MATHEMATICAL QUESTIONS

Question 1

Find the unidirectional Laplace transform of the following functions.
(a) $f(t)=2|K| e^{-a t} \cos (\beta t+\angle K) u(t)$.

$$
\begin{aligned}
& g(t)=\cos (\beta t+\angle K)=\cos (\beta t) \cos (\angle K)-\sin (\beta t) \sin (\angle K) \\
& \Rightarrow G(s)=\mathcal{L}\{\cos (\beta t+\angle K)\}=\frac{s}{s^{2}+\beta^{2}} \cos (\angle K)-\frac{\beta}{s^{2}+\beta^{2}} \sin (\angle K) \\
& f(t)=2|K| e^{-a t} g(t) \rightarrow F(s)=2|K| G(s+a) \\
& \Rightarrow F(s)=2|K|\left(\frac{s+a}{(s+a)^{2}+\beta^{2}} \cos (\angle K)-\frac{\beta}{(s+a)^{2}+\beta^{2}} \sin (\angle K)\right) \\
& =2|K| \frac{(s+a) \cos (\angle K)-\beta \sin (\angle K)}{(s+a)^{2}+\beta^{2}}=\frac{K}{s+a-j \beta}+\frac{K^{*}}{s+a+j \beta}
\end{aligned}
$$

(b) $f(t)=2|K| t e^{-a t} \cos (\beta t+\angle K) u(t)$.

$$
\begin{aligned}
& g(t)=2|K| e^{-a t} \cos (\beta t+\angle K) u(t) \\
& f(t)=t g(t) \rightarrow F(s)=-G^{\prime}(s)=\frac{K}{(s+a-j \beta)^{2}}+\frac{K^{*}}{(s+a+j \beta)^{2}}
\end{aligned}
$$

(c) $f(t)=g(t) u(t), \quad g(t)=a t[u(t)-u(t-a)], g(t-a)=g(t)$.

Since $g(t)$ is periodic with period a,

$$
F(s)=\frac{\int_{0}^{a} a t e^{-s t} d t}{1-e^{-s a}}=\frac{a\left(-a s e^{-a s}-e^{-a s}+1\right)}{s^{2}} \frac{1}{1-e^{-s a}}=a \frac{-a s-1+e^{a s}}{s^{2}\left(e^{a s}-1\right)}
$$

(d) $f(t)=e^{-a t^{2}}$

$$
\begin{aligned}
& F(s)=\mathcal{L}\left\{e^{-a t^{2}}\right\}=\int_{0}^{\infty} e^{-a t^{2}-s t} d t=\int_{0}^{\infty} e^{-\left(a t^{2}+s t\right)} d t=\int_{0}^{\infty} e^{-\left(a t^{2}+s t+\frac{s^{2}}{4 a}-\frac{s^{2}}{4 a}\right)} d t \\
& =e^{\frac{s^{2}}{4 a}} \int_{0}^{\infty} e^{-\left(\sqrt{a} t+\frac{s}{2 \sqrt{a}}\right)^{2}} d t=\frac{e^{\frac{s^{2}}{4 a}}}{\sqrt{a}} \int_{\frac{s}{2 \sqrt{a}}}^{\infty} e^{-\tau^{2}} d \tau=e^{\frac{s^{2}}{4 a}} \sqrt{\frac{\pi}{4 a}} \frac{2}{\sqrt{\pi}} \int_{\frac{s}{2 \sqrt{a}}}^{\infty} e^{-\tau^{2}} d \tau=e^{\frac{s^{2}}{4 a}} \sqrt{\frac{\pi}{4 a}} \operatorname{erfc}\left(\frac{s}{2 \sqrt{a}}\right)
\end{aligned}
$$

Question 2

Find the inverse unidirectional Laplace transform of the following functions.
(a) $F(s)=a \frac{-a s-1+e^{a s}}{s^{2}\left(e^{a s}-1\right)}$.

