Mohammad Hadi

mohammad.hadi@sharif.edu

@MohammadHadiDastgerdi

Fall 2021

- 2 State Equations for LTI circuits
- 3 State Equations for LTV circuits
- 4 State Equations for NTV circuits
- 5 Solving State Equations

イロト イ団ト イヨト イヨ

メロト メタト メヨト メヨト

Figure: An LTI circuit with an input and initial conditions. State equations allow to solve a system of 1st-order linear differential equations instead of solving an *n*th order linear differential equation. State equations are very useful for analysis of time-varying circuits.

• *n*th-order linear differential equation: $\sum_{k=0}^{n} a_k y^{(k)}(t) = \sum_{l=0}^{m} b_l w^{(l)}(t), \quad y(0^-), y'(0^-), \cdots, y^{(n-1)}(0^-)$ • System of 1st-order linear equations: $\begin{cases} x'_1(t) = a_{11}x_1(t) + \cdots + a_{1n}x_n(t) + b_1w(t) \\ \vdots & \vdots & \vdots \end{cases}$

$$x'_n(t) = a_{1n}x_1(t) + \cdots + a_{nn}x_n(t) + b_nw(t)$$

- State equations: $\frac{d}{dt} \mathbf{X}(t) = \mathbf{A}\mathbf{X}(t) + \mathbf{B}w(t), \quad \mathbf{X}(0) = \mathbf{X}_0$
- Output response: $y(t) = \boldsymbol{C}^T \boldsymbol{X}(t) + dw(t)$

イロト イヨト イヨト イヨト

Definition (Network state)

A set of data qualifies to be called the state of a network if it satisfies two conditions

- For any time t_0 , the state at time t_0 and the inputs from t_0 on determine uniquely the state at any time $t > t_0$.
- For any time *t*, the state at time *t* and the inputs at time *t* (and sometimes some of their derivatives) determine uniquely every network variable at time *t*.

The components of the state are called state variables.

イロト イ団ト イヨト イヨト

State Equations for LTI Circuits

イロト イ団ト イヨト イヨト

Figure: A sample suitable tree for writing state equations.

- State variables: Independent capacitor voltages and inductor currents.
- Number of state variables: Number of independent energy storage elements.
- Number of state variables: Circuit order.

A D > A B > A B > A

Figure: A sample suitable tree for writing state equations.

- State variables: Independent capacitor voltages and inductor currents.
- Proper tree: Capacitors in tree branches and inductors in link branches.
- State equations: KCL in fundamental cut sets and KVL in fundamental loops.
- State equations: $\frac{d}{dt} \mathbf{X}(t) = \mathbf{A}\mathbf{X}(t) + \mathbf{B}\mathbf{W}(t), \quad \mathbf{X}(0) = \mathbf{X}_0$
- Output response: $y(t) = \boldsymbol{C}^T \boldsymbol{X}(t) + \boldsymbol{D}^T \boldsymbol{W}(t)$

• • • • • • • • • • •

Example (State equations for a circuit with three state variables)

The first voltage node of the circuit below can be given in terms of state variables.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

Example (State equations for a circuit with three state variables (cont.))

The first voltage node of the circuit below can be given in terms of state variables.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

Example (State equations for a circuit with two inputs)

The capacitor current i_2 in the circuit below can be given in terms of state variables.

$$C_{2}v_{2}' + v_{R_{1}}/R_{1} - i_{s} = 0$$

$$V_{R_{2}} = R_{2}(i_{L} + g_{m}v_{1})$$

$$Li_{L}' + v_{s} + v_{R_{2}} - v_{1} = 0$$

$$\boldsymbol{X}(t) = \begin{bmatrix} v_1(t) \\ v_2(t) \\ i_L(t) \end{bmatrix}, \quad \boldsymbol{X}_0 = \boldsymbol{X}(0) = \begin{bmatrix} v_1(0) \\ v_2(0) \\ i_L(0) \end{bmatrix} \Rightarrow \frac{d\boldsymbol{X}}{dt} = \begin{bmatrix} -\frac{1}{R_1C_1} & -\frac{1}{R_1C_1} & -\frac{1}{C_1} \\ -\frac{1}{R_1C_2} & -\frac{1}{R_1C_2} & 0 \\ \frac{1-\underline{s}_mR_2}{L} & 0 & -\frac{R_2}{L} \end{bmatrix} \boldsymbol{X} + \begin{bmatrix} 0 & \frac{1}{C_1} \\ 0 & \frac{1}{C_2} \\ -\frac{1}{L} & 0 \end{bmatrix} \begin{bmatrix} v_s \\ i_s \end{bmatrix}$$

