MATHEMATICAL QUESTIONS

Question 1

The linear rime-invariant network shown in Fig. 1 is in the sinusoidal steady state. The coupling between the inductors is specified by the reciprocal inductance matrix

$$
\left[\begin{array}{cccc}
\Gamma_{0} & \Gamma_{1} & \Gamma_{2} & 0 \\
\Gamma_{1} & \Gamma_{0} & \Gamma_{1} & \Gamma_{2} \\
\Gamma_{2} & \Gamma_{1} & \Gamma_{0} & \Gamma_{1} \\
0 & \Gamma_{2} & \Gamma_{1} & \Gamma_{0}
\end{array}\right]
$$

Write the cut-set equations $\boldsymbol{Y}_{q}(j \omega) \boldsymbol{E}=\boldsymbol{I}_{s}$ and the node equations $\boldsymbol{Y}_{n}(j \omega) \boldsymbol{E}=\boldsymbol{I}_{s}$ in matrix form.

Figure 1: A coupled circuit.

Using the shortcut method,

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
\begin{array}{c}
G_{1}+\frac{\Gamma_{0}}{j \omega} \\
+j \omega\left(C+C_{1}\right)
\end{array} & -\frac{\Gamma_{0}}{j \omega} & -j \omega C_{1} & 0 & 0 \\
-\frac{\Gamma_{0}}{j \omega} & \begin{array}{c}
2 \frac{\Gamma_{0}}{j \omega} \\
+j \omega\left(C+C_{1}\right)
\end{array} & -\frac{\Gamma_{0}}{j \omega} & -j \omega C_{1} & 0 \\
-j \omega C_{1} & -\frac{\Gamma_{0}}{j \omega} & \begin{array}{c}
\frac{2 \Gamma_{0}}{j \omega} \\
+j \omega\left(C+2 C_{1}\right)
\end{array} & -\frac{\Gamma_{0}}{j \omega} & -j \omega C_{1} \\
0 & -j \omega C_{1} & -\frac{\Gamma_{0}}{j \omega} & \begin{array}{c}
\frac{2 \Gamma_{0}}{j \omega} \\
+j \omega\left(C+C_{1}\right)
\end{array} & -\frac{\Gamma_{0}}{j \omega} \\
0 & 0 & -j \omega C_{1} & -\frac{\Gamma_{0}}{j \omega} & \left.\begin{array}{c}
G_{2}+\frac{\Gamma_{0}}{j \omega} \\
+j \omega\left(C+C_{1}\right)
\end{array}\right]\left[\begin{array}{l}
E_{1}(j \omega) \\
E_{2}(j \omega) \\
E_{3}(j \omega) \\
E_{4}(j \omega) \\
E_{5}(j \omega)
\end{array}\right]=, ~=, ~=~
\end{array}\right.} \\
& {\left[\begin{array}{c}
I_{s}(j \omega)-\frac{\Gamma_{1}}{j \omega}\left(E_{2}-E_{3}\right)-\frac{\Gamma_{2}}{j \omega}\left(E_{3}-E_{4}\right) \\
\frac{\Gamma_{1}}{j \omega}\left(E_{2}-E_{3}\right)+\frac{\Gamma_{2}}{j \omega}\left(E_{3}-E_{4}\right)-\frac{\Gamma_{1}}{j \omega}\left(E_{1}-E_{2}\right)-\frac{\Gamma_{1}}{j \omega}\left(E_{3}-E_{4}\right)-\frac{\Gamma_{2}}{j \omega}\left(E_{4}-E_{5}\right) \\
\frac{\Gamma_{1}}{j \omega}\left(E_{1}-E_{2}\right)+\frac{\Gamma_{1}}{j \omega}\left(E_{3}-E_{4}\right)+\frac{\Gamma_{2}}{j \omega}\left(E_{4}-E_{5}\right)-\frac{\Gamma_{2}}{j \omega}\left(E_{1}-E_{2}\right)-\frac{\Gamma_{1}}{j \omega}\left(E_{2}-E_{3}\right)-\frac{\Gamma_{1}}{j \omega}\left(E_{4}-E_{5}\right) \\
\frac{\Gamma_{2}}{j \omega}\left(E_{1}-E_{2}\right)+\frac{\Gamma_{1}}{j \omega}\left(E_{2}-E_{3}\right)+\frac{\Gamma_{1}}{j \omega}\left(E_{4}-E_{5}\right)-\frac{\Gamma_{2}}{j \omega}\left(E_{2}-E_{3}\right)-\frac{\Gamma_{1}}{j \omega}\left(E_{3}-E_{4}\right) \\
\frac{\Gamma_{2}}{j \omega}\left(E_{2}-E_{3}\right)+\frac{\Gamma_{1}}{j \omega}\left(E_{3}-E_{4}\right)
\end{array}\right]}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& {\left[\begin{array}{c}
E_{1}(j \omega) \\
E_{2}(j \omega) \\
E_{3}(j \omega) \\
E_{4}(j \omega) \\
E_{5}(j \omega)
\end{array}\right]=\left[\begin{array}{c}
I_{s}(j \omega) \\
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