$$
\begin{gathered}
F(s)=a \frac{-a s-1+e^{a s}}{s^{2}\left(e^{a s}-1\right)} \times \frac{e^{-a s}}{e^{-a s}}=\frac{X(s)}{1-e^{-a s}}, \quad X(s)=a \frac{1-(a s+1) e^{-a s}}{s^{2}} \\
X(s)=\frac{a}{s^{2}}-\frac{a^{2}}{s} e^{-a s}-\frac{a}{s^{2}} e^{-a s} \Rightarrow x(t)=a t u(t)-a^{2} u(t-a)-a(t-a) u(t-a)=a t[u(t)-u(t-a)] \\
\Rightarrow f(t)=x(t), t \in[0, a], \quad f(t-a)=f(t)
\end{gathered}
$$

(b) $F(s)=\frac{1}{s(s+1)^{2}\left(s^{2}+1\right)^{2}}$.

$$
\begin{aligned}
& F(s)=\frac{1}{s(s+1)^{2}\left(s^{2}+1\right)^{2}}=\frac{a}{s}+\frac{b}{s+1}+\frac{c}{(s+1)^{2}}+\frac{d^{*}}{s+j}+\frac{d}{s-j}+\frac{e^{*}}{(s+j)^{2}}+\frac{e}{(s-j)^{2}} \\
& a=\left.s F(s)\right|_{s=0}=1 \\
& b=\left.\left((s+1)^{2} F(s)\right)^{\prime}\right|_{s=-1}=-\left.\frac{5 s^{4}+6 s^{2}+1}{s^{2}\left(s^{2}+1\right)^{4}}\right|_{s=-1}=-\frac{3}{4} \\
& c=\left.(s+1)^{2} F(s)\right|_{s=-1}=-\frac{1}{4} \\
& d=\left.\left((s-j)^{2} F(s)\right)^{\prime}\right|_{s=j}=-\left.\frac{5 s^{4}+8(j+1) s^{3}+12 j s^{2}-4(1-j) s-1}{s^{2}(s+1)^{4}(s+j)^{4}}\right|_{s=j}=\frac{3 j-1}{8} \\
& e=\left.(s-j)^{2} F(s)\right|_{s=j}=\frac{1}{8} \\
& \Rightarrow f(t)=\left[1-\frac{3}{4} e^{-t}-\frac{1}{4} t e^{-t}-\frac{1}{4} \cos (t)-\frac{3}{4} \sin (t)+\frac{1}{4} t \cos (t)\right] u(t)
\end{aligned}
$$

(c) $F(s)=\frac{s}{\left(s^{2}+2 s+2\right)^{3}}$.

$$
\begin{aligned}
& F(s)=\frac{s}{\left(s^{2}+2 s+2\right)^{3}}=\frac{a}{s+1-j}+\frac{b}{(s+1-j)^{2}}+\frac{c}{(s+1-j)^{3}} \\
& \quad+\frac{a^{*}}{s+1+j}+\frac{b^{*}}{(s+1+j)^{2}}+\frac{c^{*}}{(s+1+j)^{3}} \\
& a=\left.\frac{1}{2}\left((s+1-j)^{3} F(s)\right)^{\prime \prime}\right|_{s=j-1}=\left.\frac{1-2(s+1+j)^{4}-4(s+1+j)^{3}(1+j-2 s)}{2} \frac{(s+1+j)^{8}}{}\right|_{s=j-1}=\frac{3 j}{16} \\
& b=\left.\left((s+1-j)^{3} F(s)\right)^{\prime}\right|_{s=j-1}=\left.\frac{(s+1+j)^{3}-3(s+1+j)^{2} s}{(s+1+j)^{6}}\right|_{s=j-1}=\frac{3-j}{16} \\
& c=\left.(s+1-j)^{3} F(s)\right|_{s=j-1}=\frac{-1-j}{8} \\
& \Rightarrow f(t)=\frac{1}{8} e^{-t}\left[\left(t^{2}+t-3\right) \sin (t)-(t-3) t \cos (t)\right] u(t)
\end{aligned}
$$

Question 3

Calculate the time-domain mesh currents for the circuit of Fig. 1.

Figure 1: A coupled circuit for which the mesh currents are required.

