Two-ports

Mohammad Hadi
mohammad.hadi@sharif.edu
@MohammadHadiDastgerdi

Fall 2021

Overview

(1) One-ports
(2) Two-ports
(3) Description of Two-ports
(4) Extension of Two-ports
(5) Interconnection of Two-ports
(6) Two-ports Models
(7) Natural Frequencies
(8) Calculation Techniques
(9) Multi-ports

One-ports

One-ports

Figure: NTV one-port with the characteristic equation $f(v(t), i(t), t)=0$.

Figure: LTV one-port with the characteristic equation $v(t)=v_{o c}(t)+v_{1}(t)=v_{o c}(t)+\int_{0}^{t} h(t, \tau) i(\tau) d \tau$, where $v_{o c}(t)$ is the open circuit voltage and $v_{1}(t)=\int_{0}^{t} h(t, \tau) i(\tau) d \tau$ describes the in-rest network.

One-ports

Figure: LTI one-port with the characteristic equation $V(s)=V_{o c}(s)+Z_{e q}(s) I(s)$ or $I(s)=-I_{s c}(s)+Y_{\text {eq }}(s) V(s)$, where $V_{o c}(s)$ is the open circuit voltage, $I_{s c}(s)$ is the short circuit current, $Z_{e q}(s)$ is the equivalent impedance, and $Y_{\text {eq }}(s)$ is the equivalent admittance. Clearly, $Y_{\text {eq }}(s)=Z_{\text {eq }}^{-1}(s)$ and $V_{o c}(s)=Z_{\text {eq }}(s) I_{s c}(s)$.

Figure: In-rest LTI one-port with the characteristic equation $V(s)=Z_{\text {eq }}(s) I(s)$ or $I(s)=Y_{\text {eq }}(s) V(s)$, where $Z_{e q}(s)$ is the equivalent impedance, and $Y_{\text {eq }}(s)$ is the equivalent admittance. Clearly, $Y_{e q}(s)=Z_{e q}^{-1}(s)$.

Two-ports

Two-ports

Figure: NTV two-port with the characteristic equation $\left\{\begin{array}{l}f_{1}\left(v_{1}(t), i_{1}(t), v_{2}(t), i_{2}(t), t\right)=0 \\ f_{2}\left(v_{1}(t), i_{1}(t), v_{2}(t), i_{2}(t), t\right)=0\end{array}\right.$

Figure: LTV two-port can be characterized with its open circuit voltages and in-rest network in time domain.

Two-ports

Figure: LTI two-port can be characterized with its open circuit voltages and in-rest network in time or Laplace domain.

Figure: In-rest LTI two-port can be characterized with its in-rest network in time or Laplace domain.

Four-terminal

Figure: A Four-terminal element can be characterized by three independent voltages and three independent currents. A two-port is a special four-terminal with extra constraints on its currents. Every three-terminal element can be treated as a two-port.

Description of Two-ports

Description of Two-ports

Figure: A Two-port may be described in one of the six common ways.

- Impedance (Z-parameters) description: $\left[\begin{array}{c}V_{1}(s) \\ V_{2}(s)\end{array}\right]=f_{1}\left(\begin{array}{l}h_{1}(s) \\ L_{2}(s)\end{array}\right]$)
- Admittance (Y-parameters) description: $\left[\begin{array}{l}l_{1}(s) \\ l_{2}(s)\end{array}\right]=f_{2}\left(\left[\begin{array}{l}V_{1}(s) \\ v_{2}(s)\end{array}\right]\right)$
- Hybrid (H-parameters) description: $\left[\begin{array}{c}V_{1}(s) \\ l_{2}(s)\end{array}\right]=f_{3}\left(\left[\begin{array}{l}l_{1}(s) \\ V_{2}(s)\end{array}\right]\right.$)
- Hybrid (G-parameters) description: $\left[\begin{array}{l}1_{1}(s) \\ V_{2}(s)\end{array}\right]=f_{4}\left(\left[\begin{array}{l}V_{1}(s) \\ l_{2}(s)\end{array}\right]\right.$)
- Transmittance (ABCD-parameters) description: $\left[\begin{array}{c}V_{1}(s) \\ 1_{1}(s)\end{array}\right]=f_{5}\left[\begin{array}{c}V_{2}(s) \\ -l_{2}(s)\end{array}\right]$)
- Transmittance $\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right.$-parameters) description: $\left[\begin{array}{c}V_{2}(s) \\ -l_{2}(s)\end{array}\right]=f_{6}\left[\begin{array}{c}V_{1}(s) \\ l_{1}(s) \\ \underline{\underline{\underline{2}}}\end{array}\right]$)

Impedance Description

Figure: Impedance description for two-port.

- Impedance description: $\left\{\begin{array}{l}V_{1}(s)=z_{11}(s) l_{1}(s)+z_{12}(s) l_{2}(s) \\ V_{2}(s)=z_{21}(s) l_{1}(s)+z_{22}(s) l_{2}(s)\end{array}\right.$
- Impedance matrix: $\boldsymbol{Z}(s)=\left[\begin{array}{ll}z_{11}(s) & z_{12}(s) \\ z_{21}(s) & z_{22}(s)\end{array}\right], \quad\left[\begin{array}{l}V_{1}(s) \\ V_{2}(s)\end{array}\right]=\boldsymbol{Z}(s)\left[\begin{array}{l}l_{1}(s) \\ l_{2}(s)\end{array}\right]$
- First port input impedance: $z_{11}(s)=\left.\frac{v_{1}(s)}{1_{1}(s)}\right|_{1_{2}(s)=0}$
- Second port input impedance: $z_{22}(s)=\left.\frac{V_{2}(s)}{l_{2}(s)}\right|_{1_{1}(s)=0}$
- Transfer impedance from second to first port: $z_{12}(s)=\left.\frac{v_{1}(s)}{l_{2}(s)}\right|_{1_{1}(s)=0}$
- Transfer impedance from first to second port: $z_{21}(s)=\left.\frac{v_{2}(s)}{l_{1}(s)}\right|_{1_{2}(s)=0}$

Impedance Description

Example (Impedance description)

The two-port below can be described by its impedance matrix.

$$
\left\{\begin{array}{l}
z_{11}(s)=\left.\frac{v_{1}(s)}{1_{1}(s)}\right|_{I_{2}(s)=0}=s+\frac{1}{s} \\
z_{22}(s)=\left.\frac{V_{2}(s)}{l_{2}(s)}\right|_{I_{1}(s)=0}=1+\frac{1}{s} \\
z_{12}(s)=\left.\frac{V_{1}(s)}{l_{2}(s)}\right|_{I_{1}(s)=0}=\frac{1}{s} \\
z_{21}(s)=\left.\frac{V_{2}(s)}{l_{1}(s)}\right|_{I_{2}(s)=0}=\frac{1}{s}
\end{array} \Rightarrow \boldsymbol{Z}=\left[\begin{array}{cc}
\frac{s^{2}+1}{s} & \frac{1}{s} \\
\frac{1}{s} & \frac{s+1}{s}
\end{array}\right]\right.
$$

Admittance Description

Figure: Admittance description for two-port.