The spanning tree including the capacitors C can be selected for the cut-set analysis. The cut-sets corresponding to the branches of this tree are the circuit nodes. So, the same equations as the node equations can be used for the cut-set analysis.

Question 2

The linear time-invariant network of Fig. 2 , having the shown topological graph, is in the sinusoidal steady state. From the topological graph, the highlighted tree is picked.

Figure 2: An LTI circuit along with its topological graph and spanning tree.
(a) Write the fundamental loop matrix \boldsymbol{B}.

$$
\boldsymbol{B}=\left[\begin{array}{llllll}
-1 & 1 & 0 & 1 & 0 & 1 \\
-1 & 0 & 1 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

(b) Calculate the loop impedance matrix \boldsymbol{Z}_{l}.

$$
\begin{gathered}
\boldsymbol{V}(j \omega)=\boldsymbol{Z}_{b}(j \omega) \boldsymbol{J}(j \omega)+\boldsymbol{V}_{s}(j \omega)-\boldsymbol{Z}_{b}(j \omega) \boldsymbol{J}_{s}(j \omega) \\
{\left[\begin{array}{l}
V_{1}(j \omega) \\
V_{2}(j \omega) \\
V_{3}(j \omega) \\
V_{4}(j \omega) \\
V_{5}(j \omega) \\
V_{6}(j \omega)
\end{array}\right]=\left[\begin{array}{cccccc}
\frac{1}{C_{1 j} j \omega} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{C_{2} j \omega} & 0 & 0 & 0 & 0 \\
0 & 0 & L_{3} j \omega & 0 & 0 & 0 \\
0 & 0 & 0 & L_{4} j \omega & 0 & 0 \\
0 & 0 & 0 & 0 & R_{5} & 0 \\
\frac{g_{m} R_{6}}{j \omega C_{1}} & 0 & 0 & 0 & 0 & R_{6}
\end{array}\right]\left[\begin{array}{l}
J_{1}(j \omega) \\
J_{2}(j \omega) \\
J_{3}(j \omega) \\
J_{4}(j \omega) \\
J_{5}(j \omega) \\
J_{6}(j \omega)
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
R_{5} J_{s}(j \omega) \\
0
\end{array}\right]} \\
\boldsymbol{Z}_{l}(j \omega)=\boldsymbol{B} \boldsymbol{Z}_{b}(j \omega) \boldsymbol{B}^{T} \\
\boldsymbol{Z}_{l}(j \omega)=\left[\begin{array}{ccc}
\frac{1+g_{m} R_{6}}{j \omega C_{1}}+\frac{1}{j \omega C_{2}}+L_{4} j \omega+R_{6} & \frac{1+g_{m} R_{6}}{j \omega C_{1}}+R_{6} & \frac{1+g_{m} R_{6}}{j \omega} \\
\frac{1+g_{m} R_{6}}{j \omega C_{1}}+R_{6} & \frac{1+g_{m} R_{6}}{j \omega C_{1}}+L_{3} j \omega+R_{6} & \frac{1}{j+T_{m} R_{6}} \\
\frac{1}{j \omega C_{1}} & \frac{1}{j \omega C_{1}} & \frac{1}{j \omega C_{1}}+R_{5}
\end{array}\right]
\end{gathered}
$$