• • • • • • • • • • • •

Example (State equations for a circuit with two inputs (cont.))

The capacitor current i_2 in the circuit below can be given in terms of state variables.

Mohammad Hadi

イロト イ団ト イヨト イヨト

Example (State equations for a circuit with dependent energy storage elements)

All the energy storage elements are not among the state variables of the circuit below whose element have unit values.

State Equations for LTV circuits

イロト イ団ト イヨト イヨ

- State variables: Independent capacitor voltages and inductor currents.
- State variables: Independent capacitor charges and inductor fluxes.
- Number of state variables: Number of independent energy storage elements.
- Proper tree: Capacitors in tree branches and inductors in link branches.
- State equations: KCL in fundamental cut sets and KVL in fundamental loops.
- State equations: $\frac{d}{dt} \mathbf{X}(t) = \mathbf{A}(t)\mathbf{X}(t) + \mathbf{B}(t)\mathbf{W}(t), \quad \mathbf{X}(0) = \mathbf{X}_0$
- Output response: $y(t) = \boldsymbol{C}^{T}(t)\boldsymbol{X}(t) + \boldsymbol{D}^{T}(t)\boldsymbol{W}(t)$

Example (State equations for an LTV circuit)

Capacitor voltage and inductor current can be used as state variables in the LTV circuit below.

$$\begin{cases} \frac{dq(t)}{dt} + \frac{v_{C}(t)}{R(t)} + i_{L}(t) - i_{s}(t) = 0 \\ \frac{d\phi(t)}{dt} - v_{C}(t) = 0 \end{cases}, \quad \begin{cases} \frac{dq(t)}{dt} = C(t) \frac{dv_{C}c(t)}{dt} + v_{C}(t) \frac{C(t)}{dt} \\ \frac{d\phi(t)}{dt} = L(t) \frac{di_{L}(t)}{dt} + i_{L}(t) \frac{L(t)}{dt} \end{cases}$$

$$\boldsymbol{X}(t) = \begin{bmatrix} v_{C}(t) \\ i_{L}(t) \end{bmatrix}, \boldsymbol{X}_{0} = \boldsymbol{X}(0) = \begin{bmatrix} v_{C}(0) \\ i_{L}(0) \end{bmatrix} \Rightarrow \frac{d\boldsymbol{X}(t)}{dt} = \begin{bmatrix} -\frac{1}{R(t)C(t)} - \frac{C'(t)}{C(t)} & -\frac{1}{C(t)} \\ \frac{1}{L(t)} & -\frac{L'(t)}{L(t)} \end{bmatrix} \boldsymbol{X}(t) + \begin{bmatrix} -\frac{1}{C(t)} \\ 0 \end{bmatrix} i_{s}(t)$$

イロト イ団ト イヨト イヨ

Example (State equations for an LTV circuit)

Capacitor charge and inductor flux can be used as state variables in the LTV circuit below.