- Admittance description: $\left\{\begin{array}{l}l_{1}(s)=y_{11}(s) V_{1}(s)+y_{12}(s) V_{2}(s) \\ l_{2}(s)=y_{21}(s) V_{1}(s)+y_{22}(s) V_{2}(s)\end{array}\right.$
- Admittance matrix: $\boldsymbol{Y}(s)=\left[\begin{array}{ll}y_{11}(s) & y_{12}(s) \\ y_{21}(s) & y_{22}(s)\end{array}\right]=\boldsymbol{Z}^{-1}(s), \quad\left[\begin{array}{l}I_{1}(s) \\ I_{2}(s)\end{array}\right]=\boldsymbol{Y}(s)\left[\begin{array}{l}V_{1}(s) \\ V_{2}(s)\end{array}\right]$
- First port input admittance: $y_{11}(s)=\left.\frac{l_{1}(s)}{V_{1}(s)}\right|_{V_{2}(s)=0} \neq \frac{1}{z_{11}(s)}$
- Second port input admittance: $y_{22}(s)=\left.\frac{l_{2}(s)}{V_{2}(s)}\right|_{v_{1}(s)=0} \neq \frac{1}{z_{22}(s)}$
- Transfer admittance from second to first port: $y_{12}(s)=\left.\frac{l_{1}(s)}{v_{2}(s)}\right|_{v_{1}(s)=0}$
- Transfer admittance from first to second port: $y_{21}(s)=\left.\frac{l_{2}(s)}{V_{1}(s)}\right|_{v_{2}(s)=0}$

Admittance Description

Example (Admittance description)

The two-port below can be described by its admittance matrix.

$$
\left\{\begin{array}{l}
y_{11}(s)=\left.\frac{l_{1}(s)}{V_{1}(s)}\right|_{V_{2}(s)=0}=\left[\frac{1}{s} \| 1+s\right]^{-1}=\frac{s+1}{s^{2}+s+1} \\
y_{22}(s)=\left.\frac{l_{2}(s)}{V_{2}(s)}\right|_{V_{1}(s)=0}=\left[\frac{1}{s} \| s+1\right]^{-1}=\frac{s^{2}+1}{s^{2}+s+1} \\
y_{12}(s)=\left.\frac{l_{1}(s)}{V_{2}(s)}\right|_{V_{1}(s)=0}=-\frac{s \| \frac{1}{s}}{s \| \frac{1}{s}+1} \frac{1}{s}=\frac{-1}{s^{2}+s+1} \\
y_{21}(s)=\left.\frac{l_{2}(s)}{V_{1}(s)}\right|_{V_{2}(s)=0}=-\frac{1| | \frac{1}{s}}{1| | \frac{1}{s}+s} \frac{1}{1}=\frac{-1}{s^{2}+s+1}
\end{array} \Rightarrow \boldsymbol{Y}=\left[\begin{array}{ll}
\frac{s+1}{s^{2}+s+1} & \frac{-1}{s^{2}+s+1} \\
\frac{-1}{s^{2}+s+1} & \frac{s^{2}+1}{s^{2}+s+1}
\end{array}\right]=\boldsymbol{Z}^{-1}\right.
$$

Hybrid H Description

Figure: Hybrid H description for two-port.

- Hybrid H description: $\left\{\begin{array}{l}l_{1}(s)=h_{11}(s) l_{1}(s)+h_{12}(s) V_{2}(s) \\ l_{2}(s)=h_{21}(s) l_{1}(s)+h_{22}(s) V_{2}(s)\end{array}\right.$
- Hybrid H matrix: $\boldsymbol{H}(s)=\left[\begin{array}{ll}h_{11}(s) & h_{12}(s) \\ h_{21}(s) & h_{22}(s)\end{array}\right], \quad\left[\begin{array}{l}V_{1}(s) \\ l_{2}(s)\end{array}\right]=\boldsymbol{H}(s)\left[\begin{array}{l}l_{1}(s) \\ V_{2}(s)\end{array}\right]$
- First port input impedance: $h_{11}(s)=\left.\frac{v_{1}(s)}{1(s)}\right|_{v_{2}(s)=0}=\frac{1}{y_{11}(s)}$
- Second port input admittance: $h_{22}(s)=\left.\frac{l_{2}(s)}{V_{2}(s)}\right|_{1}(s)=0=\frac{1}{z_{22}(s)}$
- Voltage gain from second to first port: $h_{12}(s)=\left.\frac{V_{1}(s)}{V_{2}(s)}\right|_{1_{1}(s)=0}$
- Current gain from first to second port: $h_{21}(s)=\left.\frac{l_{2}(s)}{1_{1}(s)}\right|_{V_{2}(s)=0}$

Hybrid H Description

Example (Hybrid H description)

The two-port below can be described by its hybrid H matrix.

$$
\left\{\begin{array}{l}
h_{11}(s)=\left.\frac{V_{1}(s)}{l_{1}(s)}\right|_{V_{2}(s)=0}=s+\frac{1}{s} \| 1=\frac{s^{2}+s+1}{s+1} \\
h_{22}(s)=\left.\frac{l_{2}(s)}{V_{2}(s)}\right|_{l_{1}(s)=0}=\left[1+\frac{1}{s}\right]^{-1}=\frac{s}{s+1} \\
h_{12}(s)=\left.\frac{V_{1}(s)}{V_{2}(s)}\right|_{l_{1}(s)=0}=\frac{\frac{1}{s}}{\frac{1}{s}+1}=\frac{1}{s+1} \\
h_{21}(s)=\left.\frac{2_{2}(s)}{l_{1}(s)}\right|_{V_{2}(s)=0}=-\frac{\frac{1}{s}}{\frac{1}{s}+1}=\frac{-1}{s+1}
\end{array} \Rightarrow \boldsymbol{H}=\left[\begin{array}{ll}
\frac{s^{2}+s+1}{s+1} & \frac{1}{s+1} \\
\frac{s+1}{s+1} & \frac{s}{s+1}
\end{array}\right]\right.
$$

Hybrid G Description

Figure: Hybrid G description for two-port.

