain the corresponding impulse and step responses.

Figure 6: A circuit whose impulse and step responses are intended.

$$
\begin{gathered}
v_{C}(t)+1.5 i_{x}^{\prime}(t)+2.2 i_{x}(t)=v_{s}(t), \quad i_{x}(t)=\frac{v_{C}(t)}{1}+0.4 v_{C}^{\prime}(t)=v_{C}(t)+0.4 v_{C}^{\prime}(t) \\
i_{x}(t)=\left(v_{s}(t)-1.5 i_{x}^{\prime}(t)-2.2 i_{x}(t)\right)+0.4\left(v_{s}(t)-1.5 i_{x}^{\prime}(t)-2.2 i_{x}(t)\right)^{\prime} \\
i_{x}(t)=v_{s}(t)-1.5 i_{x}^{\prime}(t)-2.2 i_{x}(t)+0.4 v_{s}^{\prime}(t)-0.6 i_{x}^{\prime \prime}(t)-0.88 i_{x}^{\prime}(t) \\
i_{x}^{\prime \prime}(t)+3.97 i_{x}^{\prime}(t)+5.33 i_{x}(t)=1.67 v_{s}(t)+0.67 v_{s}^{\prime}(t)
\end{gathered}
$$

When the circuit is driven with $v_{s}(t)=\delta(t)$, the impulse response is the solution of

$$
h^{\prime \prime}(t)+3.97 h^{\prime}(t)+5.33 h(t)=1.67 \delta(t)+0.67 \delta^{\prime}(t)
$$

The characteristic equation of the corresponding homogeneous differential equation is $s^{2}+3.97 s+5.33=0$ with the roots $s_{1}=-1.985+j 1.179$ and $s_{2}=-1.985-j 1.179$. After $t>0$, the differential equation is identical with its homogeneous form

$$
h^{\prime \prime}(t)+3.97 h^{\prime}(t)+5.33 h(t)=0
$$

because $\delta(t)=\delta^{\prime}(t)=0$ for $t>0$. Since, the characteristic equation has two complex conjugate roots, for $t>0$, the solution is

$$
h(t)=\left(B_{1} e^{-1.985 t+j 1.179 t}+B_{2} e^{-1.985 t-j 1.179 t}\right) u(t)
$$

or equivalently,

$$
h(t)=e^{-1.985 t}\left(A_{1} \cos (1.179 t)+A_{2} \sin (1.179 t)\right) u(t)
$$

At $t=0$, this solution should make both sides of the equation balanced. So,

$$
h^{\prime \prime}(t)+3.97 h^{\prime}(t)+5.33 h(t)=1.67 \delta(t)+0.67 \delta^{\prime}(t)
$$

We have,

$$
\begin{gathered}
h^{\prime}(t)=\left[-1.985 e^{-1.985 t}\left(A_{1} \cos (1.179 t)+A_{2} \sin (1.179 t)\right)\right. \\
\left.+e^{-1.985 t}\left(-1.179 A_{1} \sin (1.179 t)+1.179 A_{2} \cos (1.179 t)\right)\right] u(t)+A_{1} \delta(t) \\
h^{\prime \prime}(t)=\left[2.5504 A_{1} e^{-1.985 t} \cos (1.179 t)+4.681 A_{1} e^{-1.985 t} \sin (1.179 t)\right. \\
\left.+2.5504 A_{2} e^{-1.985 t} \sin (1.179 t)-4.681 A_{2} e^{-1.985 t} \cos (1.179 t)\right] u(t) \\
\quad+\left(-1.985 A_{1}+1.179 A_{2}\right) \delta(t)+A_{1} \delta^{\prime}(t)
\end{gathered}
$$

Substituting the derivatives in the differential equation,

$$
\left(-1.985 A_{1}+1.179 A_{2}\right) \delta(t)+A_{1} \delta^{\prime}(t)+3.97 A_{1} \delta(t)=1.67 \delta(t)+0.67 \delta^{\prime}(t)
$$

Therefore,

$$
\Rightarrow\left\{\begin{array} { l }
{ A _ { 1 } = 0 . 6 7 } \\
{ 1 . 9 8 5 A _ { 1 } + 1 . 1 7 9 A _ { 2 } = 1 . 6 7 }
\end{array} \Rightarrow \left\{\begin{array}{l}
A_{1}=0.67 \\
A_{2}=0.29
\end{array}\right.\right.
$$