$$\begin{cases} \frac{dq(t)}{dt} + \frac{v_{\mathcal{C}}(t)}{R(t)} + i_{\mathcal{L}}(t) - i_{\mathfrak{s}}(t) = 0 \\ \frac{d\phi(t)}{dt} - v_{\mathcal{C}}(t) = 0 \end{cases} \Rightarrow \begin{cases} \frac{dq(t)}{dt} + \frac{q(t)}{c(t)R(t)} + \frac{\phi(t)}{L(t)} - i_{\mathfrak{s}}(t) = 0 \\ \frac{d\phi(t)}{dt} - \frac{q(t)}{C(t)} = 0 \end{cases}$$

$$\boldsymbol{X}(t) = \begin{bmatrix} \boldsymbol{q}(t) \\ \boldsymbol{\phi}(t) \end{bmatrix}, \, \boldsymbol{X}_0 = \boldsymbol{X}(0) = \begin{bmatrix} \boldsymbol{q}(0) \\ \boldsymbol{\phi}(0) \end{bmatrix} \Rightarrow \frac{d\boldsymbol{X}(t)}{dt} = \begin{bmatrix} -\frac{1}{R(t)C(t)} & -\frac{1}{L(t)} \\ \frac{1}{C(t)} & 0 \end{bmatrix} \boldsymbol{X}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} i_s(t)$$

イロト イヨト イヨト イヨ

State Equations for NTV circuits

- State variables: Independent capacitor charges and inductor fluxes.
- Number of state variables: Number of independent energy storage elements.
- State equations: $\frac{d}{dt} \mathbf{X}(t) = f(\mathbf{X}(t), \mathbf{W}(t), t), \quad \mathbf{X}(0) = \mathbf{X}_0$
- Output response: y(t) = h(X(t), W(t), t)

イロト イヨト イヨト イヨト

Example (State equations for an NTI circuit)

Capacitor voltage and inductor current can be used as state variables in the NTI circuit below.

$$\begin{cases} \frac{dq(t)}{dt} + i_R(t) + i_L(t) - i_s(t) = 0 \\ \frac{d\phi(t)}{dt} - v_C(t) = 0 \end{cases}, \quad \begin{cases} \frac{dq(t)}{dt} = \frac{dq}{dv_C} \frac{dv_C}{dt} = f_2'(v_C) \frac{dv_C}{dt} \\ \frac{d\phi(t)}{dt} = \frac{dq}{dt_L} \frac{dv_C}{dt} = f_3'(i_L) \frac{di_L}{dt} \end{cases}$$

$$\boldsymbol{X}(t) = \begin{bmatrix} v_{C}(t) \\ i_{L}(t) \end{bmatrix}, \boldsymbol{X}_{0} = \boldsymbol{X}(0) = \begin{bmatrix} v_{C}(0) \\ i_{L}(0) \end{bmatrix} \Rightarrow \frac{d\boldsymbol{X}(t)}{dt} = \begin{bmatrix} \frac{-f_{1}(v_{C}(t)) - i_{L}(t) + i_{S}(t)}{f_{2}^{\prime}(v_{C}(t))} \\ \frac{v_{C}(t)}{f_{S}^{\prime}(i_{L}(t))} \end{bmatrix}$$

イロト イ団ト イヨト イヨ

Example (State equations for a an NTI circuit)

Capacitor charge and inductor flux can be used as state variables in the NTI circuit below.

$$i_{s}(t) + v_{R} + v_{L} + v_{c} + v$$

$$\begin{cases} \frac{dq(t)}{dt} + i_R(t) + i_L(t) - i_s(t) = 0 \\ \frac{d\phi(t)}{dt} - v_C(t) = 0 \end{cases}, \quad \begin{cases} \frac{dq(t)}{dt} + f_1(f_2(q(t))) + f_3(\phi(t)) - i_s(t) = 0 \\ \frac{d\phi(t)}{dt} - f_2(q(t)) = 0 \end{cases}$$

$$\boldsymbol{X}(t) = \begin{bmatrix} \boldsymbol{q}(t) \\ \phi(t) \end{bmatrix}, \, \boldsymbol{X}_0 = \boldsymbol{X}(0) = \begin{bmatrix} \boldsymbol{q}(0) \\ \phi(0) \end{bmatrix} \Rightarrow \frac{d\boldsymbol{X}(t)}{dt} = \begin{bmatrix} -f_1(f_2(\boldsymbol{q}(t))) - f_3(\phi(t)) + i_s(t) \\ f_2(\boldsymbol{q}(t)) \end{bmatrix}$$