- Hybrid G description: $\left\{\begin{array}{l}r_{1}(s)=g_{11}(s) V_{1}(s)+g_{12}(s) l_{2}(s) \\ V_{2}(s)=g_{21}(s) V_{1}(s)+g_{22}(s) l_{2}(s)\end{array}\right.$
- Hybrid G matrix: $\boldsymbol{G}(s)=\left[\begin{array}{ll}g_{11}(s) & g_{12}(s) \\ g_{21}(s) & g_{22}(s)\end{array}\right]=\boldsymbol{H}^{-1}(s), \quad\left[\begin{array}{l}h_{1}(s) \\ V_{2}(s)\end{array}\right]=\boldsymbol{G}(s)\left[\begin{array}{c}V_{1}(s) \\ l_{2}(s)\end{array}\right]$
- First port input admittance: $g_{11}(s)=\left.\frac{l_{1}(s)}{V_{1}(s)}\right|_{V_{2}(s)=0}=\frac{1}{z_{11}(s)}$
- Second port input impedance: $g_{22}(s)=\left.\frac{V_{2}(s)}{V_{2}(s)}\right|_{V_{1}(s)=0}=\frac{1}{y_{22}(s)}$
- Current gain from second to first port: $g_{12}(s)=\left.\frac{h_{1}(s)}{1_{2}(s)}\right|_{V_{1}(s)=0}$
- Voltage gain from first to second port: $g_{21}(s)=\left.\frac{V_{2}(s)}{V_{1}(s)}\right|_{2_{2}(s)=0}$

Hybrid G Description

Example (Hybrid G description)

The two-port below can be described by its hybrid G matrix.

$$
\left\{\begin{array}{l}
g_{11}(s)=\left.\frac{l_{1}(s)}{V_{1}(s)}\right|_{I_{2}(s)=0}=\left[s+\frac{1}{s}\right]^{-1}=\frac{s}{s^{2}+1} \\
g_{22}(s)=\left.\frac{V_{2}(s)}{l_{2}(s)}\right|_{V_{1}(s)=0}=s| | \frac{1}{s}+1=\frac{s^{2}+s+1}{s^{2}+1} \\
g_{12}(s)=\left.\frac{l_{1}(s)}{l_{2}(s)}\right|_{V_{1}(s)=0}=-\frac{\frac{1}{s}}{\frac{1}{s}+s}=-\frac{1}{s^{2}+1} \\
g_{21}(s)=\left.\frac{V_{2}(s)}{V_{1}(s)}\right|_{I_{2}(s)=0}=\frac{\frac{1}{s}}{\frac{1}{s}+s}=\frac{1}{s^{2}+1}
\end{array} \Rightarrow \boldsymbol{G}=\left[\begin{array}{ll}
\frac{s}{s^{2}+1} & -\frac{1}{s^{2}+1} \\
\frac{1}{s^{2}+1} & \frac{s^{2}+s+1}{s^{2}+1}
\end{array}\right]=\boldsymbol{H}^{-1}\right.
$$

Transmittance ABCD Description

Figure: Transmittance $A B C D$ description for two-port.

- Transmittance ABCD description: $\left\{\begin{array}{l}V_{1}(s)=A(s) V_{2}(s)+B(s)\left(-I_{2}(s)\right) \\ l_{1}(s)=C(s) V_{2}(s)+D(s)\left(-l_{2}(s)\right)\end{array}\right.$
- Transmittance ABCD matrix: $\boldsymbol{T}(s)=\left[\begin{array}{ll}A(s) & B(s) \\ C(s) & D(s)\end{array}\right], \quad\left[\begin{array}{l}V_{1}(s) \\ l_{1}(s)\end{array}\right]=\boldsymbol{T}(s)\left[\begin{array}{l}V_{2}(s) \\ -l_{2}(s)\end{array}\right]$
- A parameter: $A(s)=\left.\frac{V_{1}(s)}{V_{2}(s)}\right|_{L_{2}(s)=0}$
- B parameter: $B(s)=\left.\frac{v_{1}(s)}{-t_{2}(s)}\right|_{V_{2}(s)=0}$
- C parameter: $C(s)=\left.\frac{\eta_{1}(s)}{V_{2}(s)}\right|_{2(s)=0}$
- D parameter: $D(s)=\left.\frac{l_{1}(s)}{-I_{2}(s)}\right|_{V_{2}(s)=0}$

Transmittance ABCD Description

Example (Transmittance ABCD description)

The two-port below can be described by its transmittance $A B C D$ matrix.

$$
\left\{\begin{array}{l}
A(s)=\left.\frac{v_{1}(s)}{V_{2}(s)}\right|_{l_{2}(s)=0}=\left[\frac{\frac{1}{s}}{\frac{1}{s}+s}\right]^{-1}=s^{2}+1 \\
B(s)=\left.\frac{V_{1}(s)}{-I_{2}(s)}\right|_{V_{2}(s)=0}=\left[\frac{\frac{1}{s} \| 1}{\frac{1}{s}| | 1+s}\right]^{-1}=s^{2}+s+1 \\
C(s)=\left.\frac{I_{1}(s)}{V_{2}(s)}\right|_{l_{2}(s)=0}=\left[\frac{1}{s}\right]^{-1}=s \\
D(s)=\left.\frac{l_{1}(s)}{-I_{2}(s)}\right|_{V_{2}(s)=0}=\left[\frac{\frac{1}{s}}{\frac{1}{s}+1}\right]^{-1}=s+1
\end{array} \Rightarrow \boldsymbol{T}=\left[\begin{array}{cc}
s^{2}+1 & s^{2}+s+1 \\
s & s+1
\end{array}\right]\right.
$$

Transmittance $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ Description

Figure: Transmittance $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ description for two-port.

- Transmittance $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ description: $\left\{\begin{array}{l}V_{2}(s)=A^{\prime}(s) V_{1}(s)+B^{\prime}(s) l_{1}(s) \\ -I_{2}(s)=C^{\prime}(s) V_{1}(s)+D^{\prime}(s) I_{1}(s)\end{array}\right.$
- Transmittance $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ matrix:

$$
\boldsymbol{T}^{\prime}(s)=\left[\begin{array}{ll}
A^{\prime}(s) & B^{\prime}(s) \\
C^{\prime}(s) & D^{\prime}(s)
\end{array}\right]=\boldsymbol{T}^{-1}(s), \quad\left[\begin{array}{c}
V_{2}(s) \\
-I_{2}(s)
\end{array}\right]=\boldsymbol{T}^{\prime}(s)\left[\begin{array}{c}
V_{1}(s) \\
I_{1}(s)
\end{array}\right]
$$

- A^{\prime} parameter: $A^{\prime}(s)=\left.\frac{V_{2}(s)}{V_{1}(s)}\right|_{1(s)=0}$
- B^{\prime} parameter: $B^{\prime}(s)=\left.\frac{V_{2}(s)}{1_{1}(s)}\right|_{V_{1}(s)=0}$
- C^{\prime} parameter: $C^{\prime}(s)=\left.\frac{-t_{2}(s)}{V_{1}(s)}\right|_{1_{1}(s)=0}$
- D^{\prime} parameter: $D^{\prime}(s)=\left.\frac{-l_{2}(s)}{l_{1}(s)}\right|_{V_{1}(s)=0}$

