State Equations

Mohammad Hadi
mohammad.hadi@sharif.edu
@MohammadHadiDastgerdi

Fall 2021

Overview

(1) State Equations
(2) State Equations for LTI circuits
(3) State Equations for LTV circuits
(4) State Equations for NTV circuits
(5) Solving State Equations

State Equations

State Equations

Figure: An LTI circuit with an input and initial conditions. State equations allow to solve a system of 1 st-order linear differential equations instead of solving an nth order linear differential equation. State equations are very useful for analysis of time-varying circuits.

- n th-order linear differential equation:

$$
\sum_{k=0}^{n} a_{k} y^{(k)}(t)=\sum_{l=0}^{m} b_{l} w^{(l)}(t), \quad y\left(0^{-}\right), y^{\prime}\left(0^{-}\right), \cdots, y^{(n-1)}\left(0^{-}\right)
$$

- System of 1st-order linear equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=a_{11} x_{1}(t)+\cdots+a_{1 n} x_{n}(t)+b_{1} w(t) \\
\vdots \\
\vdots \\
x_{n}^{\prime}(t)=a_{1 n} x_{1}(t)+\cdots+a_{n n} x_{n}(t)+b_{n} w(t)
\end{array}\right.
$$

- State equations: $\frac{d}{d t} \boldsymbol{X}(t)=\boldsymbol{A} \boldsymbol{X}(t)+\boldsymbol{B} w(t), \quad \boldsymbol{X}(0)=\boldsymbol{X}_{0}$
- Output response: $y(t)=\boldsymbol{C}^{T} \boldsymbol{X}(t)+d w(t)$

State Equations

Definition (Network state)

A set of data qualifies to be called the state of a network if it satisfies two conditions

- For any time t_{0}, the state at time t_{0} and the inputs from t_{0} on determine uniquely the state at any time $t>t_{0}$.
- For any time t, the state at time t and the inputs at time t (and sometimes some of their derivatives) determine uniquely every network variable at time t. The components of the state are called state variables.

State Equations for LTI Circuits

State Variables

Figure: A sample suitable tree for writing state equations.

- State variables: Independent capacitor voltages and inductor currents.
- Number of state variables: Number of independent energy storage elements.
- Number of state variables: Circuit order.

State Equations

Figure: A sample suitable tree for writing state equations.

- State variables: Independent capacitor voltages and inductor currents.
- Proper tree: Capacitors in tree branches and inductors in link branches.
- State equations: KCL in fundamental cut sets and KVL in fundamental loops.
- State equations: $\frac{d}{d t} \boldsymbol{X}(t)=\boldsymbol{A} \boldsymbol{X}(t)+\boldsymbol{B} \boldsymbol{W}(t), \quad \boldsymbol{X}(0)=\boldsymbol{X}_{0}$
- Output response: $y(t)=\boldsymbol{C}^{\top} \boldsymbol{X}(t)+\boldsymbol{D}^{\top} \boldsymbol{W}(t)$

State Equations

Example (State equations for a circuit with three state variables)

The first voltage node of the circuit below can be given in terms of state variables.

$$
\begin{aligned}
& C v^{\prime}=-i_{1}-i_{2} \\
& i_{1}=v_{R_{1}} / R_{1} \\
& i_{2}=v_{R_{2}} / R_{2}
\end{aligned}
$$

$$
L_{1} i_{1}^{\prime}=v-v_{R_{1}}-e_{s}
$$

$$
L_{2} i_{1}^{\prime}=v-v_{R_{2}}
$$

$$
\left\{\begin{array}{l}
C v^{\prime}=-i_{1}-i_{2} \\
L_{1} i_{1}^{\prime}=v-R_{1} i_{1}-e_{s} \\
L_{2} i_{1}^{\prime}=v-R_{2} i_{2}
\end{array} \Rightarrow\left[\begin{array}{c}
v^{\prime} \\
i_{1}^{\prime} \\
i_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & -1 / C & -1 / C \\
1 / L_{1} & -R_{1} / L_{1} & 0 \\
1 / L_{2} & 0 & -R_{2} / L_{2}
\end{array}\right]\left[\begin{array}{c}
v \\
i_{1} \\
i_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
-1 / L_{1} \\
0
\end{array}\right] e_{s}\right.
$$

State Equations

Example (State equations for a circuit with three state variables (cont.))