Finally,

$$
h(t)=e^{-1.985 t}(0.67 \cos (1.179 t)+0.29 \sin (1.179 t)) u(t)
$$

Further,
$s(t)=\int_{-\infty}^{t} h(\tau) d \tau=\left[0.0402 e^{-1.985 t} \sin (1.179 t)-0.3137 e^{-1.985 t} \cos (1.179 t)+0.3137\right] u(t)$

Question 7

Consider a series RL circuit driven with the voltage source $v(t)$, where the loop current $i(t)$ should be calculated.
(a) Find the zero-input response if the initial current is $i(0)=I_{0}$.

$$
L i^{\prime}(t)+R i(t)=0, \quad i(0)=I_{0}
$$

, which is a homogeneous first-order equation with the solution

$$
i(t)=I_{0} e^{-\frac{R}{L} t}
$$

(b) Find the step response.

$$
L i^{\prime}(t)+R i(t)=u(t), \quad i(0)=0
$$

, which is a non-homogeneous first-order equation with the solution

$$
s(t)=i(t)=\frac{1}{R}\left(1-e^{-\frac{R}{L} t}\right) u(t)
$$

(c) Find the impulse response.

$$
h(t)=s^{\prime}(t)=\frac{1}{R}\left(1-e^{-\frac{R}{L} t}\right) \delta(t)+\frac{1}{L} e^{-\frac{R}{L} t} u(t)=\frac{1}{L} e^{-\frac{R}{L} t} u(t)
$$

(d) Find the zero-state response if $v(t)=V_{0} e^{-t} u(t)$.

At first, let evaluate $e^{-\alpha t} u(t) * e^{-\beta t} u(t)$. Assuming $\alpha \neq \beta$,

$$
\begin{aligned}
& e^{-\alpha t} u(t) * e^{-\beta t} u(t)=\int_{-\infty}^{\infty} e^{-\alpha \tau} u(\tau) e^{-\beta(t-\tau)} u(t-\tau) d \tau=e^{-\beta t} u(t) \int_{0}^{t} e^{(\beta-\alpha) \tau} d \tau \\
= & \left.u(t) e^{-\beta t} \frac{1}{\beta-\alpha} e^{(\beta-\alpha) \tau}\right|_{0} ^{t}=u(t) \frac{1}{\beta-\alpha} e^{-\beta t}\left(e^{(\beta-\alpha) t}-1\right)=\frac{1}{\beta-\alpha}\left(e^{-\alpha t}-e^{-\beta t}\right) u(t)
\end{aligned}
$$

For $\alpha=\beta$,

$$
e^{-\alpha t} u(t) * e^{-\alpha t} u(t)=\int_{-\infty}^{\infty} e^{-\alpha \tau} u(\tau) e^{-\alpha(t-\tau)} u(t-\tau) d \tau=e^{-\alpha t} u(t) \int_{0}^{t} d \tau=t e^{-\alpha t} u(t)
$$

Now,

$$
i(t)=V_{0} e^{-t} u(t) * \frac{1}{L} e^{-\frac{R}{L} t} u(t)=\frac{V_{0}}{L} e^{-t} u(t) * e^{-\frac{R}{L} t} u(t)
$$

If $R \neq L$,

$$
i(t)=\frac{V_{0}}{L} \frac{1}{\frac{R}{L}-1}\left(e^{-t}-e^{-\frac{R}{L} t}\right) u(t)=\frac{V_{0}}{R-L}\left(e^{-t}-e^{-\frac{R}{L} t}\right) u(t)
$$

When $R=L$,

$$
i(t)=\frac{V_{0}}{L} t e^{-t} u(t)
$$

(e) Find the complete response if $v(t)=V_{0} e^{-t} u(t)$ and $i(0)=I_{0}$.

If $R \neq L$,

$$
i(t)=I_{0} e^{-\frac{R}{L} t}+\frac{V_{0}}{R-L}\left(e^{-t}-e^{-\frac{R}{L} t}\right) u(t)
$$

When $R=L$,

$$
i(t)=I_{0} e^{-t}+\frac{V_{0}}{L} t e^{-t} u(t)
$$

(f) Find the complete response if $v(t)=V_{0} \cos (\omega t+\theta) u(t)$ and $i(0)=I_{0}$. How does the complete response relate to the sinusoidal steady state response?