Transmittance $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ Description

Example (Transmittance $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ description)

The two-port below can be described by its transmittance $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ matrix.

$$
\left\{\begin{array}{l}
A^{\prime}(s)=\left.\frac{V_{2}(s)}{V_{1}(s)}\right|_{l_{1}(s)=0}=\left[\frac{\frac{1}{s}}{\frac{1}{s}+1}\right]^{-1}=s+1 \\
B^{\prime}(s)=\left.\frac{V_{2}(s)}{l_{1}(s)}\right|_{V_{1}(s)=0}=-\left[\frac{\frac{1}{s} \| s}{\frac{1}{s} \| s+1} \frac{1}{s}\right]^{-1}=-s^{2}-s-1 \\
C^{\prime}(s)=\left.\frac{-I_{2}(s)}{V_{1}(s)}\right|_{I_{1}(s)=0}=-\left[\frac{1}{s}\right]^{-1}=s \\
D^{\prime}(s)=\left.\frac{-I_{2}(s)}{l_{1}(s)}\right|_{V_{1}(s)=0}=\left[\frac{\frac{1}{s}}{\frac{1}{s}+s}\right]^{-1}=s+1
\end{array} \Rightarrow \boldsymbol{T}^{\prime}=\left[\begin{array}{cc}
s+1 & -s^{2}-s-1 \\
-s & s^{2}+1
\end{array}\right]=\boldsymbol{T}^{-1}\right.
$$

Reciprocal Two-ports

Figure: Reciprocal two-port.

- Impedance (Z-parameters) description: $z_{12}(s)=z_{21}(s)$
- Admittance (Y-parameters) description: $y_{12}(s)=y_{21}(s)$
- Hybrid (H-parameters) description: $h_{12}(s)=-h_{21}(s)$
- Hybrid (G-parameters) description: $g_{12}(s)=-g_{21}(s)$
- Transmittance (ABCD-parameters) description: $\operatorname{det}[\boldsymbol{T}]=1$
- Transmittance ($A^{\prime} B^{\prime} C^{\prime} D^{\prime}$-parameters) description: $\operatorname{det}\left[\boldsymbol{T}^{\prime}\right]=1$

Symmetric Two-ports

Figure: Symmetric two-port.

- Impedance (Z-parameters) description: $z_{12}(s)=z_{21}(s), \quad z_{11}(s)=z_{22}(s)$
- Admittance (Y-parameters) description: $y_{12}(s)=y_{21}(s), \quad y_{11}(s)=y_{22}(s)$
- Hybrid (H-parameters) description: $h_{12}(s)=-h_{21}(s), \quad \operatorname{det}[\boldsymbol{H}]=1$
- Hybrid (G-parameters) description: $g_{12}(s)=-g_{21}(s), \quad \operatorname{det}[\boldsymbol{G}]=1$
- Transmittance ($A B C D$-parameters) $\operatorname{description:~} \operatorname{det}[\boldsymbol{T}]=1, \quad A=D$
- Transmittance $\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right.$-parameters) description: $\operatorname{det}\left[\boldsymbol{T}^{\prime}\right]=1, \quad A^{\prime}=D^{\prime}$