(c) Write the loop equations in terms of voltage and current phasors, that is, $\boldsymbol{Z}_{l} \boldsymbol{I}=\boldsymbol{E}_{s}$.

$$
\begin{aligned}
& Z_{l}(j \omega)=\boldsymbol{B} \boldsymbol{Z}_{b}(j \omega) \boldsymbol{B}^{T} \\
& \boldsymbol{Z}_{l}(j \omega)=\left[\begin{array}{ccc}
\frac{1+g_{m} R_{6}}{j \omega C_{1}}+\frac{1}{j \omega C_{2}}+L_{4} j \omega+R_{6} & \frac{1+g_{m} R_{6}}{j \omega C_{1}}+R_{6} & \frac{1+g_{m} R_{6}}{j \omega C_{1}} \\
\frac{1+g_{m} R_{6}}{j \omega C_{1}}+R_{6} & \frac{1+g_{m} R_{6}}{j \omega C_{1}}+L_{3} j \omega+R_{6} & \frac{1+g_{m} R_{6}}{j \omega C_{1}} \\
& \frac{1}{j \omega C_{1}} & \frac{1}{j \omega C_{1}}
\end{array}\right. \\
& \boldsymbol{E}_{s}(j \omega)=\boldsymbol{B} \boldsymbol{Z}_{b}(j \omega) \boldsymbol{J}_{s}(j \omega)-\boldsymbol{B} \boldsymbol{V}_{s}(j \omega)=\left[\begin{array}{c}
0 \\
0 \\
-R_{5} J_{s}(j \omega)
\end{array}\right] \\
& {\left[\begin{array}{ccc}
\frac{1+g_{m} R_{6}}{j \omega C_{1}}+\frac{1}{j \omega C_{2}} & \frac{1+g_{m} R_{6}}{j \omega C_{1}}+R_{6} & \frac{1+g_{m} R_{6}}{j \omega C_{1}} \\
+L_{4} j \omega+R_{6} & & \\
\frac{1+g_{m} R_{6}}{j \omega C_{1}}+R_{6} & \frac{1+g_{m} R_{6}}{j \omega C_{1}}+L_{3} j \omega+R_{6} & \frac{1+g_{m} R_{6}}{j \omega C_{1}} \\
\frac{1}{j \omega C_{1}} & \frac{1}{j \omega C_{1}} & \frac{1}{j \omega C_{1}}+R_{5}
\end{array}\right]\left[\begin{array}{c}
I_{1}(j \omega) \\
I_{2}(j \omega) \\
I_{3}(j \omega)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-R_{5} J_{s}(j \omega)
\end{array}\right]}
\end{aligned}
$$

(d) Write the matrix equations required to calculate the branch voltages and branch currents.

$$
\begin{gathered}
{\left[\begin{array}{l}
J_{1}(j \omega) \\
J_{2}(j \omega) \\
J_{3}(j \omega) \\
J_{4}(j \omega) \\
J_{5}(j \omega) \\
J_{6}(j \omega)
\end{array}\right]=\boldsymbol{J}(j \omega)=\boldsymbol{B}^{T} \boldsymbol{I}(j \omega)=\left[\begin{array}{c}
-I_{1}(j \omega)-I_{2}(j \omega)-I_{3}(j \omega) \\
I_{1}(j \omega) \\
I_{2}(j \omega) \\
I_{1}(j \omega) \\
I_{3}(j \omega) \\
I_{1}(j \omega)+I_{2}(j \omega)
\end{array}\right]} \\
\boldsymbol{V}(j \omega)=\boldsymbol{Z}_{b}(j \omega) \boldsymbol{J}(j \omega)+\boldsymbol{V}_{s}(j \omega)-\boldsymbol{Z}_{b}(j \omega) \boldsymbol{J}_{s}(j \omega)
\end{gathered}
$$