The first voltage node of the circuit below can be given in terms of state variables.

$$
\begin{gathered}
\boldsymbol{X}(t)=\left[\begin{array}{c}
v(t) \\
i_{1}(t) \\
i_{2}(t)
\end{array}\right], \boldsymbol{X}_{0}=\boldsymbol{X}(0)=\left[\begin{array}{c}
v(0) \\
i_{1}(0) \\
i_{2}(0)
\end{array}\right] \Rightarrow \frac{d \boldsymbol{X}}{d t}=\left[\begin{array}{ccc}
0 & -1 / C & -1 / C \\
1 / L_{1} & -R_{1} / L_{1} & 0 \\
1 / L_{2} & 0 & -R_{2} / L_{2}
\end{array}\right] \boldsymbol{X}+\left[\begin{array}{c}
0 \\
-1 / L_{1} \\
0
\end{array}\right] e_{s} \\
e_{1}=v_{R_{1}}+e_{s}=R_{1} i_{1}+e_{s}=\left[\begin{array}{lll}
0 & R_{1} & 0
\end{array}\right] \boldsymbol{X}+[1] e_{s}
\end{gathered}
$$

State Equations

Example (State equations for a circuit with two inputs)

The capacitor current i_{2} in the circuit below can be given in terms of state variables.

$$
\begin{aligned}
& C_{1} v_{1}^{\prime}+v_{R_{1}} / R_{1}+i_{L}-i_{s}=0 \\
& C_{2} v_{2}^{\prime}+v_{R_{1}} / R_{1}-i_{s}=0 \\
& L i_{L}^{\prime}+v_{s}+v_{R_{2}}-v_{1}=0
\end{aligned}
$$

$$
v_{R_{1}}=v_{1}+v_{2}
$$

$$
\boldsymbol{X}(t)=\left[\begin{array}{c}
v_{1}(t) \\
v_{2}(t) \\
i_{L}(t)
\end{array}\right], \boldsymbol{X}_{0}=\boldsymbol{X}(0)=\left[\begin{array}{c}
v_{1}(0) \\
v_{2}(0) \\
i_{L}(0)
\end{array}\right] \Rightarrow \frac{d \boldsymbol{X}}{d t}=\left[\begin{array}{ccc}
-\frac{1}{R_{1} C_{1}} & -\frac{1}{R_{1} c_{1}} & -\frac{1}{C_{1}} \\
-\frac{1}{R_{1} c_{2}} & -\frac{1}{R_{1} C_{2}} & 0 \\
\frac{1-g_{m} R_{2}}{L} & 0 & -\frac{R_{2}}{L}
\end{array}\right] \boldsymbol{X}+\left[\begin{array}{cc}
0 & \frac{1}{C_{1}} \\
0 & \frac{1}{C_{2}} \\
-\frac{1}{L} & 0
\end{array}\right]\left[\begin{array}{c}
v_{s} \\
i_{s}
\end{array}\right]
$$

State Equations

Example (State equations for a circuit with two inputs (cont.))

The capacitor current i_{2} in the circuit below can be given in terms of state variables.

$$
\begin{gathered}
\boldsymbol{X}(t)=\left[\begin{array}{c}
v_{1}(t) \\
v_{2}(t) \\
i_{L}(t)
\end{array}\right], \boldsymbol{X}_{0}=\boldsymbol{X}(0)=\left[\begin{array}{l}
v_{1}(0) \\
v_{2}(0) \\
i_{L}(0)
\end{array}\right] \Rightarrow \frac{d \boldsymbol{X}}{d t}=\left[\begin{array}{ccc}
-\frac{1}{R_{1} c_{1}} & -\frac{1}{R_{1} c_{1}} & -\frac{1}{C_{1}} \\
-\frac{1}{R_{1} c_{2}} & -\frac{1}{R_{1} c_{2}} & 0 \\
\frac{1-g_{m} R_{2}}{L} & 0 & -\frac{R_{2}}{L}
\end{array}\right] \boldsymbol{X}+\left[\begin{array}{cc}
0 & \frac{1}{C_{1}} \\
0 & \frac{1}{C_{2}} \\
-\frac{1}{L} & 0
\end{array}\right]\left[\begin{array}{c}
v_{s} \\
i_{s}
\end{array}\right] \\
\boldsymbol{W}(t)=\left[\begin{array}{l}
v_{s}(t) \\
i_{s}(t)
\end{array}\right] \Rightarrow i_{2}=C_{2} v_{2}^{\prime}=-\frac{v_{1}+v_{2}}{R_{1}}+i_{s}=\left[\begin{array}{lll}
-\frac{1}{R_{1}} & -\frac{1}{R_{1}} & 0
\end{array}\right] \boldsymbol{X}+\left[\begin{array}{ll}
0 & 1
\end{array}\right] \boldsymbol{W}
\end{gathered}
$$