Interrelation of Descriptions

	Z	Y	H	G	T	T^{\prime}
Z	$\left[\begin{array}{ll}z_{11} & z_{12} \\ z_{21} & z_{22}\end{array}\right]$	$\left[\begin{array}{cc}\frac{y_{22}}{\Delta y_{Y}} & \frac{-y_{12}}{\Delta Y} \\ \frac{-y_{21}}{\Delta \Delta_{Y}} & \frac{y_{11}}{\Delta y_{Y}}\end{array}\right]$	$\left[\begin{array}{cc}\frac{\Delta_{H}}{h_{22}} & \frac{h_{12}}{h_{22}} \\ \frac{-h_{21}}{h_{22}} & \frac{1}{h_{22}}\end{array}\right]$	$\left[\begin{array}{ll}\frac{1}{g_{11}} & \frac{-g_{12}}{g_{11}} \\ \frac{g_{21}}{g_{11}} & \frac{\Delta G}{g_{11}}\end{array}\right]$	$\left[\begin{array}{cc}\frac{A}{C} & \frac{\Delta_{T}}{C} \\ \frac{1}{C} & \frac{D}{C}\end{array}\right]$	$\left[\begin{array}{cc}\frac{D^{\prime}}{C^{\prime}} & \frac{1}{C^{\prime}} \\ \frac{\Delta^{\prime}}{C^{\prime}} & \frac{A^{\prime}}{C^{\prime}}\end{array}\right]$
\boldsymbol{Y}	$\left[\begin{array}{cc}\frac{z_{22}}{\Delta_{Z}} & \frac{-z_{12}}{\Delta_{Z}} \\ \frac{-z_{21}}{\Delta_{Z}} & z_{11} \\ \Delta_{Z}\end{array}\right]$	$\left[\begin{array}{ll}y_{11} & y_{12} \\ y_{21} & y_{22}\end{array}\right]$	$\left[\begin{array}{cc}\frac{1}{h_{11}} & \frac{-h_{12}}{h_{11}} \\ h_{21} & \Delta_{H} \\ h_{11} & \frac{h_{11}}{l}\end{array}\right]$	$\left[\begin{array}{cc}\frac{\Delta}{G} \\ g_{22} & \frac{g_{12}}{g_{22}} \\ \frac{-g_{21}}{g_{22}} & \frac{1}{g_{22}}\end{array}\right]$	$\left[\begin{array}{cc}\frac{D}{B} & \frac{-\Delta_{T}}{B} \\ \frac{-1}{B} & \frac{A}{B}\end{array}\right]$	$\left[\begin{array}{cc}\frac{A^{\prime}}{B^{\prime}} & \frac{-1}{B^{\prime}} \\ -\Delta_{T}^{\prime} & \frac{D^{\prime}}{B^{\prime}}\end{array}\right]$
H	$\left[\begin{array}{cc}\frac{\Delta_{Z}}{z_{22}} & \frac{z_{12}}{z_{22}} \\ \frac{-z_{21}}{z_{22}} & \frac{1}{z_{22}}\end{array}\right]$	$\left[\begin{array}{ll}\frac{1}{y_{11}} & \frac{-y_{12}}{y_{11}} \\ \frac{y_{21}}{y_{11}} & \frac{\Delta y}{y_{11}}\end{array}\right]$	$\left[\begin{array}{ll}h_{11} & h_{12} \\ h_{21} & h_{22}\end{array}\right]$	$\left[\begin{array}{cc}\frac{g_{22}}{\Delta_{G}} & \frac{-g_{12}}{\Delta_{G}} \\ \frac{-g_{21}}{\Delta_{G}} & \frac{g_{11}}{\Delta_{G}}\end{array}\right]$	$\left[\begin{array}{cc}\frac{B}{D} & \frac{\Delta_{T}}{D} \\ \frac{-1}{D} & \frac{C}{D}\end{array}\right]$	$\left[\begin{array}{cc}\frac{B^{\prime}}{A^{\prime}} & \frac{1}{A^{\prime}} \\ -\Delta_{T^{\prime}} & \\ \hline A^{\prime} & \\ A^{\prime}\end{array}\right]$
G	$\left[\begin{array}{cc}\frac{1}{z_{11}} & \frac{-z_{12}}{z_{11}} \\ \frac{z_{21}}{z_{11}} & \frac{\Delta}{z_{11}}\end{array}\right]$	$\left[\begin{array}{cc}\frac{\Delta}{Y} & \frac{y_{12}}{y_{22}} \\ \frac{-y_{21}}{y_{22}} & \frac{1}{y_{22}}\end{array}\right.$	$\left[\begin{array}{cc}h_{22} & \frac{-h_{12}}{\Delta_{H}} \\ \Delta_{H} \\ -h_{21} & h_{11} \\ \hline \Delta_{H} & \frac{\Delta_{H}}{}\end{array}\right]$	$\left[\begin{array}{ll}g_{11} & g_{12} \\ g_{21} & g_{22}\end{array}\right]$	$\left[\begin{array}{cc}\frac{C}{A} & \frac{-\Delta_{T}}{A} \\ \frac{1}{A} & \frac{B}{A}\end{array}\right]$	$\left[\begin{array}{cc}\frac{C^{\prime}}{D^{\prime}} & \frac{-1}{D^{\prime}} \\ \frac{\Delta_{T^{\prime}}}{D^{\prime}} & \frac{B^{\prime}}{D^{\prime}}\end{array}\right]$
T	$\left[\begin{array}{ll}\frac{z_{11}}{z_{21}} & \frac{\Delta_{z}}{z_{21}} \\ \frac{1}{z_{21}} & \frac{z_{22}}{z_{21}}\end{array}\right]$	$\left[\begin{array}{cc}\frac{-y_{22}}{y_{21}} & \frac{-1}{y_{21}} \\ \frac{-\Delta_{Y}}{y_{21}} & \frac{-y_{11}}{y_{21}}\end{array}\right]$	$\left[\begin{array}{cc}\frac{-\Delta_{H}}{h_{21}} & \frac{-h_{11}}{h_{21}} \\ \frac{-h_{22}}{h_{21}} & \frac{-1}{h_{21}}\end{array}\right]$	$\left[\begin{array}{ll}\frac{1}{g_{21}} & \frac{g_{22}}{g_{21}} \\ \frac{g_{11}}{g_{21}} & \frac{\Delta_{G}}{g_{21}}\end{array}\right]$	$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$	$\left[\begin{array}{cc}\frac{D^{\prime}}{} \Delta^{T^{\prime}} & \frac{B^{\prime}}{\Delta_{T^{\prime}}} \\ \frac{C^{\prime}}{\Delta_{T^{\prime}}} & \frac{A^{\prime}}{\Delta_{T^{\prime}}}\end{array}\right]$
T^{\prime}	$\left[\begin{array}{ll}\frac{z_{22}}{z_{12}} & \frac{\Delta_{z}}{z_{12}} \\ \frac{1}{z_{12}} & \frac{z_{11}}{z_{12}}\end{array}\right]$	$\left[\begin{array}{cc}\frac{-y_{11}}{y_{12}} & \frac{-1}{y_{12}} \\ \frac{-\Delta_{Y}}{y_{12}} & \frac{-y_{22}}{y_{12}}\end{array}\right]$	$\left[\begin{array}{ll}\frac{1}{h_{12}} & \frac{h_{11}}{h_{12}} \\ \frac{h_{22}}{h_{12}} & \frac{\Delta_{H}}{h_{12}}\end{array}\right]$	$\left[\begin{array}{cc}\frac{-\Delta_{G}}{g_{12}} & \frac{-g_{22}}{g_{12}} \\ \frac{-g_{11}}{g_{12}} & \frac{-1}{g_{12}}\end{array}\right]$	$\left[\begin{array}{cc}\frac{D}{\Delta_{T}} & \frac{B}{\Delta_{T}} \\ \frac{C}{\Delta_{T}} & \frac{A}{\Delta_{T}}\end{array}\right]$	$\left[\begin{array}{ll}A^{\prime} & B^{\prime} \\ C^{\prime} & D^{\prime}\end{array}\right]$

Table: Interrelation of different descriptions of two-ports. Four elements and one determinant of each description are used in interrelations. If an element or determinant of a description is zero, a corresponding description does not exist.

Description of Two-ports

Example (Description of a two-port)

The two-port below can be described using different methods.

$$
\begin{aligned}
& \left\{\begin{array}{l}
V_{1}=5 s I_{1}+4 I_{2}+\frac{10}{s}\left(I_{1}+I_{2}\right) \\
V_{2}=10 I_{2}+4 I_{2}+\frac{10}{s}\left(I_{1}+I_{2}\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
V_{1}=\frac{5 s^{2}+10}{s} I_{1}+\frac{4 s+10}{s} I_{2} \\
V_{2}=\frac{10}{s} l_{1}+\frac{14 s+10}{s} I_{2}
\end{array} \Rightarrow \boldsymbol{Z}=\boldsymbol{Y}^{-1}=\left[\begin{array}{cc}
\frac{5 s^{2}+10}{s} & \frac{4 s+10}{s} \\
\frac{10}{s} & \frac{14 s^{s}+10}{s}
\end{array}\right]\right. \\
& \left\{\begin{array}{l}
V_{1}=\frac{5 s^{2}+10}{s} I_{1}+\frac{4 s+10}{s} I_{2} \\
I_{2}=\frac{-10}{14 s+10} I_{1}+\frac{s}{14 s+10} V_{2}
\end{array} \Rightarrow \boldsymbol{H}=\boldsymbol{G}^{-1}=\left[\begin{array}{cc}
\frac{70 s^{2}+50 s+100}{14 s+10} & \frac{4 s+10}{14 s+10} \\
\frac{s}{14 s+10} & \frac{s}{14 s+10}
\end{array}\right]\right. \\
& \left\{\begin{array}{l}
V_{1}=\frac{5 s^{2}+10}{s} I_{1}+\frac{4 s+10}{s} I_{2} \\
I_{1}=\frac{s}{10} V_{2}-\frac{14 s+10}{10} I_{2}
\end{array} \Rightarrow \boldsymbol{T}=\boldsymbol{T}^{\prime-1}=\left[\begin{array}{cc}
\frac{5 s^{2}+10}{10} & \frac{70 s^{2}+50 s+100}{10} \\
\frac{s}{10} & \frac{14 s+10}{10}
\end{array}\right]\right.
\end{aligned}
$$