Solving State Equations

メロト メタト メヨト メヨト

- Single state equation: x'(t) = ax(t) + bw(t), x(0)
- Zero-input response: $x_{zi}(t) = x(0)e^{at}, t \ge 0$
- Zero-state response: $x_{zs}(t) = \int_0^t e^{a(t-t')} bw(t') dt', t \ge 0$
- Complete response: $x_{cs}(t) = x_{zi}(t) + x_{zs}(t), t \ge 0$

イロト イ団ト イヨト イヨト

- Single state equation: $\frac{d}{dt} \mathbf{X}(t) = \mathbf{A}\mathbf{X}(t) + \mathbf{B}\mathbf{W}(t), \quad \mathbf{X}(0)$
- Zero-input response: $\boldsymbol{X}_{zi}(t) = e^{\boldsymbol{A}t} \boldsymbol{X}(0), t \ge 0$
- Zero-state response: $X_{zs}(t) = \int_0^t e^{A(t-t')} BW(t') dt', t \ge 0$
- Complete response: $m{X}_{cs}(t) = m{X}_{zi}(t) + m{X}_{zs}(t), t \geq 0$
- Matrix exponential: $e^{At} = I + At + \frac{1}{2!}A^2t^2 + \frac{1}{3!}A^3t^3 + \cdots$

(日) (四) (日) (日) (日)

Exponential Matrix

- Eigen values and vectors: $|\mathbf{A} \lambda \mathbf{I}| = 0 \Rightarrow \lambda_1, \cdots, \lambda_n, \quad \mathbf{u}_1, \cdots, \mathbf{u}_n$
- Diagonal decomposition:

$$\boldsymbol{U} = \begin{bmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_n \end{bmatrix}, \quad \boldsymbol{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

$$\Rightarrow \mathbf{A} = \mathbf{U} \wedge \mathbf{U}^{-1} \Rightarrow e^{\mathbf{A}t} = \mathbf{U} e^{\wedge t} \mathbf{U}^{-1}, \quad e^{\wedge t} = \begin{bmatrix} e^{\lambda_1 t} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2 t} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{\lambda_n t} \end{bmatrix}$$

э

イロト イヨト イヨト イヨト

- Zero-input response: $\frac{d}{dt} \boldsymbol{X}_{zi}(t) = \boldsymbol{A} \boldsymbol{X}_{zi}(t), \boldsymbol{X}_{zi}(0) = \boldsymbol{X}_0 \Rightarrow \boldsymbol{X}_{zi}(t) = e^{\boldsymbol{A}t} \boldsymbol{X}_0$
- Laplace-domain zero-input response: $s \mathbf{X}_{zi}(s) - \mathbf{X}_0 = A \mathbf{X}_{zi}(s) \Rightarrow \mathbf{X}_{zi}(s) = (s \mathbf{I} - \mathbf{A})^{-1} \mathbf{X}_0$
- Laplace-domain zero-input response: $X_{zi}(s) = \mathcal{L}\{e^{At}\}X_0$
- Laplace transform of matrix exponential: $\mathcal{L}\{e^{At}\} = (sI A)^{-1}$
- Matrix exponential: $e^{At} = \mathcal{L}^{-1}\{(sI A)^{-1}\}$

Example (Solving state equation)

Matrix diagonal decomposition can be used to solve the matrix state equation below.