State Equations

Example (State equations for a circuit with dependent energy storage elements)

All the energy storage elements are not among the state variables of the circuit below whose element have unit values.

$$
\left\{\begin{array}{l}
v_{1}^{\prime}+v_{1}-i_{s}+\left(v_{1}-v_{2}\right)^{\prime}=0 \\
v_{2}^{\prime}+i_{1}-\left(v_{1}-v_{2}\right)^{\prime}=0 \\
i_{1}^{\prime}+\left(i_{1}-i_{2}\right)^{\prime}-v_{2}=0 \\
i_{2}^{\prime}+v_{s}+i_{2}-\left(i_{1}-i_{2}\right)^{\prime}=0
\end{array}\right.
$$

$$
\boldsymbol{X}(t)=\left[\begin{array}{c}
v_{1}(t) \\
v_{2}(t) \\
i_{1}(t) \\
i_{2}(t)
\end{array}\right], \boldsymbol{X}_{0}=\boldsymbol{X}(0)=\left[\begin{array}{c}
v_{1}(0) \\
v_{2}(0) \\
i_{1}(0) \\
i_{2}(0)
\end{array}\right] \Rightarrow \frac{d \boldsymbol{X}}{d t}=\left[\begin{array}{cccc}
-\frac{2}{3} & 0 & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & -\frac{2}{3} & 0 \\
0 & \frac{2}{3} & 0 & \frac{1}{3} \\
0 & \frac{1}{3} & 0 & \frac{2}{3}
\end{array}\right] \boldsymbol{X}+\left[\begin{array}{cc}
0 & \frac{2}{3} \\
0 & \frac{1}{3} \\
-\frac{1}{3} & 0 \\
-\frac{2}{3} & 0
\end{array}\right]\left[\begin{array}{c}
v_{s} \\
i_{s}
\end{array}\right]
$$

State Equations for LTV circuits

State Equations

- State variables: Independent capacitor voltages and inductor currents.
- State variables: Independent capacitor charges and inductor fluxes.
- Number of state variables: Number of independent energy storage elements.
- Proper tree: Capacitors in tree branches and inductors in link branches.
- State equations: KCL in fundamental cut sets and KVL in fundamental loops.
- State equations: $\frac{d}{d t} \boldsymbol{X}(t)=\boldsymbol{A}(t) \boldsymbol{X}(t)+\boldsymbol{B}(t) \boldsymbol{W}(t), \quad \boldsymbol{X}(0)=\boldsymbol{X}_{0}$
- Output response: $y(t)=\boldsymbol{C}^{T}(t) \boldsymbol{X}(t)+\boldsymbol{D}^{T}(t) \boldsymbol{W}(t)$

State Equations

Example (State equations for an LTV circuit)

Capacitor voltage and inductor current can be used as state variables in the LTV circuit below.

$$
\left\{\begin{array}{l}
\frac{d q(t)}{d t}+\frac{v_{C}(t)}{R(t)}+i_{L}(t)-i_{s}(t)=0 \\
\frac{d \phi(t)}{d t}-v_{C}(t)=0
\end{array} \quad, \quad\left\{\begin{array}{l}
\frac{d q(t)}{d t}=C(t) \frac{d v_{C} c(t)}{d t}+v_{C}(t) \frac{C(t)}{d t} \\
\frac{d \phi(t)}{d t}=L(t) \frac{d i_{L}(t)}{d t}+i_{L}(t) \frac{L(t)}{d t}
\end{array}\right.\right.
$$

$\boldsymbol{X}(t)=\left[\begin{array}{c}v_{C}(t) \\ i_{L}(t)\end{array}\right], \boldsymbol{X}_{0}=\boldsymbol{X}(0)=\left[\begin{array}{c}v_{C}(0) \\ i_{L}(0)\end{array}\right] \Rightarrow \frac{d \boldsymbol{X}(t)}{d t}=\left[\begin{array}{cc}-\frac{1}{R(t) C(t)}-\frac{C^{\prime}(t)}{C(t)} & -\frac{1}{C(t)} \\ \frac{1}{L(t)} & -\frac{L^{\prime}(t)}{L(t)}\end{array}\right] \boldsymbol{X}(t)+\left[\begin{array}{c}-\frac{1}{C(t)} \\ 0\end{array}\right] i_{s}(t)$