We now that

$$
\begin{gathered}
V_{c}(s)=\frac{1}{c s} I s+\frac{v_{c}\left(0^{-}\right)}{s} \\
V_{L_{1}}(s)=L_{1} s I_{L_{1}}(s)-M s I_{L_{2}}(s)-L_{1} i_{L_{1}}\left(0^{-}\right)+M i_{L_{2}}\left(0^{-}\right) \\
\left.V_{L_{2}}(s)=-L_{2} s I_{L_{2}}(s)+M s I_{L_{1}}(s)+L_{2} i_{L_{2}}\left(0^{-}\right)-M i_{L_{1}}\left(0^{-}\right)\right)
\end{gathered}
$$

So, we have

$$
\begin{gathered}
V_{c}(s)=\frac{1}{2 s} I_{3}(s)+\frac{2}{s} \\
I_{L_{1}}=I_{3}(s), \quad I_{L_{2}}=I_{3}(s)-I_{1}(s) \\
V_{L_{1}}(s)=s I_{3}(s)-s\left(I_{3}(s)-I_{1}(s)\right)-2+3=s I_{1}(s)+1 \\
V_{L_{2}}(s)=-3 s\left(I_{3}(s)-I_{1}(s)\right)+s I_{3}(s)+3 \times 3-2=3 s I_{1}(s)-2 s I_{3}(s)+7 \\
v_{s_{1}}(s)=\mathcal{L}(5 u(t))=\frac{5}{s} \\
v_{s_{2}}(s)=\mathcal{L}(2 \cos (t) u(t))=\frac{2 s}{s^{2}+1}
\end{gathered}
$$

Now, we can write KVL equations for the meshes as

$$
\begin{gathered}
-\frac{5}{s}+2\left(I_{1}(s)-I_{3}(s)\right)+\left(3 s I_{1}(s)-2 s I_{3}(s)+7\right)+3\left(I_{3}(s)-I_{1}(s)\right)+I_{1}(s)=0 \\
\left(s I_{1}(s)+1\right)\left(\frac{1}{2 s} I_{3}(s)+\frac{2}{s}\right)+\left(I_{3}(s)-I_{2}(s)\right)-\left(3 s I_{1}(s)-2 s I_{3}(s)+7\right)+2\left(I_{3}(s)-I_{1}(s)\right)=0
\end{gathered}
$$

$$
\frac{2 s}{s^{2}+1}+2 I_{2}(s)-3\left(I_{3}(s)-I_{1}(s)\right)+\left(I_{2}(s)-I_{3}(s)\right)=0
$$

Simplify the equations,

$$
\begin{gathered}
(-3 s) I_{1}(s)+(2 s-1) I_{3}(s)=-\frac{5}{s}+7 \\
(-s-2) I_{1}(s)-I_{2}(s)+\left(\frac{1}{2 s}+2 s+3\right) I_{3}(s)=-\frac{2}{s}+6 \\
I_{1}(s)+3 I_{2}(s)-4 I_{3}(s)=-\frac{2 s}{s^{2}+1}
\end{gathered}
$$

Solving the equations,

$$
\begin{aligned}
& I_{1}(s)=\frac{-33 s^{4}-63 s^{3}+33 s^{2}-55 s+62}{s\left(33 s^{4}+16 s^{3}+43 s^{2}+16 s+10\right)} \\
& I_{2}(s)=\frac{77 s^{4}-107 s^{3}+137 s^{2}-83 s+46}{s\left(33 s^{4}+16 s^{3}+43 s^{2}+16 s+10\right)} \\
& I_{3}(s)=\frac{66 s^{4}-88 s^{3}+116 s^{2}-76 s+50}{s\left(33 s^{4}+16 s^{3}+43 s^{2}+16 s+10\right)}
\end{aligned}
$$

Finally, taking the inverse Laplace transform,

$$
\begin{aligned}
i_{1}(t)=-0.153 \sin (t) & -0.280 \cos (t) \\
& -e^{-0.242 t}[5.967 \sin (0.494 t)+6.920 \cos (0.494 t)]+6.200 \\
i_{2}(t)=-0.418 \sin (t) & -0.899 \cos (t) \\
& -e^{-0.242 t}[8.675 \sin (0.494 t)+1.368 \cos (0.494 t)]+4.600 \\
i_{3}(t)=-0.352 \sin (t) & -0.245 \cos (t) \\
& -e^{-0.242 t}[7.998 \sin (0.494 t)+2.755 \cos (0.494 t)]+5.000
\end{aligned}
$$

Question 4

Obtain the time-domain node voltages for the circuit of Fig. 2.