$\left[\begin{array}{l}V_{1}(j \omega) \\ V_{2}(j \omega) \\ V_{3}(j \omega) \\ V_{4}(j \omega) \\ V_{5}(j \omega) \\ V_{6}(j \omega)\end{array}\right]=\left[\begin{array}{cccccc}\frac{1}{C_{1} j \omega} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{C_{2} j \omega} & 0 & 0 & 0 & 0 \\ 0 & 0 & L_{3} j \omega & 0 & 0 & 0 \\ 0 & 0 & 0 & L_{4} j \omega & 0 & 0 \\ 0 & 0 & 0 & 0 & R_{5} & 0 \\ \frac{g_{m} R_{6}}{j \omega C_{1}} & 0 & 0 & 0 & 0 & R_{6}\end{array}\right]\left[\begin{array}{l}J_{1}(j \omega) \\ J_{2}(j \omega) \\ J_{3}(j \omega) \\ J_{4}(j \omega) \\ J_{5}(j \omega) \\ J_{6}(j \omega)\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ R_{5} J_{s}(j \omega) \\ 0\end{array}\right]$

Question 3

Which loop impedance matrix below does belong to a passive LTI RLC circuit? Give your reasons for rejecting any.

$$
\left.\begin{array}{cc}
{\left[\begin{array}{ll}
3 & 2 \\
2 & 5
\end{array}\right],} & {\left[\begin{array}{cc}
-1 & 2 \\
2 & 4
\end{array}\right],}
\end{array} \begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right],\left[\begin{array}{cc}
1
\end{array}\right],\left[\begin{array}{cc}
3 & -j \\
-j & 2
\end{array}\right],\left[\begin{array}{cc}
5 & 7 j \\
6 j & 8+3 j
\end{array}\right]
$$

Figure 3: Sample passive LTI RLC circuits for the acceptable loop impedance matrices.

The three first matrices belong to resistove networks. For a passive resistive network, $\operatorname{det}\left[\boldsymbol{Z}_{l}\right]>0 .\left[\begin{array}{ll}3 & 2 \\ 2 & 5\end{array}\right]$ can be the loop impedance matrix of a passive RLC circuit such as the left circuit in Fig. 3
$\left[\begin{array}{cc}-1 & 2 \\ 2 & 4\end{array}\right] \equiv\left[\begin{array}{cc}1 & -2 \\ 2 & 4\end{array}\right]$ cannot be the loop impedance matrix of a passive RLC circuit due to asymmetry. Note that the condition $\operatorname{det}\left[\boldsymbol{Z}_{l}\right]=-8 \ngtr 0$ is also violated.
$\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ cannot be the loop impedance matrix of a passive RLC circuit due to negative determinant $\operatorname{det}\left[\boldsymbol{Z}_{l}\right]=-1 \ngtr 0$. In other word, we have two loops and the total common resistance between theses loops is 2 . so, the total impedance in each loop should be equal or greater than 2 , which is not the case for the first loop with the total resistance of 1. Note that the resistive network is passive and we cannot have negative resistance.
$\left[\begin{array}{cc}3+j & -2 j \\ -2 j & 5+7 j\end{array}\right]$ can be the loop impedance matrix of a passive RLC circuit. A sample circuit is the middle circuit in Fig. 3
$\left[\begin{array}{cc}3 & -j \\ -j & 2\end{array}\right]$ can be the loop impedance matrix of a passive RLC circuit. A sample circuit is drawn in right side of Fig. 3
$\left[\begin{array}{cc}5 & 7 j \\ 6 j & 8+3 j\end{array}\right]$ cannot be the loop impedance matrix of a passive RLC circuit due to asymmetry.