Description of Two-ports

Example (Description of a two-port)

The two-port below has three different descriptions.

$$
\begin{aligned}
& \left\{\begin{array}{l}
I_{1}+I_{2}+I_{1}=0 \Rightarrow I_{2}=-2 I_{1} \\
V_{2}=\frac{1}{s}\left(I_{2}-I_{1}\right)=\frac{-3}{s} I_{1}
\end{array}\right. \\
& \boldsymbol{T}^{\prime}=\left[\begin{array}{ll}
0 & \frac{-3}{s} \\
0 & 2
\end{array}\right] \\
& \boldsymbol{Y}=\left[\begin{array}{ll}
0 & \frac{-s}{3} \\
0 & \frac{\frac{2}{3}}{3}
\end{array}\right] \\
& \boldsymbol{G}=\left[\begin{array}{ll}
0 & \frac{-1}{3} \\
0 & \frac{3}{2 s}
\end{array}\right]
\end{aligned}
$$

Description of Two-ports

Example (Dependent sources as two-ports)

Dependent sources can be modeled by two-ports.

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ I _ { 1 } = 0 } \\
{ I _ { 2 } = g _ { m } V _ { 1 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\boldsymbol{Y}=\left[\begin{array}{cc}
0 & 0 \\
g_{m} & 0
\end{array}\right] \\
\boldsymbol{T}=\left[\begin{array}{cc}
0 & \frac{-1}{g_{m}} \\
0 & 0
\end{array}\right]
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ V _ { 1 } = 0 } \\
{ I _ { 2 } = \alpha I _ { 1 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\boldsymbol{H}=\left[\begin{array}{cc}
0 & 0 \\
\alpha & 0
\end{array}\right] \\
\boldsymbol{T}=\left[\begin{array}{cc}
0 & 0 \\
0 & \frac{-1}{\alpha}
\end{array}\right]
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ l _ { 1 } = 0 } \\
{ V _ { 2 } = \mu V _ { 1 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\boldsymbol{G}=\left[\begin{array}{cc}
0 & 0 \\
\mu & 0
\end{array}\right] \\
\boldsymbol{T}=\left[\begin{array}{cc}
\frac{1}{\mu} & 0 \\
0 & 0
\end{array}\right]
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ V _ { 1 } = 0 } \\
{ V _ { 2 } = r _ { m } l _ { 1 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\boldsymbol{Z}=\left[\begin{array}{cc}
0 & 0 \\
r_{m} & 0
\end{array}\right] \\
\boldsymbol{T}=\left[\begin{array}{cc}
0 & 0 \\
\frac{-1}{r_{m}} & 0
\end{array}\right]
\end{array}\right.\right.
\end{aligned}
$$

Description of Two-ports

Example (Two-ports with single description)

A two-port may only have one description.

$$
\begin{aligned}
& \boldsymbol{Z}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& \boldsymbol{Y}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& \boldsymbol{H}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& \boldsymbol{G}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Description of Two-ports

Example (Some simple two-ports)

Some simple two-ports are shown below.

$$
\begin{aligned}
& \boldsymbol{Y}=\left[\begin{array}{cc}
Y_{s} & -Y_{s} \\
-Y_{s} & Y_{s}
\end{array}\right] \\
& \boldsymbol{Z}=\left[\begin{array}{ll}
Z_{p} & Z_{p} \\
Z_{p} & Z_{p}
\end{array}\right] \\
& \boldsymbol{Z}=\left[\begin{array}{cc}
Z_{1} & 0 \\
0 & Z_{2}
\end{array}\right] \\
& \boldsymbol{T}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Description of Two-ports

Example (Well-known two-ports)

Some well-known two-ports are shown below.

$$
\boldsymbol{Z}=\left[\begin{array}{ll}
L_{1} s & M s \\
M s & L_{2} s
\end{array}\right]
$$

$\boldsymbol{T}=\left[\begin{array}{cc}\frac{n_{1}}{n_{2}} & 0 \\ 0 & \frac{n_{2}}{n_{1}}\end{array}\right]$

$$
\boldsymbol{Z}=\left[\begin{array}{cc}
0 & \alpha \\
-\alpha & 0
\end{array}\right]
$$

Extension of Two-ports

Extension of Two-ports

Figure: Adding series impedances in the first and second ports of a two-port results in an extended two-port with the impedance matrix $\boldsymbol{Z}=\left[\begin{array}{cc}z_{11}(s)+Z_{1}(s) & z_{12}(s) \\ z_{21}(s) & z_{22}(s)+Z_{2}(s)\end{array}\right]$.

Figure: Adding parallel admittances in the first and second ports of a two-port results in an extended two-port with the admittance matrix $\boldsymbol{Y}=\left[\begin{array}{cc}y_{11}(s)+Y_{1}(s) & y_{12}(s) \\ y_{21}(s) & y_{22}(s)+Y_{2}(s)\end{array}\right]$.

Extension of Two-ports

Figure: Adding series impedance in the first port and parallel admittance in the second port of a two-port results in an extended two-port with the hybrid H matrix $\boldsymbol{H}=\left[\begin{array}{cc}h_{11}(s)+Z_{1}(s) & h_{12}(s) \\ h_{21}(s) & h_{22}(s)+Y_{2}(s)\end{array}\right]$.

Figure: Adding parallel admittance in the first port and series impedance in the second port of a two-port results in an extended two-port with the hybrid G matrix $G=\left[\begin{array}{cc}g_{11}(s)+Y_{1}(s) & g_{12}(s) \\ g_{21}(s) & g_{22}(s)+Z_{2}(s)\end{array}\right]$.

