MATHEMATICAL QUESTIONS

Question 1

If the two networks shown in each of Figs. 1] and 2 are equivalent, specify values for L_{a}, L_{b}, and L_{c}. For each equivalent circuit, show that L_{a}, L_{b}, and L_{c} can be non-negative by a proper choice of n

Figure 1: A pair of coupled inductors and its \sqcap equivalent circuit.

Figure 2: A pair of coupled inductors and its T equivalent circuit.

For Fig. 17 the current-voltage equations ate the ports are

$$
\begin{gathered}
i_{1}(t)=\Gamma_{11} \int_{0}^{t} v_{1}\left(t^{\prime}\right) d t^{\prime}+\Gamma_{12} \int_{0}^{t} v_{2}\left(t^{\prime}\right) d t^{\prime} \\
i_{2}(t)=\Gamma_{21} \int_{0}^{t} v_{1}\left(t^{\prime}\right) d t^{\prime}+\Gamma_{22} \int_{0}^{t} v_{2}\left(t^{\prime}\right) d t^{\prime} \\
i_{1}(t)=\Gamma_{a} \int_{0}^{t} v_{1}\left(t^{\prime}\right) d t^{\prime}+\Gamma_{c} \int_{0}^{t}\left[v_{1}\left(t^{\prime}\right)-\frac{v_{2}\left(t^{\prime}\right)}{n}\right] d t^{\prime} \\
i_{2}(t)=\frac{1}{n}\left[\Gamma_{b} \int_{0}^{t} \frac{v_{2}\left(t^{\prime}\right)}{n} d t^{\prime}+\Gamma_{c} \int_{0}^{t}\left[\frac{v_{2}\left(t^{\prime}\right)}{n}-v_{1}\left(t^{\prime}\right)\right] d t^{\prime}\right]
\end{gathered}
$$

Equating the port equations,

$$
\begin{gathered}
\Gamma_{a}=\Gamma_{11}+n \Gamma_{12} \\
\Gamma_{b}=n^{2} \Gamma_{22}+n \Gamma_{12} \\
\Gamma_{c}=-n \Gamma_{12}
\end{gathered}
$$

Thus,

$$
L_{a}=\frac{L_{1} L_{2}-M^{2}}{L_{2}-n M}
$$

$$
\begin{aligned}
& L_{b}=\frac{L_{1} L_{2}-M^{2}}{n^{2} L_{1}-n M} \\
& L_{c}=\frac{L_{1} L_{2}-M^{2}}{n M}
\end{aligned}
$$

We know that $L_{1} L_{2} \geq M^{2}$. To have the inductances non-negative,

$$
L_{2}-n M \geq 0, \quad n^{2} L_{1}-n M \geq 0 \Rightarrow \frac{M}{L_{1}} \leq n \leq \frac{L_{2}}{M}
$$

A good choice is $n=\sqrt{\frac{L_{2}}{L_{1}}}$.
Similarly, In Fig. 2

$$
\begin{gathered}
v_{1}(t)=L_{1} i_{1}^{\prime}(t)+M i_{2}^{\prime}(t) \\
v_{2}(t)=M i_{1}^{\prime}(t)+L_{2} i_{2}^{\prime}(t) \\
v_{1}(t)=L_{a} i_{1}^{\prime}(t)+L_{c}\left(i_{1}^{\prime}(t)+n i_{2}^{\prime}(t)\right) \\
v_{2}(t)=n\left[n L_{b} i_{2}^{\prime}(t)+L_{c}\left(i_{1}^{\prime}(t)+n i_{2}^{\prime}(t)\right)\right]
\end{gathered}
$$

Thus,

$$
\begin{aligned}
L_{a} & =L_{1}-\frac{M}{n} \\
L_{b} & =\frac{L_{2}}{n^{2}}-\frac{M}{n} \\
L_{c} & =\frac{M}{n}
\end{aligned}
$$

Again, We know that $L_{1} L_{2} \geq M^{2}$. To have the inductances non-negative,

$$
L_{2}-n M \geq 0, \quad n^{2} L_{1}-n M \geq 0 \Rightarrow \frac{M}{L_{1}} \leq n \leq \frac{L_{2}}{M}
$$

and a feasible choice is $n=\sqrt{\frac{L_{2}}{L_{1}}}$.

Question 2

Find the frequency response $H(j \omega)=\frac{V_{o}(j \omega)}{V_{s}(j \omega)}$ of the double-tuned circuit shown in Fig. 3 ,

Figure 3: Double-tuned circuit.