Question 4

For the circuit of Fig. 4

Figure 4: An LTI circuit for which the modified node analysis equations are required.
(a) Write the modified node analysis equations in Laplace domain.

To obtain the differential equations, the currents of the inductors and voltage source should be considered unknown. Let

$$
\begin{gathered}
I_{4}=J_{s}, \quad I_{5}=J_{L_{4}}, \quad I_{6}=J_{L_{5}} \\
\left\{\begin{array}{l}
I_{4}+C_{3} s\left(E_{1}-E_{2}\right)-C_{3} v_{c_{3}}(0)=0 \\
C_{3} s\left(E_{2}-E_{1}\right)+C_{3} v_{c_{3}}(0)+I_{5}-g_{m}\left(E_{1}-E_{2}\right)+G_{2}\left(E_{2}-E_{3}\right)=0 \\
G_{2}\left(E_{3}-E_{2}\right)+I_{6}=0
\end{array}\right.
\end{gathered}
$$

We added three extra unknown variables. So, we nned three more equations.

$$
\left\{\begin{array}{l}
V_{s_{1}}+R_{1} I_{4}=E_{1} \\
E_{2}=L_{44} s I_{5}-L_{44} i_{L_{4}(0)}+L_{45} s I_{6}-L_{45} i_{L_{5}(0)} \\
E_{3}=L_{55} s I_{6}-L_{55} i_{L_{5}(0)}+L_{45} s I_{5}-L_{45} i_{L_{4}(0)}
\end{array}\right.
$$

In matrix form,

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
C_{3} s & -C_{3} s & 0 & 1 & 0 & 0 \\
-C_{3} s-g_{m} & C_{3} s+g_{m}+G_{2} & -G_{2} & 0 & 1 & 0 \\
0 & -G_{2} & G_{2} & 0 & 0 & 1 \\
-1 & 0 & 0 & R_{1} & 0 & 0 \\
0 & 1 & 0 & 0 & -L_{44} s & -L_{45} s \\
0 & 0 & 1 & 0 & -L_{45} s & -L_{55} s
\end{array}\right]\left[\begin{array}{l}
E_{1}(s) \\
E_{2}(s) \\
E_{3}(s) \\
I_{4}(s) \\
I_{5}(s) \\
I_{6}(s)
\end{array}\right]} \\
& =\left[\begin{array}{c}
C_{3} v_{c 3}(0) \\
-C_{3} v_{c_{3}}(0) \\
0 \\
-V_{s_{1}}(s) \\
-L_{44} i_{L_{4}(0)}-L_{45} i_{L_{5}(0)} \\
-L_{55} i_{L_{5}(0)}-L_{45} i_{L_{4}(0)}
\end{array}\right]
\end{aligned}
$$

(b) Write the modified node analysis equations in time domain.

$$
\left[\begin{array}{cccccc}
C_{3} D & -C_{3} D & 0 & 1 & 0 & 0 \\
-C_{3} D-g_{m} & C_{3} D+g_{m}+G_{2} & -G_{2} & 0 & 1 & 0 \\
0 & -G_{2} & G_{2} & 0 & 0 & 1 \\
-1 & 0 & 0 & R_{1} & 0 & 0 \\
0 & 1 & 0 & 0 & -L_{44} D & -L_{45} D \\
0 & 0 & 1 & 0 & -L_{45} D & -L_{55} D
\end{array}\right]\left[\begin{array}{c}
e_{1}(t) \\
e_{2}(t) \\
e_{3}(t) \\
i_{4}(t) \\
i_{5}(t) \\
i_{6}(t)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-v_{s_{1}}(t) \\
0 \\
0
\end{array}\right]
$$

(c) Write the modified node analysis equations in Phasor domain.