The zero-input, zero-state impulse, and zero-state step responses do not change by altering the input voltage. So, when the input is $v(t)=V_{0} \cos (\omega t+\theta)$, the zero-state response equals

$$
\begin{gathered}
v(t) * h(t)=V_{0} \cos (\omega t+\theta) u(t) * \frac{1}{L} e^{-\frac{R}{L} t} u(t)=\frac{V_{0}}{L}\left[\frac{e^{j(\omega t+\theta)}+e^{-j(\omega t+\theta)}}{2}\right] u(t) * e^{-\frac{R}{L} t} u(t) \\
=\frac{V_{0}}{2 L}\left[e^{j \theta} e^{j \omega t} u(t) * e^{-\frac{R}{L} t} u(t)+e^{-j \theta} e^{-j \omega t} u(t) * e^{-\frac{R}{L} t} u(t)\right] \\
=\frac{V_{0}}{2 L}\left[e^{j \theta} \frac{1}{\frac{R}{L}+j \omega}\left(e^{j \omega t}-e^{-\frac{R}{L} t}\right) u(t)+e^{-j \theta} \frac{1}{\frac{R}{L}-j \omega}\left(e^{-j \omega t}-e^{-\frac{R}{L} t}\right) u(t)\right] \\
=\frac{V_{0}}{2 L} u(t)\left[\frac{1}{\frac{R}{L}+j \omega} e^{j(\omega t+\theta)}+\frac{1}{\frac{R}{L}-j \omega} e^{-j(\omega t+\theta)}\right]-\frac{V_{0}}{2 L} u(t) e^{-\frac{R}{L} t}\left[\frac{1}{\frac{R}{L}+j \omega} e^{j \theta}+\frac{1}{\frac{R}{L}-j \omega} e^{-j \theta}\right] \\
=\frac{V_{0}}{2 L} u(t) \times 2 \operatorname{Re}\left\{\frac{1}{\frac{R}{L}+j \omega} e^{j(\omega t+\theta)}\right\}-\frac{V_{0}}{2 L} u(t) e^{-\frac{R}{L} t} \times 2 \operatorname{Re}\left\{\frac{1}{\frac{R}{L}+j \omega} e^{j \theta}\right\} \\
=\frac{V_{0}}{L} u(t) \times \operatorname{Re}\left\{\frac{1}{\sqrt{\frac{R^{2}}{L^{2}}+\omega^{2}}} e^{j\left(\omega t+\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right)}\right\}-\frac{V_{0}}{L} u(t) e^{-\frac{R}{L} t} \times \operatorname{Re}\left\{\frac{1}{\sqrt{\frac{R^{2}}{L^{2}}+\omega^{2}}} e^{j\left(\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right)}\right\} \\
=\frac{V_{0}}{L} u(t) \frac{1}{\sqrt{\frac{R^{2}}{L^{2}}+\omega^{2}}} \cos \left(\omega t+\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right)-\frac{V_{0}}{L} u(t) e^{-\frac{R}{L} t} \frac{1}{\sqrt{\frac{R^{2}}{L^{2}}+\omega^{2}}} \cos \left(\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right) \\
=\frac{V_{0}}{\sqrt{R^{2}+\omega^{2} L^{2}}} \cos \left(\omega t+\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right) u(t)-\frac{V_{0}}{\sqrt{R^{2}+\omega^{2} L^{2}}} e^{-\frac{R}{L} t} \cos \left(\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right) u(t)
\end{gathered}
$$

Finally, the complete solution equals

$$
\begin{gathered}
i(t)=I_{0} e^{-\frac{R}{L} t}+ \\
\frac{V_{0}}{\sqrt{R^{2}+\omega^{2} L^{2}}} \cos \left(\omega t+\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right) u(t)-\frac{V_{0}}{\sqrt{R^{2}+\omega^{2} L^{2}}} e^{-\frac{R}{L} t} \cos \left(\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right) u(t)
\end{gathered}
$$

When the transients die at $t \rightarrow \infty$, the complete response is equal to

$$
i(t)=\frac{V_{0}}{\sqrt{R^{2}+\omega^{2} L^{2}}} \cos \left(\omega t+\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right) u(t)
$$

, which is exactly the steady state sinusoidal current. In a better presentation,

$$
i(t)=\left|\frac{V_{0} e^{j \theta}}{R+j \omega L}\right| \cos \left(\omega t+\angle\left[\frac{V_{0} e^{j \theta}}{R+j \omega L}\right]\right) u(t)
$$

, where $\frac{V_{0} e^{j \theta}}{R+j \omega L}$ is the phasor of the current.

BONUS QUESTIONS

Question 8

Return your answers by filling the $\mathbb{A N}_{E} X$ Xtemplate of the assignment.