State Equations

Example (State equations for an LTV circuit)

Capacitor charge and inductor flux can be used as state variables in the LTV circuit below.

$$
\begin{gathered}
\left\{\begin{array} { l }
{ \frac { d q (t) } { d t } + \frac { v _ { C } (t) } { R (t) } + i _ { L } (t) - i _ { s } (t) = 0 } \\
{ \frac { d \phi (t) } { d t } - v _ { C } (t) = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\frac{d q(t)}{d t}+\frac{q(t)}{c(t) R(t)}+\frac{\phi(t)}{L(t)}-i_{s}(t)=0 \\
\frac{d \phi(t)}{d t}-\frac{q(t)}{C(t)}=0
\end{array}\right.\right. \\
\boldsymbol{X}(t)=\left[\begin{array}{l}
q(t) \\
\phi(t)
\end{array}\right], \boldsymbol{X}_{0}=\boldsymbol{X}(0)=\left[\begin{array}{l}
q(0) \\
\phi(0)
\end{array}\right] \Rightarrow \frac{d \boldsymbol{X}(t)}{d t}=\left[\begin{array}{cc}
-\frac{1}{R(t) C(t)} & -\frac{1}{L(t)} \\
\frac{1}{C(t)} & 0
\end{array}\right] \boldsymbol{X}(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] i_{s}(t)
\end{gathered}
$$

State Equations for NTV circuits

State Equations

- State variables: Independent capacitor charges and inductor fluxes.
- Number of state variables: Number of independent energy storage elements.
- State equations: $\frac{d}{d t} \boldsymbol{X}(t)=f(\boldsymbol{X}(t), \boldsymbol{W}(t), t), \quad \boldsymbol{X}(0)=\boldsymbol{X}_{0}$
- Output response: $\boldsymbol{y}(t)=h(\boldsymbol{X}(t), \boldsymbol{W}(t), t)$

State Equations

Example (State equations for an NTI circuit)

Capacitor voltage and inductor current can be used as state variables in the NTI circuit below.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{d q(t)}{d t}+i_{R}(t)+i_{L}(t)-i_{s}(t)=0 \\
\frac{d \phi(t)}{d t}-v_{C}(t)=0
\end{array}, \quad, \quad\left\{\begin{array}{l}
\frac{d q(t)}{d t}=\frac{d q}{d v_{C}} \frac{d v_{C}}{d t}=f_{2}^{\prime}\left(v_{C}\right) \frac{d v_{C}}{d t} \\
\frac{d \phi(t)}{d t}=\frac{d \phi}{d i_{L}} \frac{d i_{L}}{d t}=f_{3}^{\prime}\left(i_{L}\right) \frac{d i_{L}}{d t}
\end{array}\right.\right. \\
& \boldsymbol{X}(t)=\left[\begin{array}{c}
v_{C}(t) \\
i_{L}(t)
\end{array}\right], \boldsymbol{X}_{0}=\boldsymbol{X}(0)=\left[\begin{array}{c}
v_{C}(0) \\
i_{L}(0)
\end{array}\right] \Rightarrow \frac{d \boldsymbol{X}(t)}{d t}=\left[\begin{array}{c}
\frac{-f_{1}\left(v_{C}(t)\right)-i_{L}(t)+i_{\boldsymbol{s}}(t)}{f_{2}^{\prime}\left(v_{C}(t)\right)} \\
\frac{v^{\prime}(t)}{f_{3}^{\prime}\left(i_{L}(t)\right)}
\end{array}\right]
\end{aligned}
$$

State Equations

Example (State equations for a an NTI circuit)

Capacitor charge and inductor flux can be used as state variables in the NTI circuit below.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{d q(t)}{d t}+i_{R}(t)+i_{L}(t)-i_{s}(t)=0 \\
\frac{d \phi(t)}{d t}-v_{C}(t)=0
\end{array}, \quad\left\{\begin{array}{l}
\frac{d q(t)}{d t}+f_{1}\left(f_{2}(q(t))\right)+f_{3}(\phi(t))-i_{s}(t)=0 \\
\frac{d \phi(t)}{d t}-f_{2}(q(t))=0
\end{array}\right.\right. \\
& \boldsymbol{X}(t)=\left[\begin{array}{l}
q(t) \\
\phi(t)
\end{array}\right], \boldsymbol{X}_{0}=\boldsymbol{X}(0)=\left[\begin{array}{l}
q(0) \\
\phi(0)
\end{array}\right] \Rightarrow \frac{d \boldsymbol{X}(t)}{d t}=\left[\begin{array}{c}
-f_{1}\left(f_{2}(q(t))\right)-f_{3}(\phi(t))+i_{s}(t) \\
f_{2}(q(t))
\end{array}\right]
\end{aligned}
$$