Extension of Two-ports

Figure: Connecting the first and second ports of a two-port using an added admittance and a short circuit leads to an extended two-port with the admittance matrix $\boldsymbol{Y}=\left[\begin{array}{ll}y_{11}(s)+Y_{e}(s) & y_{12}(s)-Y_{e}(s) \\ y_{21}(s)-Y_{e}(s) & y_{22}(s)+Y_{e}(s)\end{array}\right]$.

$$
\begin{aligned}
& I_{1}=Y_{e}\left(V_{1}-V_{2}\right)+y_{11} V_{1}+Y_{12} V_{2} \\
& I_{2}=Y_{e}\left(V_{2}-V_{1}\right)+y_{21} V_{1}+Y_{22} V_{2}
\end{aligned}
$$

Extension of Two-ports

Example (Π and T two-ports)

Π and T networks can be considered as two-ports.

$$
\begin{aligned}
& \boldsymbol{Z}_{0}=\left[\begin{array}{ll}
Z_{p} & Z_{p} \\
Z_{p} & Z_{p}
\end{array}\right] \Rightarrow \boldsymbol{Z}=\left[\begin{array}{cc}
Z_{p}+Z_{1} & Z_{p} \\
Z_{p} & Z_{p}+Z_{2}
\end{array}\right] \\
& \boldsymbol{Y}_{0}=\left[\begin{array}{cc}
Y_{s} & -Y_{s} \\
-Y_{s} & Y_{s}
\end{array}\right] \Rightarrow \boldsymbol{Y}=\left[\begin{array}{cc}
Y_{s}+Y_{1} & -Y_{s} \\
-Y_{s} & Y_{s}+Y_{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{array}{c:c:|c:c}
I_{1}(s)_{1} & - & - & I_{2}(s) \\
\hline+ & Z_{1} & Z_{2} & + \\
V_{1}(s) & Z_{p} & & \\
& & & V_{2}(s) \\
\hline & & & \\
\hline & & - & \\
\hline
\end{array}
$$

Extension of Two-ports

Example (Two-port current condition)

Two-port current condition should be held while extending the two-port.

$$
\boldsymbol{Z}_{0}=\left[\begin{array}{cc}
1+0.5+0.5 & 1 \\
1 & 1
\end{array}\right] \Rightarrow \boldsymbol{Y}_{0}=\boldsymbol{Z}_{0}^{-1}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right]
$$

$$
\boldsymbol{Z}=\left[\begin{array}{cc}
1+0.5+\frac{1}{3} & 1 \\
1 & 1
\end{array}\right] \Rightarrow \boldsymbol{Y}=\boldsymbol{Z}^{-1}\left[\begin{array}{cc}
\frac{6}{5} & -\frac{6}{5} \\
-\frac{6}{5} & \frac{11^{5}}{5}
\end{array}\right] \neq\left[\begin{array}{cc}
1+1 & -1-1 \\
-1-1 & 2+1
\end{array}\right]
$$

Extension of Two-ports

Example (Two-port current condition)

Two-port current condition should be held while extending the two-port.

$$
\begin{aligned}
& \boldsymbol{Z}_{0}=\left[\begin{array}{cc}
1+1 & 1 \\
1 & 1
\end{array}\right] \Rightarrow \boldsymbol{Y}_{0}=\boldsymbol{Z}_{0}^{-1}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right] \\
& \boldsymbol{Z}=\left[\begin{array}{cc}
1+0.5 & 1 \\
1 & 1
\end{array}\right] \Rightarrow \boldsymbol{Y}=\boldsymbol{Z}^{-1}\left[\begin{array}{cc}
2 & -2 \\
-2 & 3
\end{array}\right]=\left[\begin{array}{cc}
1+1 & -1-1 \\
-1-1 & 2+1
\end{array}\right]
\end{aligned}
$$

Extension of Two-ports

Figure: A terminated two-port with the open circuit voltage $V_{o c}(s)=\left.V_{2}(s)\right|_{i_{2}=0}=\frac{z_{21}(s)}{z_{11}(s)+Z_{s}(s)} V_{s}(s)$.

Z	\boldsymbol{Y}	H	G	T	T^{\prime}
$z_{i n} z_{11}-\frac{z_{12} z_{21}}{z_{22}+Z_{L}}$	$\left[y_{11}-\frac{y_{12} y_{21}}{y_{22}+y_{L}}\right]^{-1}$	$h_{11}-\frac{h_{12} h_{21}}{h_{22}+Y_{L}}$	$\left[g_{11}-\frac{g_{12} g_{21}}{g_{22}+Z_{L}}\right]^{-1}$	$\frac{A Z_{L}+B}{C Z_{L}+D}$	$\frac{B^{\prime}+D^{\prime} Z_{L}}{A^{\prime}+C^{\prime} Z_{L}}$
$z_{\text {eq }} z_{22}-\frac{z_{12} z_{21}}{z_{11}+z_{s}}$	$\left[y_{22}-\frac{y_{12} y_{21}}{y_{11}+y_{s}}\right]^{-1}$	$\left[h_{22}-\frac{h_{12} h_{21}}{h_{11}+Z_{s}}\right]^{-1}$	$g_{22}-\frac{g_{12} g_{21}}{g_{11}+Y_{s}}$	$\frac{B+D Z_{s}}{A+C Z_{s}}$	$\frac{A^{\prime} Z_{s}+B^{\prime}}{C^{\prime} Z_{s}+D^{\prime}}$

Table: Input impedanceand equivalent impedance for a terminated two-port.

Extension of Two-ports

Example (Terminated two-port)

The input impedance for a terminated two-port can be found using two-port descriptions.

$$
Z_{2}=\left[\begin{array}{cc}
0 & \alpha \\
-\alpha & 0
\end{array}\right] \Rightarrow \boldsymbol{T}_{2}=\left[\begin{array}{cc}
0 & -\alpha \\
-\frac{1}{\alpha} & 0
\end{array}\right] \Rightarrow Z_{\text {in2 } 2}(s)=\frac{A Z_{L}+B}{C Z_{L}+D}=\frac{-\alpha}{-\frac{1}{\alpha} Z_{L}}=\frac{\alpha^{2}}{Z_{L}(s)} \Rightarrow Z_{\text {in1 }}(s)=\left(\frac{n_{1}}{n_{2}}\right)^{2} Z_{\text {in2 }}(s)
$$

$$
\boldsymbol{T}_{1}=\left[\begin{array}{cc}
\frac{n_{1}}{n_{2}} & 0 \\
0 & \frac{n_{1}}{n_{2}}
\end{array}\right] \Rightarrow \boldsymbol{T}=\boldsymbol{T}_{1} \boldsymbol{T}_{2}=\left[\begin{array}{cc}
0 & -\alpha \frac{n_{1}}{n_{2}} \\
-\frac{1}{\alpha} \frac{n_{1}}{n_{2}} & 0
\end{array}\right] \Rightarrow Z_{i n 1}(s)=\frac{A Z_{L}+B}{C Z_{L}+D}=\frac{-\alpha \frac{n_{1}}{n_{2}}}{-\frac{1}{\alpha} \frac{n_{1}}{n_{2}} Z_{L}}=\left(\frac{n_{1}}{n_{2}}\right)^{2} \frac{\alpha^{2}}{Z_{L}(s)}
$$

Interconnection of Two-ports

Interconnection of Two-ports

Figure: Various interconnections of two-ports including series-series, parallel-parallel, series-parallel, parallelseries, and cascade connections. Brune test provides a sufficient condition for possibility of each connection. For reciprocal two-ports, the Brune test specifies a sufficient and necessary condition.