Considering the phasor-domain model of coupled inductors

$$
\begin{aligned}
& V_{1}=j \omega L I_{1}+j \omega M I_{2} \\
& V_{2}=j \omega M I_{1}+j \omega L I_{2}
\end{aligned}
$$

KVL in the left side of the circuit yields:

$$
-V_{s}+R I_{1}+\frac{1}{j \omega C} I_{1}+V_{1}=0 \Rightarrow\left(R+\frac{1}{j \omega C}+j \omega L\right) I_{1}+(j \omega M) I_{2}=V_{s}
$$

while KVL in the right side of the circuit yields

$$
+R I_{2}+\frac{1}{j \omega C} I_{2}+V_{2}=0 \Rightarrow(j \omega M) I_{1}+\left(R+\frac{1}{j \omega C}+j \omega L\right) I_{2}=0
$$

Hence,

$$
\left[\begin{array}{cc}
R+\frac{1}{j \omega C}+j \omega L & j \omega M \\
j \omega M & R+\frac{1}{j \omega C}+j \omega L
\end{array}\right]\left[\begin{array}{c}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
V_{s} \\
0
\end{array}\right]
$$

We have,

$$
\left[\begin{array}{c}
I_{1} \\
I_{2}
\end{array}\right]=\frac{1}{\left(R+\frac{1}{j \omega C}+j w L\right)^{2}+(\omega M)^{2}}\left[\begin{array}{c}
\left(R+\frac{1}{j \omega C}+j \omega L\right) V_{s} \\
-j \omega M V_{s}
\end{array}\right]
$$

Finally,

$$
\begin{aligned}
H(j \omega) & =\frac{V_{o}(j \omega)}{V_{s}(j \omega)} \\
& =\frac{-R I_{2}}{\left(R+\frac{1}{j \omega C}+j \omega L\right) I_{1}+(j \omega M) I_{2}} \\
& =\frac{-R \frac{-j \omega M}{\left(R+\frac{1}{j \omega C}+j \omega L\right)^{2}+(\omega M)^{2}} V_{s}}{\left(R+\frac{1}{j \omega C}+j \omega L\right) \frac{R+\frac{1}{j \omega C}+j \omega L}{\left(R+\frac{1}{j \omega C}+j \omega L\right)^{2}+(\omega M)^{2}} V_{s}+(j \omega M) \frac{-j \omega M}{\left(R+\frac{1}{j \omega C}+j \omega L\right)^{2}+(\omega M)^{2}} V_{s}} \\
& =\frac{R j \omega M}{\left(R+\frac{1}{j \omega C}+j w L\right)^{2}+(\omega M)^{2}} \\
& =\frac{0.5 R}{R+\frac{1}{j \omega C}+j \omega L-j \omega M}-\frac{0.5 R}{R+\frac{1}{j \omega C}+j \omega L+j \omega M} \\
& =\frac{0.5}{1+j Q_{-}\left(\frac{\omega}{\omega-}-\frac{\omega-}{\omega}\right)}-\frac{0.5}{1+j Q_{+}\left(\frac{\omega}{\omega_{+}}-\frac{\omega_{+}}{\omega}\right)}
\end{aligned}
$$

, where

$$
\omega_{+}^{2}=\frac{1}{L C(1+k)}, \quad Q_{+}=\omega_{+} \frac{L+M}{R}, \quad \omega_{-}^{2}=\frac{1}{L C(1-k)}, \quad Q_{-}=\omega_{-} \frac{L-M}{R}
$$

Question 3

For the circuit of Fig. 4 find the input impedance $Z_{i n}$ seen from the source terminals.

Figure 4: A circuit for which the input impedance is required.

We know that

$$
Z_{i n}=\frac{V_{1}}{I_{s}}
$$

Writing a phasor KCL at the node having voltage $v_{2}(t)$,

$$
I_{2}=\frac{V_{1}-V_{2}}{Z_{3}}-\frac{V_{2}}{Z_{2}}
$$

From the governing equations of the transformer,

$$
\frac{V_{1}}{V_{2}}=-\frac{n_{1}}{n_{2}}
$$

So,

$$
\begin{gathered}
I_{2}=\frac{V_{1}+\frac{n_{2} V_{1}}{n_{1}}}{Z_{3}}-\frac{-n_{2} V_{1}}{n_{1} Z_{2}} \\
I_{2}=V_{1}\left(\frac{n_{1}+n_{2}}{n_{1} Z_{3}}+\frac{n_{2}}{n_{1} Z_{2}}\right) \\
I_{2}=V_{1}\left(\frac{n_{1} Z_{2}+n_{2} Z_{2}+n_{2} Z_{3}}{n_{1} Z_{2} Z_{3}}\right)
\end{gathered}
$$

On the other hand, the current equation of the transformer gives

$$
\begin{gathered}
\frac{I_{1}}{I_{2}}=\frac{n_{2}}{n_{1}} \\
I_{1}=\frac{n_{2}}{n_{1}} V_{1}\left(\frac{n_{1} Z_{2}+n_{2} Z_{2}+n_{2} Z_{3}}{n_{1} Z_{2} Z_{3}}\right) \\
I_{1}=V_{1}\left(\frac{n_{1} n_{2} Z_{2}+n_{2} n_{2} Z_{2}+n_{2} n_{2} Z_{3}}{n_{1} n_{1} Z_{2} Z_{3}}\right)
\end{gathered}
$$