$$
\left[\begin{array}{cccccc}
C_{3} j \omega & -C_{3} j \omega & 0 & 1 & 0 & 0 \\
-C_{3} j \omega-g_{m} & C_{3} j \omega+g_{m}+G_{2} & -G_{2} & 0 & 1 & 0 \\
0 & -G_{2} & G_{2} & 0 & 0 & 1 \\
-1 & 0 & 0 & R_{1} & 0 & 0 \\
0 & 1 & 0 & 0 & -L_{44} j \omega & -L_{45} j \omega \\
0 & 0 & 1 & 0 & -L_{45} j \omega & -L_{55} j \omega
\end{array}\right]\left[\begin{array}{c}
E_{1}(j \omega) \\
E_{2}(j \omega) \\
E_{3}(j \omega) \\
I_{4}(j \omega) \\
I_{5}(j \omega) \\
I_{6}(j \omega)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-V_{s_{1}}(j \omega) \\
0 \\
0
\end{array}\right]
$$

Question 5

For the circuit if Fig. 5

Figure 5: An LTI circuit for which the loop and mesh equations are required.
(a) Write the systematic loop equations in Laplace domain.

Selecting the tree including $R_{3}, v_{s 3}, C_{4}, R_{5}$. We have,

$$
\begin{aligned}
& \boldsymbol{B}=\left[\begin{array}{ccccc}
1 & 0 & -1 & 1 & 0 \\
0 & 1 & 0 & -1 & 1
\end{array}\right] \\
& \boldsymbol{B} \boldsymbol{V}(s)=\mathbf{0} \Rightarrow\left[\begin{array}{ccccc}
1 & 0 & -1 & 1 & 0 \\
0 & 1 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
V_{1}(s) \\
V_{2}(s) \\
V_{3}(s) \\
V_{4}(s) \\
V_{5}(s)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \boldsymbol{J}(s)=\boldsymbol{B}^{T} \boldsymbol{I}(s) \Rightarrow\left[\begin{array}{l}
J_{1}(s) \\
J_{2}(s) \\
J_{3}(s) \\
J_{4}(s) \\
J_{5}(s)
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
I_{1}(s) \\
I_{2}(s)
\end{array}\right] \\
& {\left[\begin{array}{c}
V_{1}(s) \\
V_{2}(s) \\
V_{3}(s) \\
V_{4}(s) \\
V_{5}(s)
\end{array}\right]=\left[\begin{array}{ccccc}
L_{1} s & M s & 0 & 0 & 0 \\
M s & L_{2} s & 0 & 0 & 0 \\
0 & 0 & R_{3} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{C_{4} s} & 0 \\
0 & 0 & -R_{5} \alpha & 0 & R_{5}
\end{array}\right]\left[\begin{array}{c}
J_{1}(s) \\
J_{2}(s) \\
J_{3}(s) \\
J_{4}(s) \\
J_{5}(s)
\end{array}\right]+\left[\begin{array}{c}
-L_{1} i_{1}(0)-M i_{2}(0) \\
-M i_{1}(0)-L_{2} j_{2}(0) \\
V_{s_{3}(s)} \\
\frac{v_{4}(0)}{s} \\
0
\end{array}\right]} \\
& \boldsymbol{Z}_{l}(s)=\boldsymbol{B} \boldsymbol{Z}_{b}(s) \boldsymbol{B}^{T}=\left[\begin{array}{cc}
R_{3}+L_{1} s+\frac{1}{C_{4} s} & -\frac{1}{C_{4} s}+M s \\
-\frac{1}{C_{4} s}+M s+\alpha R_{5} & R_{5}+L_{2} s+\frac{1}{C_{4} s}
\end{array}\right] \\
& \boldsymbol{E}_{s}(s)=\boldsymbol{B} \boldsymbol{Z}_{b}(s) \boldsymbol{J}_{s}(s)-\boldsymbol{B} \boldsymbol{V}_{s}(s)=\left[\begin{array}{c}
V_{s_{3}}(s)+L_{1} i_{L_{1}}(0)+M i_{L_{2}}(0)-\frac{\left.v_{4}(0)\right)}{s} \\
L_{2} i_{L_{2}}(0)+M i_{L_{1}}(0)+\frac{v_{4}(0)}{s}
\end{array}\right] \\
& \boldsymbol{Z}_{l}(s) \boldsymbol{I}(s)=\boldsymbol{E}_{s}(s)
\end{aligned}
$$