$$\begin{aligned} \frac{d}{dt} \mathbf{X}(t) &= \mathbf{A}\mathbf{X}(t), \quad \mathbf{A} = \begin{bmatrix} -0.5 & 1 \\ 1 & -3 \end{bmatrix} \\ |\mathbf{A} - \lambda \mathbf{I}| &= (-0.5 - \lambda)(-3 - \lambda) + 1 = 0 \Rightarrow \lambda = -1, -2.5 \\ \mathbf{A}\mathbf{u} &= \lambda \mathbf{u} \Rightarrow \mathbf{A}\mathbf{u} = -\mathbf{u} \Rightarrow \mathbf{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \\ \mathbf{A}\mathbf{u} &= \lambda \mathbf{u} \Rightarrow \mathbf{A}\mathbf{u} = -2.5\mathbf{u} \Rightarrow \mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \\ \mathbf{A} &= \mathbf{U} \wedge \mathbf{U}^{-1} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -2.5 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}^{-1} \\ \mathbf{e}^{\mathbf{A}t} &= \mathbf{U}\mathbf{e}^{\Lambda t}\mathbf{U}^{-1} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} e^{-t} & 0 \\ 0 & e^{-2.5t} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}^{-1} = \frac{1}{3} \begin{bmatrix} 4e^{-t} - e^{-2.5t} & -2e^{-t} + 2e^{-2.5t} \\ 2e^{-t} - 2e^{-2.5t} & -e^{-t} + 4e^{-2.5t} \end{bmatrix} \\ \mathbf{X}(t) &= e^{\mathbf{A}t}\mathbf{X}_{0} = \frac{1}{3} \begin{bmatrix} 4e^{-t} - e^{-2.5t} & -2e^{-t} + 2e^{-2.5t} \\ 2e^{-t} - 2e^{-2.5t} & -e^{-t} + 4e^{-2.5t} \end{bmatrix} \mathbf{X}_{0} \end{aligned}$$

Example (Solving state equation)

Laplace transform can be used to solve the matrix state equation below.

$$\begin{aligned} & \frac{d}{dt} \mathbf{X}(t) = \mathbf{A}\mathbf{X}(t), \quad \mathbf{A} = \begin{bmatrix} -0.5 & 1\\ 1 & -3 \end{bmatrix} \\ & e^{\mathbf{A}t} = \mathcal{L}^{-1} \{ (\mathbf{s}\mathbf{I} - \mathbf{A})^{-1} \} = \mathcal{L}^{-1} \{ \begin{bmatrix} \mathbf{s} + 0.5 & 1\\ -1 & \mathbf{s} + 3 \end{bmatrix}^{-1} \} = \mathcal{L}^{-1} \{ \begin{bmatrix} \frac{\mathbf{s} + 3}{(\mathbf{s} + 1)(\mathbf{s} + 2.5)} & \frac{-1}{(\mathbf{s} + 1)(\mathbf{s} + 2.5)} \\ \frac{\mathbf{s} + 0.5}{(\mathbf{s} + 1)(\mathbf{s} + 2.5)} \end{bmatrix} \} \\ & \mathbf{X}(t) = e^{\mathbf{A}t} \mathbf{X}_{0} = \frac{1}{3} \begin{bmatrix} 4e^{-t} - e^{-2.5t} & -2e^{-t} + 2e^{-2.5t} \\ 2e^{-t} - 2e^{-2.5t} & -e^{-t} + 4e^{-2.5t} \end{bmatrix} \mathbf{X}_{0} \end{aligned}$$

- State equations: $\frac{d}{dt} \mathbf{X}(t) = \mathbf{A}\mathbf{X}(t) + \mathbf{B}w(t), \quad \mathbf{X}(0) = \mathbf{X}_0$
- Laplace-domain state equations: $sX(s) - X_0 = AX(s) + BW(s) \Rightarrow X(s) = (sI - A)^{-1}BW(s) + (sI - A)^{-1}X_0$
- Single-input Output response: $y(t) = \boldsymbol{C}^T \boldsymbol{X}(t) + dw(t)$
- Laplace transform of Output response: $Y(s) = \boldsymbol{C}^{T} \boldsymbol{X}(s) + dW(s) = \boldsymbol{C}^{T} [(s\boldsymbol{I} - \boldsymbol{A})^{-1} \boldsymbol{B} W(s) + (s\boldsymbol{I} - \boldsymbol{A})^{-1} \boldsymbol{X}_{0}] + dW(s)$
- Transfer function: $H(s) = \frac{Y(s)}{W(s)}|_{\boldsymbol{X}_0=0} = \boldsymbol{C}^T (s\boldsymbol{I} \boldsymbol{A})^{-1}\boldsymbol{B} + d$

イロト イヨト イヨト イヨト

Single-input Response Equation

Example (Transfer function)