Figure 2: A coupled circuit for which the node voltages are required.

We know that

$$
\left\{\begin{array}{l}
-I_{1}(s)=-\frac{1}{s} E_{1}(s)-\frac{-2}{s} E_{2}(s)-\frac{2}{s} \\
-I_{2}(s)=-\frac{-2}{s} E_{1}(s)-\frac{5}{s} E_{2}(s)-\frac{3}{s} \\
I_{C}(s)=2 s\left(E_{1}(s)-E_{2}(s)\right)-2 \times 2 \\
V_{s}(s)=\frac{10}{s} \\
I_{x}(s)=\frac{E_{2}-E_{1}}{1}
\end{array}\right.
$$

Using KCL at the nodes,

$$
\begin{gathered}
\frac{E_{1}-\frac{10}{s}}{2}+\frac{1}{s} E_{1}+\frac{-2}{s} E_{2}+\frac{2}{s}+\frac{E_{1}-E_{2}}{1}-4 \frac{E_{2}-E_{1}}{1}+2 s\left(E_{1}-E_{2}\right)-4=0 \\
\frac{E_{2}}{1}+\frac{-2}{s} E_{1}+\frac{5}{s} E_{2}+\frac{3}{s}+\frac{E_{2}-E_{1}}{1}+4 \frac{E_{2}-E_{1}}{1}-2 s\left(E_{1}-E_{2}\right)+4=0
\end{gathered}
$$

Simplifying the equations,

$$
\begin{aligned}
& E_{1}\left(\frac{11}{2}+\frac{1}{s}+2 s\right)+E_{2}\left(-5-\frac{2}{s}-2 s\right)=\frac{3}{s}+4 \\
& E_{1}\left(-5-\frac{2}{s}-2 s\right)+E_{2}\left(6+\frac{5}{s}+2 s\right)=-\frac{3}{s}-4
\end{aligned}
$$

Solving the equations,

$$
\begin{aligned}
& E_{1}=-\frac{2(-4 s-3)(s+3)}{6 s^{3}+24 s^{2}+27 s+2}=-\frac{(-4 s-3)(0.33 s+1)}{s^{3}+4 s^{2}+4.5 s+0.33} \\
& E_{2}=\frac{(-4 s-3)(s-2)}{6 s^{3}+24 s^{2}+27 s+2}=\frac{(-0.67 s-0.5)(s-2)}{s^{3}+4 s^{2}+4.5 s+0.33}
\end{aligned}
$$

Finally, taking the inverse Laplace transform,

$$
\begin{aligned}
& e_{1}(t)=-0.673 e^{-0.0787 t}-e^{-1.961 t}[0.647 \cos (0.589 t)-1.752 \sin (0.589 t)] \\
& e_{2}(t)=0.239 e^{-0.0787 t}-e^{-1.961 t}[0.909 \cos (0.589 t)-2.981 \sin (0.589 t)]
\end{aligned}
$$

Question 5

Find an expression for $v(t)$ valid for all times in the circuit of Fig. 3.

Figure 3: A circuit with a switch opened at $t=1$.

Figure 4: The circuit of Fig. 3 for $t<1$.

Figure 5: The circuit of Fig. 3 for $t>1$.