(b) Write the systematic mesh equations in Phasor domain.

$$
\begin{gathered}
\boldsymbol{M}=\left[\begin{array}{ccccc}
1 & 0 & -1 & 1 & 0 \\
0 & 1 & 0 & -1 & 1
\end{array}\right] \\
\boldsymbol{M V}(j \omega)=\mathbf{0} \Rightarrow\left[\begin{array}{ccccc}
1 & 0 & -1 & 1 & 0 \\
0 & 1 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
V_{1}(j \omega) \\
V_{2}(j \omega) \\
V_{3}(j \omega) \\
V_{4}(j \omega) \\
V_{5}(j \omega)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\boldsymbol{J}(j \omega)=\boldsymbol{M}^{T} \boldsymbol{I}(j \omega) \Rightarrow\left[\begin{array}{l}
J_{1}(j \omega) \\
J_{2}(j \omega) \\
J_{3}(j \omega) \\
J_{4}(j \omega) \\
J_{5}(j \omega)
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
I_{1}(j \omega) \\
I_{2}(j \omega)
\end{array}\right] \\
{\left[\begin{array}{l}
V_{1}(j \omega) \\
V_{2}(j \omega) \\
V_{3}(j \omega) \\
V_{4}(j \omega) \\
V_{5}(j \omega)
\end{array}\right]=\left[\begin{array}{ccc}
L_{1} j \omega & M j \omega & 0 \\
M j \omega & 0 & 0 \\
0 & L_{2} j \omega & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & -R_{5} \alpha & 0
\end{array}\right]\left[\begin{array}{c}
J_{1}(j \omega) \\
C_{4} j \omega \\
J_{2}(j \omega) \\
J_{3}(j \omega) \\
J_{4}(j \omega) \\
J_{5}(j \omega)
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
V_{s_{3}}(j \omega) \\
0 \\
0
\end{array}\right]} \\
\boldsymbol{Z}_{m}(j \omega)=\boldsymbol{M} \boldsymbol{Z}_{b}(s) \boldsymbol{M}^{T}=\left[\begin{array}{cc}
R_{3}+L_{1} j \omega+\frac{1}{C_{4} j \omega} & -\frac{1}{C_{4} j \omega}+M j \omega \\
-\frac{1}{C_{4} j \omega}+M j \omega+\alpha R_{5} & R_{5}+L_{2} j \omega+\frac{1}{C_{4} j \omega}
\end{array}\right] \\
\boldsymbol{E}_{s}(j \omega)=\boldsymbol{M} \boldsymbol{Z}_{b}(j \omega) \boldsymbol{J}_{s}(j \omega)-\boldsymbol{M} \boldsymbol{V}_{s}(j \omega)=\left[\begin{array}{l}
V_{s_{3}}(j \omega) \\
0
\end{array}\right] \\
\boldsymbol{Z}_{m}(j \omega) \boldsymbol{I}(j \omega)=\boldsymbol{E}_{s}(j \omega)
\end{gathered}
$$

(c) Write the shortcut mesh equations in time, phasor, and Laplace domains.