Solving State Equations

Single State Equation

- Single state equation: $x^{\prime}(t)=a x(t)+b w(t), x(0)$
- Zero-input response: $x_{z i}(t)=x(0) e^{a t}, t \geq 0$
- Zero-state response: $x_{z s}(t)=\int_{0}^{t} e^{a\left(t-t^{\prime}\right)} b w\left(t^{\prime}\right) d t^{\prime}, t \geq 0$
- Complete response: $x_{c s}(t)=x_{z i}(t)+x_{z s}(t), t \geq 0$

System of State Equations

- Single state equation: $\frac{d}{d t} \boldsymbol{X}(t)=\boldsymbol{A} \boldsymbol{X}(t)+\boldsymbol{B} \boldsymbol{W}(t), \quad \boldsymbol{X}(0)$
- Zero-input response: $\boldsymbol{X}_{z i}(t)=e^{\boldsymbol{A t}} \boldsymbol{X}(0), t \geq 0$
- Zero-state response: $\boldsymbol{X}_{z s}(t)=\int_{0}^{t} e^{\boldsymbol{A}\left(t-t^{\prime}\right)} \boldsymbol{B} \boldsymbol{W}\left(t^{\prime}\right) d t^{\prime}, t \geq 0$
- Complete response: $\boldsymbol{X}_{c s}(t)=\boldsymbol{X}_{z i}(t)+\boldsymbol{X}_{z s}(t), t \geq 0$
- Matrix exponential: $e^{\boldsymbol{A} t}=\boldsymbol{I}+\boldsymbol{A} t+\frac{1}{2!} \boldsymbol{A}^{2} t^{2}+\frac{1}{3!} \boldsymbol{A}^{3} t^{3}+\cdots$

Exponential Matrix

- Eigen values and vectors: $|\boldsymbol{A}-\lambda \boldsymbol{I}|=0 \Rightarrow \lambda_{1}, \cdots, \lambda_{n}, \quad \boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{n}$
- Diagonal decomposition:

$$
\begin{gathered}
\boldsymbol{U}=\left[\begin{array}{lll}
\boldsymbol{u}_{1} & \cdots & \boldsymbol{u}_{n}
\end{array}\right], \quad \Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right] \\
\Rightarrow \boldsymbol{A}=\boldsymbol{U} \Lambda \boldsymbol{U}^{-1} \Rightarrow e^{\boldsymbol{A t}}=\boldsymbol{U} e^{\wedge t} \boldsymbol{U}^{-1}, \quad e^{\wedge t}=\left[\begin{array}{cccc}
e^{\lambda_{1} t} & 0 & \cdots & 0 \\
0 & e^{\lambda_{2} t} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & e^{\lambda_{n} t}
\end{array}\right]
\end{gathered}
$$

Exponential Matrix

- Zero-input response: $\frac{d}{d t} \boldsymbol{X}_{z i}(t)=\boldsymbol{A} \boldsymbol{X}_{z i}(t), \boldsymbol{X}_{z i}(0)=\boldsymbol{X}_{0} \Rightarrow \boldsymbol{X}_{z i}(t)=e^{\boldsymbol{A} t} \boldsymbol{X}_{0}$
- Laplace-domain zero-input response:

$$
s \boldsymbol{X}_{z i}(s)-\boldsymbol{X}_{0}=A \boldsymbol{X}_{z i}(s) \Rightarrow \boldsymbol{X}_{z i}(s)=(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{X}_{0}
$$

- Laplace-domain zero-input response: $\boldsymbol{X}_{z i}(s)=\mathcal{L}\left\{e^{\boldsymbol{A} t}\right\} \boldsymbol{X}_{0}$
- Laplace transform of matrix exponential: $\mathcal{L}\left\{e^{\boldsymbol{A} t}\right\}=(s \boldsymbol{I}-\boldsymbol{A})^{-1}$
- Matrix exponential: $e^{\boldsymbol{A} t}=\mathcal{L}^{-1}\left\{(s \boldsymbol{I}-\boldsymbol{A})^{-1}\right\}$