We analyze the circuit by assuming that the switch opens at $t=0$. Then, we shift the response to $t=1$. Before $t=0$, we have the circuit 4 and therefore,

$$
\begin{aligned}
& i_{1}\left(0^{-}\right)=0 \\
& i_{2}\left(0^{-}\right)=50 \frac{6}{6+5}=27.27 \\
& v\left(0^{-}\right)=5 i_{2}\left(0^{-}\right)=136.36 \\
& v_{c}\left(0^{-}\right)=\left(0^{-}\right)=136.36
\end{aligned}
$$

When the switch opens at $t=0$, we get the circuit shown in Fig. 5 So,

$$
\begin{aligned}
& \left\{\begin{array}{l}
s I_{2}+0.5 s I_{1}-27.27+5 I_{2}+\frac{I_{2}}{s}-\frac{136.36}{s}+13.635-0.5 s I_{2}+2 s I_{2}=0 \\
I_{1}=-I_{2}
\end{array}\right. \\
& I_{2}(s)=\frac{s}{2 s^{2}+5 s+1} \frac{13.635 s+136.36}{s}=\frac{13.635 s+136.36}{2 s^{2}+5 s+1} \\
& V(s)=s I_{2}-0.5 s I_{2}+27.27+5 I_{2}=I_{2}+27.27=\frac{(0.5 s+5)(13.635 s+136.36)}{2 s^{2}+5 s+1}+27.27 \\
& v(t)=30.67875 \delta(t)+256.72502 e^{-\frac{5 t}{4}} \sinh (1.03077 t)+59.655625 e^{-\frac{5 t}{4}} \cosh (1.03077 t)
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& v(t)= \\
& \begin{cases}136.36 & , \quad t<1 \\
30.68 \delta(t-1)+e^{-\frac{5(t-1)}{4}}[256.73 \sinh (1.03(t-1))+59.66 \cosh (1.03(t-1))] & , \quad t \geq 1\end{cases}
\end{aligned}
$$

SOFTWARE QUESTIONS

Question 6

Use AC analysis of PSpice to investigate the frequency response $H(j \omega)=\frac{V_{o}(j \omega)}{V_{s}(j \omega)}$ of the doubletuned circuit shown in Fig. 6. Analyze the impact of each parameter on the frequency response.

Figure 6: Double-tuned circuit.

The frequency responses of the circuit for a sinusoidal input with amplitude 10 are shown in Figs. 815 In each figure, a circuit parameter is changed and its impact on the magnitude or phase of the frequency response is shown.

Figure 7: Schematic of the double-tuned circuit in PSpice.

Figure 8: Frequency response magnitude for $R=10,20,30,40,50 \Omega$. Increasing R, the bandwidth of the magnitude response increases.

Figure 9: Frequency response phase for $R=10,20,30,40,50 \Omega$. Increasing R, the smoothness of the phase response increases.

Figure 10: Frequency response magnitude for $C=10,20,30,4050 \mu \mathrm{~F}$. Increasing C, the central frequency of the magnitude response decreases.

Figure 11: Frequency response phase or $C=10,20,30,40,50 \mu \mathrm{~F}$. Increasing C, the turning frequency of the phase response decreases.

Figure 12: Frequency response magnitude for $L=10,20,30,40,50 \mathrm{mH}$. Increasing L, the central frequency of the magnitude response decreases.

Figure 13: Frequency response phase for for $L=10,20,30,40,50 \mathrm{mH}$. Increasing L, the turning frequency of the phase response decreases.

Figure 14: Frequency response magnitude for $k=0,0.2,0.4,0.6,0.8,1$. Increasing k, the bandwidth of the magnitude response increases.

Figure 15: Frequency response phase for $k=0,0.2,0.4,0.6,0.8,1$. Increasing k, the turning point of the phase response almost remains unchanged.

BONUS QUESTIONS

Question 7

Return your answers by filling the ${ }_{A T} T_{E} X t e m p l a t e$ of the assignment. If you want to add a circuit schematic, you can draw it directly using TikZ package, or draw it in a secondary application such as Microsoft Visio and then, import it as a figure.

EXTRA QUESTIONS

Question 8

Feel free to solve the following questions from the book "Engineering Circuit Analysis" by W. Hayt, J. Kemmerly, and S. Durbin.

1. Chapter 15, question 14.
2. Chapter 15, question 19.
3. Chapter 15, question 22.
4. Chapter 15, question 24.
5. Chapter 15, question 27.