In Laplace domain,

$$
\left.\begin{array}{c}
{\left[\begin{array}{cc}
R_{3}+L_{1} s+\frac{1}{C_{4} s} & -\frac{1}{C_{4} s} \\
-\frac{1}{C_{4} s} & R_{5}+L_{2} s+\frac{1}{C_{4} s}
\end{array}\right]\left[\begin{array}{l}
I_{1}(s) \\
I_{2}(s)
\end{array}\right]=} \\
{\left[\begin{array}{c}
V_{s_{3}}(s)-M s I_{2}(s)+L_{1} i_{L_{1}}(0)+M i_{L_{2}}(0)-\frac{v_{4}(0)}{s} \\
-M s I_{1}(s)+L_{2} i_{L_{2}}(0)+M i_{L_{1}}(0)+\frac{v_{4}(0)}{s}+\alpha R_{5} I_{1}(s)
\end{array}\right]} \\
{\left[\begin{array}{c}
R_{3}+L_{1} s+\frac{1}{C_{4} s} \\
-\frac{1}{C_{4} s}+M s+\alpha R_{5}
\end{array} R_{5}+\frac{1}{C_{4} s}+M s\right.} \\
L_{2} s+\frac{1}{C_{4} s}
\end{array}\right]\left[\begin{array}{c}
I_{1}(s) \\
I_{2}(s)
\end{array}\right]=\left[\begin{array}{c}
V_{s_{3}}(s)+L_{1} i_{L_{1}}(0)+M i_{L_{2}}(0)-\frac{\left.v_{4}(0)\right)}{s} \\
L_{2} i_{L_{2}}(0)+M i_{L_{1}}(0)+\frac{v_{4}(0)}{s}
\end{array}\right] .
$$

In phasor domain,

$$
\left[\begin{array}{cc}
R_{3}+L_{1} j \omega+\frac{1}{c_{4} j \omega} & -\frac{1}{c_{4} j \omega}+M j \omega \\
-\frac{1}{c_{4} j \omega}+M j \omega+\alpha R_{5} & R_{5}+L_{2} j \omega+\frac{1}{c_{4} j \omega}
\end{array}\right]\left[\begin{array}{c}
I_{1}(j \omega) \\
I_{2}(j \omega)
\end{array}\right]=\left[\begin{array}{c}
V_{s_{3}}(j \omega) \\
0
\end{array}\right]
$$

In time domain,

$$
\left[\begin{array}{cc}
R_{3}+L_{1} D+\frac{D^{-1}}{c_{4}} & -\frac{D^{-1}}{c_{4}}+M D \\
-\frac{D^{-1}}{c_{4}}+M D+\alpha R_{5} & R_{5}+L_{2} D+\frac{D^{-1}}{c_{4}}
\end{array}\right]\left[\begin{array}{c}
i_{1}(t) \\
i_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
v_{s_{3}}(t)-v_{4}(0) \\
v_{4}(0)
\end{array}\right]
$$

SOFTWARE QUESTIONS

Question 6

Write a MATLAB function that returns the time-domain solution of the Laplace matrix equation $\boldsymbol{A}(s) \boldsymbol{X}(s)=\boldsymbol{I}(s)$, where $\boldsymbol{A}(s)$ is a square matrix whose elements are polynomials of s and $\boldsymbol{I}(s)$ is a vector whose elements are real fractional functions of s. You might use the symbolic math features of MATLAB.

```
Using the symbolic calculations in MATLAB, the required function can be simply imple-
mented as
function x = LDES(A,I)
x = ilaplace(inv(A)*I);
end
You may use the following mfile to call the developed function and see its results.
A = [s+1 -s;-s s+2];
I =[s;1];
x = LDES(A, I)
```


BONUS QUESTIONS

Question 7

Return your answers by filling the $\mathbb{L T}_{\mathrm{E} X t e m p l a t e ~ o f ~ t h e ~ a s s i g n m e n t . ~ I f ~ y o u ~ w a n t ~ t o ~ a d d ~ a ~ c i r c u i t ~}^{\text {X }}$ schematic, you can draw it directly using TikZ package, or draw it in a secondary application such as Microsoft Visio and then, import it as a figure.

Question 8

Feel free to solve the following questions from the book "Basic Circuit Theory" by C. Desoer and E. Kuh.

1. Chapter 10, question 5.
2. Chapter 10, question 6.
3. Chapter 10, question 7.
4. Chapter 10, question 8.
5. Chapter 10, question 12.
6. Chapter 10, question 13.
7. Chapter 10, question 14.
8. Chapter 11, question 5.
9. Chapter 11, question 8.