Transfer function can be found by the matrices involved in state equations

$$\begin{aligned} \mathbf{X}(t) &= \begin{bmatrix} v_1(t) \\ v_2(t) \\ i_L(t) \end{bmatrix} \Rightarrow \frac{d\mathbf{X}}{dt} = \begin{bmatrix} -\frac{1}{R_1C_1} & -\frac{1}{R_1C_2} & -\frac{1}{C_1} \\ -\frac{1}{R_1C_2} & -\frac{1}{R_1C_2} & 0 \\ \frac{1-gmR_2}{L} & 0 & -\frac{R_2}{L} \end{bmatrix} \mathbf{X} + \begin{bmatrix} 0 \\ 0 \\ -\frac{1}{L} \end{bmatrix} \mathbf{v}_s + \begin{bmatrix} \frac{1}{C_1} \\ \frac{1}{C_2} \\ 0 \end{bmatrix} \mathbf{i}_s \\ \mathbf{W}(t) &= \begin{bmatrix} v_s(t) \\ i_s(t) \end{bmatrix} \Rightarrow \mathbf{i}_2 = C_2 \mathbf{v}_2' = \begin{bmatrix} -\frac{1}{R_1} & -\frac{1}{R_1} & 0 \end{bmatrix} \mathbf{X} + 0 \times \mathbf{v}_s(t) + 1 \times \mathbf{i}_s(t) \end{aligned}$$

$$H_{1}(s) = \frac{h_{2}(s)}{V_{s}(s)}\Big|_{I_{s}(s)=0} = \begin{bmatrix} -\frac{1}{R_{1}} & -\frac{1}{R_{1}} & 0 \end{bmatrix} \begin{bmatrix} s + \frac{s}{R_{1}C_{1}} & \frac{1}{R_{1}C_{1}} & \frac{1}{C_{1}} \\ \frac{1}{R_{1}C_{2}} & s + \frac{1}{R_{1}C_{2}} & 0 \\ -\frac{1-gmR_{2}}{L} & 0 & s + \frac{R_{2}}{L} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -\frac{1}{L} \end{bmatrix} + 0$$

$$H_{2}(s) = \frac{I_{2}(s)}{I_{s}(s)}\Big|_{V_{s}(s)=0} = \begin{bmatrix} -\frac{1}{R_{1}} & -\frac{1}{R_{1}} & 0 \end{bmatrix} \begin{bmatrix} s + \frac{R_{1}C_{1}}{R_{1}C_{2}} & \frac{R_{1}C_{1}}{L} & \frac{C_{1}}{C_{1}} \\ \frac{1}{R_{1}C_{2}} & s + \frac{R_{1}}{R_{1}C_{2}} & 0 \\ -\frac{1-\frac{2}{R_{1}R_{2}}R_{2}}{L} & 0 & s + \frac{R_{2}}{L} \end{bmatrix} \begin{bmatrix} \frac{1}{C_{1}} \\ \frac{1}{C_{2}} \\ 0 \\ 0 \end{bmatrix} + 1$$

Approximated Solution

- General state equations: $\frac{d}{dt}\boldsymbol{X}(t) = f(\boldsymbol{X}(t)), \quad \boldsymbol{X}(0) = \boldsymbol{X}_0$
- Approximated solution for general state equations:

$$\begin{aligned} \mathbf{X}(\Delta t) &\approx \mathbf{X}(0) + \frac{d}{dt} \mathbf{X}(t) \big|_{t=0} \Delta t = \mathbf{X}(0) + f(\mathbf{X}(0)) \Delta t \\ \mathbf{X}(2\Delta t) &\approx \mathbf{X}(\Delta t) + f(\mathbf{X}(\Delta t)) \Delta t \\ \vdots \\ \mathbf{X}((k+1)\Delta t) &\approx \mathbf{X}(k\Delta t) + f(\mathbf{X}(k\Delta t)) \Delta t \end{aligned}$$