Using a KCL at the super node surrounding Z_{3},

$$
\begin{gathered}
I_{s}=\frac{V_{1}}{Z_{1}}+\frac{V_{2}}{Z_{2}}+I_{1}+I_{2} \\
I_{s}=\frac{V_{1}}{Z_{1}}+\frac{-n_{2} V_{1}}{n_{1} Z_{2}}+V_{1}\left(\frac{n_{1} n_{2} Z_{2}+n_{2} n_{2} Z_{2}+n_{2} n_{2} Z_{3}}{n_{1} n_{1} Z_{2} Z_{3}}\right)+V_{1}\left(\frac{n_{1} Z_{2}+n_{2} Z_{2}+n_{2} Z_{3}}{n_{1} Z_{2} Z_{3}}\right)
\end{gathered}
$$

$$
\begin{gathered}
I_{s}=V_{1}\left(\frac{1}{Z_{1}}-\frac{n_{2}}{n_{1} Z_{2}}+\left(\frac{n_{1} n_{2} Z_{2}+n_{2} n_{2} Z_{2}+n_{2} n_{2} Z_{3}}{n_{1} n_{1} Z_{2} Z_{3}}\right)+\left(\frac{n_{1} Z_{2}+n_{2} Z_{2}+n_{2} Z_{3}}{n_{1} Z_{2} Z_{3}}\right)\right) \\
I_{s}=V_{1} \frac{n_{1}^{2} Z_{2} Z_{3}-n_{1} n_{2} Z_{1} Z_{3}+Z_{1}\left(n_{1} n_{2} Z_{2}+n_{2}^{2} Z_{2}+n_{2}^{2} Z_{3}\right)+n_{1} Z_{1}\left(n_{1} Z_{2}+n_{2} Z_{2}+n_{2} Z_{3}\right)}{n_{1}^{2} Z_{1} Z_{2} Z_{3}}
\end{gathered}
$$

Finally,

$$
Z_{\text {in }}=\frac{n_{1}^{2} Z_{1} Z_{2} Z_{3}}{n_{1}^{2} Z_{2} Z_{3}-n_{1} n_{2} Z_{1} Z_{3}+Z_{1}\left(n_{1} n_{2} Z_{2}+n_{2}^{2} Z_{2}+n_{2}^{2} Z_{3}\right)+n_{1} Z_{1}\left(n_{1} Z_{2}+n_{2} Z_{2}+n_{2} Z_{3}\right)}
$$

which simplifies to

$$
Z_{\text {in }}=\frac{n_{1}^{2} Z_{1} Z_{2} Z_{3}}{n_{1}^{2} Z_{2} Z_{3}+n_{2}^{2} Z_{1} Z_{3}+\left(n_{1}+n_{2}\right)^{2} Z_{1} Z_{2}}
$$

Question 4

Calculate I_{x} and V_{2} as labeled in Fig. 5 .

Figure 5: A simple circuit having an ideal transformer.

Let denote the voltage and current of the primary and secondary by V_{1}, V_{2}, I_{1}, and I_{2}, as shown in Fig. 6 We have,

$$
\left\{\begin{array}{l}
\frac{V_{2}}{-V_{1}}=5 \\
\frac{I_{2}}{I_{1}}=-\frac{1}{5} \\
V_{1}+4\left(I_{1}+I_{x}\right)=188 \angle-30^{\circ} \\
3 I_{2}+V_{2}+140\left(I_{2}-I_{x}\right)=0 \\
-V_{1}+10 I_{x}+140\left(I_{x}-I_{2}\right)=0
\end{array}\right.
$$

Figure 6: Denoted voltages and currents in the circuit of Fig. 5

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
5 V_{1}+V_{2}+0 I_{1}+0 I_{2}+0 I_{x}=0 \\
0 V_{1}+0 V_{2}+I_{1}-5 I_{2}+0 I_{x}=0 \\
V_{1}+0 V_{2}+4 I_{1}+0 I_{2}+4 I_{x}=162.81-j 94 \\
0 V_{1}+V_{2}+0 I_{1}+143 I_{2}-140 I_{x}=0 \\
-V_{1}+0 V_{2}+0 I_{1}-140 I_{2}+150 I_{x}=0
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
V_{1}=13.08+j 0.08=13.08 \angle 0.35^{\circ} \\
V_{2}=-65.42-j 0.4=65.42 \angle-179.65^{\circ} \\
I_{1}=31.47+j 0.19=31.47 \angle 0.35^{\circ} \\
I_{2}=6.29+j 0.04=6.29 \angle 0.35^{\circ} \\
I_{x}=5.96+j 0.04=5.96 \angle 0.35^{\circ}
\end{array}\right.
\end{aligned}
$$

Question 5

With respect to the circuit depicted in Fig. 7.