State Equations

Example (Solving state equation)

Matrix diagonal decomposition can be used to solve the matrix state equation below.

$$
\begin{aligned}
& \frac{d}{d t} \boldsymbol{X}(t)=\boldsymbol{A} \boldsymbol{X}(t), \quad \boldsymbol{A}=\left[\begin{array}{cc}
-0.5 & 1 \\
1 & -3
\end{array}\right] \\
& |\boldsymbol{A}-\lambda \boldsymbol{I}|=(-0.5-\lambda)(-3-\lambda)+1=0 \Rightarrow \lambda=-1,-2.5 \\
& \boldsymbol{A} \boldsymbol{u}=\lambda \boldsymbol{u} \Rightarrow \boldsymbol{A} \boldsymbol{u}=-\boldsymbol{u} \Rightarrow \boldsymbol{u}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& \boldsymbol{A} \boldsymbol{u}=\lambda \boldsymbol{u} \Rightarrow \boldsymbol{A} \boldsymbol{u}=-2.5 \boldsymbol{u} \Rightarrow \boldsymbol{u}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& \boldsymbol{A}=\boldsymbol{U} \wedge \boldsymbol{U}^{-1}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & -2.5
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \\
& e^{\boldsymbol{A} t}=\boldsymbol{U} e^{\wedge t} \boldsymbol{U}^{-1}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{-2.5 t}
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]^{-1}=\frac{1}{3}\left[\begin{array}{cc}
4 e^{-t}-e^{-2.5 t} \\
2 e^{-t}-2 e^{-2.5 t} & -2 e^{-t}+2 e^{-2.5 t} \\
-e^{-t}+4 e^{-2.5 t}
\end{array}\right] \\
& \boldsymbol{X}(t)=e^{\boldsymbol{A} t} \boldsymbol{X}_{0}=\frac{1}{3}\left[\begin{array}{cc}
4 e^{-t}-e^{-2.5 t} & -2 e^{-t}+2 e^{-2.5 t} \\
2 e^{-t}-2 e^{-2.5 t} & -e^{-t}+4 e^{-2.5 t}
\end{array}\right] \boldsymbol{X}_{0}
\end{aligned}
$$

State Equations

Example (Solving state equation)

Laplace transform can be used to solve the matrix state equation below.

$$
\begin{aligned}
& \frac{d}{d t} \boldsymbol{X}(t)=\boldsymbol{A} \boldsymbol{X}(t), \quad \boldsymbol{A}=\left[\begin{array}{cc}
-0.5 & 1 \\
1 & -3
\end{array}\right] \\
& e^{\boldsymbol{A t}}=\mathcal{L}^{-1}\left\{(s \boldsymbol{I}-\boldsymbol{A})^{-1}\right\}=\mathcal{L}^{-1}\left\{\left[\begin{array}{cc}
s+0.5 & 1 \\
-1 & s+3
\end{array}\right]^{-1}\right\}=\mathcal{L}^{-1}\left\{\left[\begin{array}{cc}
\frac{s+3}{(s+1)(s+2.5)} & \frac{-1}{(s+1)(s+2.5)} \\
\frac{1}{(s+1)(s+2.5)} & \frac{s+0.5}{(s+1)(s+2.5)}
\end{array}\right]\right\} \\
& \boldsymbol{X}(t)=e^{\boldsymbol{A} t} \boldsymbol{X}_{0}=\frac{1}{3}\left[\begin{array}{cc}
4 e^{-t}-e^{-2.5 t} & -2 e^{-t}+2 e^{-2.5 t} \\
2 e^{-t}-2 e^{-2.5 t} & -e^{-t}+4 e^{-2.5 t}
\end{array}\right] \boldsymbol{X}_{0}
\end{aligned}
$$

Response Equation

- State equations: $\frac{d}{d t} \boldsymbol{X}(t)=\boldsymbol{A} \boldsymbol{X}(t)+\boldsymbol{B} w(t), \quad \boldsymbol{X}(0)=\boldsymbol{X}_{0}$
- Laplace-domain state equations: $s \boldsymbol{X}(s)-\boldsymbol{X}_{0}=\boldsymbol{A} \boldsymbol{X}(s)+\boldsymbol{B} W(s) \Rightarrow \boldsymbol{X}(s)=(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B} W(s)+(s \mathbf{I}-\boldsymbol{A})^{-1} \boldsymbol{X}_{0}$
- Single-input Output response: $y(t)=\boldsymbol{C}^{\top} \boldsymbol{X}(t)+d w(t)$
- Laplace transform of Output response:

$$
Y(s)=\boldsymbol{C}^{T} \boldsymbol{X}(s)+d W(s)=\boldsymbol{C}^{T}\left[(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B} W(s)+(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{X}_{0}\right]+d W(s)
$$