• Approximated solution for LTI state equations:

$$\begin{split} \boldsymbol{X}((k+1)\Delta t) &\approx \boldsymbol{X}(k\Delta t) + f(\boldsymbol{X}(k\Delta t))\Delta t = \boldsymbol{X}(k\Delta t) + \boldsymbol{A}\boldsymbol{X}(k\Delta t)\Delta t \\ \boldsymbol{X}((k+1)\Delta t) &\approx (\boldsymbol{I} + \boldsymbol{A}\Delta t)\boldsymbol{X}(k\Delta t) \end{split}$$

イロト イポト イヨト イヨト

Example (State trajectory)

State trajectory can be plotted using approximated numerical methods.

$$\begin{aligned} &\frac{d}{dt} \mathbf{X}(t) = \mathbf{A}\mathbf{X}(t), \quad \mathbf{A} = \begin{bmatrix} -1 & 0 \\ -1 & -3 \end{bmatrix}, \quad \mathbf{X}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ &e^{\mathbf{A}t} = \mathcal{L}^{-1} \{ (s\mathbf{I} - \mathbf{A})^{-1} \} = \mathcal{L}^{-1} \{ \begin{bmatrix} s+1 & 0 \\ -1 & s+3 \end{bmatrix}^{-1} \} = \mathcal{L}^{-1} \{ \begin{bmatrix} \frac{1}{s+1} & 0 \\ \frac{1}{(s+1)(s+3)} & \frac{1}{s+3} \end{bmatrix} \} \\ &\mathbf{X}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = e^{\mathbf{A}t} \mathbf{X}_0 = \begin{bmatrix} e^{-t} & 0 \\ -0.5e^{-t} + 0.5e^{-3t} & e^{-3t} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} e^{-t} \\ -0.5e^{-t} + 0.5e^{-3t} \end{bmatrix} \Rightarrow x_2 = \frac{-x_1 + x_1^3}{2} \end{aligned}$$

$$\Delta t = 0.1 \Rightarrow \boldsymbol{I} + \boldsymbol{A}\Delta t = \begin{bmatrix} 0.9 & 0 \\ -0.1 & 0.7 \end{bmatrix} \Rightarrow \boldsymbol{X}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \boldsymbol{X}(0.1) = \begin{bmatrix} 0.9 & 0 \\ -0.1 & 0.7 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.9 \\ -0.1 \end{bmatrix}$$
$$\boldsymbol{X}(0.2) = \begin{bmatrix} 0.81 \\ -0.16 \end{bmatrix}, \boldsymbol{X}(0.3) = \begin{bmatrix} 0.729 \\ -0.193 \end{bmatrix}, \cdots, \boldsymbol{X}(0.2) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Example (State trajectory)

State trajectory can be plotted using approximated numerical methods.

イロト イヨト イヨト イヨ

Example (State trajectory)

Natural frequencies involved in the response can be removed if the initial condition equal eigen vectors.

$$\begin{aligned} &\frac{d}{dt} \mathbf{X}(t) = \mathbf{A}\mathbf{X}(t), \quad \mathbf{A} = \begin{bmatrix} -1 & 0 \\ -1 & -3 \end{bmatrix}, \quad \mathbf{X}_0 = \begin{bmatrix} a \\ b \end{bmatrix} \\ &\mathbf{X}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} e^{-t} & 0 \\ -0.5e^{-t} + 0.5e^{-3t} & e^{-3t} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ae^{-t} \\ -0.5ae^{-t} + (0.5a + b)e^{-3t} \end{bmatrix} \\ &\Rightarrow x_2 = -0.5x_1 + 0.5x_1^3 + \frac{b}{a}x_1^3 \\ &\mathbf{A} = \begin{bmatrix} -1 & 0 \\ -1 & -3 \end{bmatrix} \Rightarrow \lambda_{1,2} = -1, -2, \quad \mathbf{u}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ &\mathbf{X}_0 = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \Rightarrow \mathbf{X}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} 0 \\ e^{-3t} \end{bmatrix} \Rightarrow x_1 = 0, x_2 \in [0, 1] \end{aligned}$$

Mohammad Hadi

The End

メロト スピト メヨト メヨト