Figure 7: A circuit with two ideal transformers.
(a) Calculate the voltages v_{1} and v_{2}.

The impedance seen from the primary of the transformer $2: 15 \equiv 1: 7.5$ is $\frac{100}{7.5^{2}}=1.778$. In the next stage, the impedance seen from the primary of the $5: 1 \equiv 1: 0.2$ transformer is $\frac{1.778+4}{0.2^{2}}=144.450$. Therefore, the current flowing into the primary of the $5: 1$ transformer is $0.025 \frac{2700}{2700+144.450+2}=0.0237$. Further, $V_{1}=-0.2 \times(144.450 \times 0.0237)=-0.685$. This gives $V_{2}=7.5 \times\left(\frac{1.778}{1.778+4}\right)(-0.685)=-1.582 \mathrm{~V}$. Finally,

$$
v_{1}(t)=-0.685 \cos (120 \pi t)
$$

and

$$
v_{2}(t)=-1.582 \cos (120 \pi t)
$$

(b) Compute the average power delivered to each resistor.

$$
\begin{gathered}
P_{100}=\frac{1}{2} \frac{1.582^{2}}{100}=0.0125 \mathrm{~W} \\
P_{4}=\frac{1}{2} \frac{\left(-0.685-\frac{-1.582}{7.5}\right)^{2}}{4}=0.0281 \mathrm{~W} \\
P_{2}=\frac{1}{2} \times 2 \times 0.0237^{2}=0.000562 \mathrm{~W} \\
P_{2700}=\frac{1}{2} \times 2700 \times(0.025-0.0237)^{2}=0.00228 \mathrm{~W}
\end{gathered}
$$

SOFTWARE QUESTIONS

Question 6

A real transformer is usually modeled as the circuit of Fig. 7, where L_{p} is the primary leakage inductance, R_{p} is the primary copper loss, R_{c} is the core losses due to eddy currents and hysteresis, L_{m} is the magnetization inductance, L_{s} is the secondary leakage inductance, and R_{s} is the secondary copper loss. Use CircuitLab which is an online circuit simulation platform, to investigate the impact of $L_{p}, R_{p}, R_{c}, L_{m}, L_{s}$, and R_{s} on the transformer performance. You may plot the voltages of the primary and secondary versus time to investigate the impact of each item.

Figure 8: Real transformer equivalent circuits.

File Edit View Subcircuit Elements Simulate Options Utilities Window Help

Figure 9: Scematic of the read transformer in the simulator editor.

Figure 10: The secondary voltage corresponding to the default values.

Figure 11: Impact of L_{p} on the secondary voltage, where $L_{p}=0.0001: 10: 100 \mathrm{H}$.

Figure 12: Impact of R_{p} on the secondary voltage, where $R_{p}=0.01: 2: 20 \mathrm{~K} \Omega$.

Figure 13: Impact of R_{c} on the secondary voltage, where $R_{c}=1: 10: 150 \Omega$.

Figure 14: Impact of L_{m} on the secondary voltage, where $L_{m}=10: 10: 100 \mathrm{mH}$.

Figure 15: Impact of L_{s} on the secondary voltage, where $R_{s}=10: 10: 200 \Omega$.

Figure 16: The impact of L_{s} on the secondary voltage, where $L_{s}=1: 100: 1000 \mathrm{mH}$.

The drawn schematic and some default values for the elements are shown in Fig. 9 The default values are chosen such that no considerable impairment is observed for the secondary voltage. Fig. 10 shows the secondary voltage corresponding to the default values. The impact of R_{p} and L_{p} on the secondary voltage for an almost open-circuit load are shown in Figs. 17 and 12 Depending on the values of the elements, the secondary voltage may be attenuated, lagged, or distorted with respect to the near-optimal voltage plotted in Fig. 10 Similarly, the impacy of R_{c} and L_{m} are illustrated in Figs. 13 and 14 To observe the impact of R_{s} and L_{s}, we connect a lower resistance load to the secondary to draw current from the transformer. The obtained results are shown in Figs. 15 and 16

Question 7

 schematic, you can draw it directly using TikZ package, or draw it in a secondary application such as Microsoft Visio and then, import it as a figure.

EXTRA QUESTIONS

Question 8

Feel free to solve the following questions from the book "Engineering Circuit Analysis" by W. Hayt, J. Kemmerly, and S. Durbin.

1. Chapter 13, question 5.
2. Chapter 13, question 18.
3. Chapter 13, question 21.
4. Chapter 13, question 22.
5. Chapter 13, question 44.
6. Chapter 13, question 48.