- Transfer function: $H(s)=\left.\frac{Y(s)}{W(s)}\right|_{\boldsymbol{x}_{0}=0}=\boldsymbol{C}^{T}(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B}+d$

Single-input Response Equation

Example (Transfer function)

Transfer function can be found by the matrices involved in state equations

$$
\begin{aligned}
& \boldsymbol{X}(t)=\left[\begin{array}{c}
v_{1}(t) \\
v_{2}(t) \\
i_{L}(t)
\end{array}\right] \Rightarrow \frac{d \boldsymbol{X}}{d t}=\left[\begin{array}{ccc}
-\frac{1}{R_{1} C_{1}} & -\frac{1}{R_{1} C_{1}} & -\frac{1}{C_{1}} \\
-\frac{1}{R_{1} C_{2}} & -\frac{1}{R_{1} C_{2}} & 0 \\
\frac{1-g_{m} R_{2}}{L} & 0 & -\frac{R_{2}}{L}
\end{array}\right] \boldsymbol{X}+\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{L}
\end{array}\right] v_{s}+\left[\begin{array}{c}
\frac{1}{C_{1}} \\
\frac{1}{C_{2}} \\
0
\end{array}\right] i_{s} \\
& \boldsymbol{W}(t)=\left[\begin{array}{l}
v_{s}(t) \\
i_{s}(t)
\end{array}\right] \Rightarrow i_{2}=C_{2} v_{2}^{\prime}=\left[\begin{array}{lll}
-\frac{1}{R_{1}} & -\frac{1}{R_{1}} & 0
\end{array}\right] \boldsymbol{X}+0 \times v_{s}(t)+1 \times i_{s}(t)
\end{aligned}
$$

$$
H_{1}(s)=\left.\frac{I_{2}(s)}{V_{s}(s)}\right|_{I_{s}(s)=0}=\left[\begin{array}{lll}
-\frac{1}{R_{1}} & -\frac{1}{R_{1}} & 0
\end{array}\right]\left[\begin{array}{ccc}
s+\frac{1}{R_{1} C_{1}} & \frac{1}{R_{1} C_{1}} & \frac{1}{C_{1}} \\
\frac{1}{R_{1} C_{2}} & s+\frac{1}{R_{1} C_{2}} & 0 \\
-\frac{1-g_{m} R_{2}}{L} & 0 & s+\frac{R_{2}}{L}
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{L}
\end{array}\right]+0
$$

$$
H_{2}(s)=\left.\frac{l_{2}(s)}{l_{s}(s)}\right|_{V_{s}(s)=0}=\left[\begin{array}{lll}
-\frac{1}{R_{1}} & -\frac{1}{R_{1}} & 0
\end{array}\right]\left[\begin{array}{ccc}
s+\frac{1}{R_{1} C_{1}} & \frac{1}{R_{1} C_{1}} & \frac{1}{C_{1}} \\
\frac{1}{R_{1} C_{2}} & s+\frac{1}{R_{1} C_{2}} & 0 \\
-\frac{1-g m R_{2}}{L} & 0 & s+\frac{R_{2}}{L}
\end{array}\right]^{-1}\left[\begin{array}{c}
\frac{1}{C_{1}} \\
\frac{1}{C_{2}} \\
0
\end{array}\right]+1
$$

Approximated Solution

- General state equations: $\frac{d}{d t} \boldsymbol{X}(t)=f(\boldsymbol{X}(t)), \quad \boldsymbol{X}(0)=\boldsymbol{X}_{0}$
- Approximated solution for general state equations:

$$
\begin{aligned}
& \boldsymbol{X}(\Delta t) \approx \boldsymbol{X}(0)+\left.\frac{d}{d t} \boldsymbol{X}(t)\right|_{t=0} \Delta t=\boldsymbol{X}(0)+f(\boldsymbol{X}(0)) \Delta t \\
& \boldsymbol{X}(2 \Delta t) \approx \boldsymbol{X}(\Delta t)+f(\boldsymbol{X}(\Delta t)) \Delta t \\
& \vdots \\
& \boldsymbol{X}((k+1) \Delta t) \approx \boldsymbol{X}(k \Delta t)+f(\boldsymbol{X}(k \Delta t)) \Delta t
\end{aligned}
$$

- Approximated solution for LTI state equations:

$$
\begin{aligned}
& \boldsymbol{X}((k+1) \Delta t) \approx \boldsymbol{X}(k \Delta t)+f(\boldsymbol{X}(k \Delta t)) \Delta t=\boldsymbol{X}(k \Delta t)+\boldsymbol{A} \boldsymbol{X}(k \Delta t) \Delta t \\
& \boldsymbol{X}((k+1) \Delta t) \approx(\boldsymbol{I}+\boldsymbol{A} \Delta t) \boldsymbol{X}(k \Delta t)
\end{aligned}
$$

State Trajectory

Example (State trajectory)

State trajectory can be plotted using approximated numerical methods.

$$
\begin{aligned}
& \frac{d}{d t} \boldsymbol{X}(t)=\boldsymbol{A} \boldsymbol{X}(t), \quad \boldsymbol{A}=\left[\begin{array}{cc}
-1 & 0 \\
-1 & -3
\end{array}\right], \quad \boldsymbol{X}_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& e^{\boldsymbol{A} t}=\mathcal{L}^{-1}\left\{(s \boldsymbol{I}-\boldsymbol{A})^{-1}\right\}=\mathcal{L}^{-1}\left\{\left[\begin{array}{cc}
s+1 & 0 \\
-1 & s+3
\end{array}\right]^{-1}\right\}=\mathcal{L}^{-1}\left\{\left[\begin{array}{cc}
\frac{1}{s+1} & 0 \\
(s+1)(s+3) & \frac{1}{s+3}
\end{array}\right]\right\} \\
& \boldsymbol{X}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=e^{\boldsymbol{A} t} \boldsymbol{X}_{0}=\left[\begin{array}{cc}
e^{-t} & 0 \\
-0.5 e^{-t}+0.5 e^{-3 t} & e^{-3 t}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
e^{-t} \\
-0.5 e^{-t}+0.5 e^{-3 t}
\end{array}\right] \Rightarrow x_{2}=\frac{-x_{1}+x_{1}^{3}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta t=0.1 \Rightarrow \boldsymbol{I}+\boldsymbol{A} \Delta t=\left[\begin{array}{cc}
0.9 & 0 \\
-0.1 & 0.7
\end{array}\right] \Rightarrow \boldsymbol{X}(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \boldsymbol{X}(0.1)=\left[\begin{array}{cc}
0.9 & 0 \\
-0.1 & 0.7
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
0.9 \\
-0.1
\end{array}\right] \\
& \boldsymbol{X}(0.2)=\left[\begin{array}{c}
0.81 \\
-0.16
\end{array}\right], \boldsymbol{X}(0.3)=\left[\begin{array}{c}
0.729 \\
-0.193
\end{array}\right], \cdots, \boldsymbol{X}(0.2)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

State Trajectory

Example (State trajectory)

State trajectory can be plotted using approximated numerical methods.

State Trajectory

Example (State trajectory)

Natural frequencies involved in the response can be removed if the initial condition equal eigen vectors.

$$
\begin{aligned}
& \frac{d}{d t} \boldsymbol{X}(t)=\boldsymbol{A} \boldsymbol{X}(t), \quad \boldsymbol{A}=\left[\begin{array}{cc}
-1 & 0 \\
-1 & -3
\end{array}\right], \quad \boldsymbol{X}_{0}=\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& \boldsymbol{X}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
e^{-t} & 0 \\
-0.5 e^{-t}+0.5 e^{-3 t} & e^{-3 t}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
a e^{-t} \\
-0.5 a e^{-t}+(0.5 a+b) e^{-3 t}
\end{array}\right] \\
& \Rightarrow x_{2}=-0.5 x_{1}+0.5 x_{1}^{3}+\frac{b}{a} x_{1}^{3} \\
& \boldsymbol{A}=\left[\begin{array}{cc}
-1 & 0 \\
-1 & -3
\end{array}\right] \Rightarrow \lambda_{1,2}=-1,-2, \quad \boldsymbol{u}_{1}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \boldsymbol{u}_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \boldsymbol{X}_{0}=\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \Rightarrow \boldsymbol{X}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
0 \\
e^{-3 t}
\end{array}\right] \Rightarrow x_{1}=0, x_{2} \in[0,1]
\end{aligned}
$$

The End