Series-Series Connection

Figure: The overall impedance matrix in series-series connection is $\boldsymbol{Z}=\boldsymbol{Z}_{a}+\boldsymbol{Z}_{b}$.

Figure: The Brune test configuration for checking the validity of the current condition for the overall series-series connected two-port.

Parallel-Parallel Connection

Figure: The overall admittance matrix in parallel-parallel connection is $\boldsymbol{Y}=\boldsymbol{Y}_{a}+\boldsymbol{Y}_{b}$.

Figure: The Brune test configuration for checking the validity of the current condition for the overall parallelparallel connected two-port.

Series-Parallel Connection

Figure: The overall hybrid H matrix in series-parallel connection is $\boldsymbol{H}=\boldsymbol{H}_{a}+\boldsymbol{H}_{b}$.

Figure: The Brune test configuration for checking the validity of the current condition for the overall seriesparallel connected two-port.

Parallel-Series Connection

Figure: The overall hybrid G matrix in parallel-series connection is $\boldsymbol{G}=\boldsymbol{G}_{a}+\boldsymbol{G}_{b}$.

Figure: The Brune test configuration for checking the validity of the current condition for the overall parallelseries connected two-port.

Cascade Connection

Figure: The overall transmittance ABCD matrix in cascade connection is $\boldsymbol{T}=\boldsymbol{T}_{a} \boldsymbol{T}_{b}$.

Figure: The overall transmittance $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ matrix in cascade connection is $\boldsymbol{T}^{\prime}=\boldsymbol{T}^{\prime}{ }_{b} \boldsymbol{T}^{\prime}{ }_{a}$.

Interconnection of Two-ports

Example (Series-series connection)

Interconnection rules can be used to find a suitable description for a complex two-port.

$$
\boldsymbol{Z}_{a}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right], \quad \boldsymbol{Z}_{b}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \Rightarrow \boldsymbol{Z}=\boldsymbol{Z}_{a}+\boldsymbol{Z}_{b}=\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right]
$$

Interconnection of Two-ports

Example (Current condition violation)

Current condition may be violated while interconnecting two-ports.

$$
\boldsymbol{Z}_{a}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right], \quad \boldsymbol{Z}_{b}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right], \quad \boldsymbol{Z}=\left[\begin{array}{ll}
3.5 & 2.5 \\
2.5 & 3.5
\end{array}\right] \neq \boldsymbol{Z}_{a}+\boldsymbol{Z}_{b}=\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right]
$$

Two-ports Models

Two-ports Models

Figure: An equivalent circuit of a two-port in terms of the open circuit impedance parameters.

Figure: T equivalent circuit of a two-port in terms of the open circuit impedance parameters. Note that the terminals 1^{\prime} and 2^{\prime} have the same voltage. If the tow-port is reciprocal, the dependent current source vanishes.

Two-ports Models

Figure: An equivalent circuit of a two-port in terms of the short circuit admittance parameters.

Figure: \sqcap equivalent circuit of a two-port in terms of the short circuit admittance parameters. Note that the terminals 1^{\prime} and 2^{\prime} have the same voltage. If the tow-port is reciprocal, the dependent current source vanishes.

Two-ports Models

Figure: An equivalent circuit of a two-port in terms of the H parameters.

Two-ports Models

Example (BJT transistor)

A BJT transistor can be modeled using its small-signal hybrid H parameters.

$$
\left\{\begin{array}{l}
h_{i e}=r_{\pi}=h_{11} \approx 1.0-10 \mathrm{k} \Omega \\
h_{r e}=h_{12} \approx 0.5-8.0 \times 10^{-4} \\
h_{f e}=\beta=h_{21} \approx 100-400 \\
h_{o e}=h_{22} \approx .0-40 \mu \mho
\end{array}\right.
$$

Natural Frequencies

Natural Frequencies

Figure: The poles of the impedance matrix elements are the natural frequencies of the circuit obtained by making the first and second ports open circuit.

Figure: The poles of the admittance matrix elements are the natural frequencies of the circuit obtained by making the first and second ports short circuit.

Natural Frequencies

Figure: The poles of the hybrid H matrix elements are the natural frequencies of the circuit obtained by making the first port open circuit and the second port short circuit.

Figure: The poles of the hybrid G matrix elements are the natural frequencies of the circuit obtained by making the first port short circuit and the second port open circuit.

Natural Frequencies

Example (Natural frequencies)

Natural frequencies can be found using different two-port descriptions.

$$
\begin{aligned}
& \boldsymbol{Z}=\left[\begin{array}{cc}
\frac{s^{2}+1}{\boldsymbol{s}} & \frac{1}{s} \\
\frac{\frac{s}{s}}{s} & \frac{s+1}{s}
\end{array}\right], \quad \boldsymbol{Y}=\left[\begin{array}{cc}
\frac{s+1}{s^{2}+s+1} & \frac{-1}{s^{2}+5+1} \\
\frac{-1}{s^{2}+s+1} & \frac{s^{s+1}}{s^{2}+s+1}
\end{array}\right], \quad \boldsymbol{H}=\left[\begin{array}{cc}
\frac{s^{2}+s+1}{s+1} & \frac{1}{s+1} \\
\frac{-1}{s+1} & \frac{s}{s+1}
\end{array}\right], \quad \boldsymbol{G}=\left[\begin{array}{cc}
\frac{s}{s^{2}+1} & -\frac{1}{s^{2}+1} \\
\frac{1}{s^{2}+1} & \frac{s^{2}+s+1}{s^{2}+1}
\end{array}\right] \\
& s_{1}=0, s_{1,2}=-\frac{1}{2} \pm j \frac{\sqrt{3}}{2},
\end{aligned}
$$

Calculation Techniques

Calculation Techniques

- Element definitions
- Circuit analysis
- Two-port extension
- Two-port interconnection
- Description interrelation

Calculation Techniques

Example (Element definition technique)

Two-port description may be found using its element definitions.

$$
\left\{\begin{array}{l}
y_{11}(j \omega)=\left.\frac{l_{1}(j \omega)}{V_{1}(j \omega)}\right|_{V_{2}(j \omega)=0}=\frac{3+6 j}{5} \\
y_{22}(j \omega)=\left.\frac{l_{2}(j \omega)}{V_{2}(j \omega)}\right|_{V_{1}(j \omega)=0}=\frac{3+6 j}{5} \\
y_{12}(j \omega)=\left.\frac{l_{1}(j \omega)}{V_{2}(j \omega)}\right|_{V_{1}(j \omega)=0}=\frac{-2-4 j}{5} \\
y_{21}(j \omega)=\left.\frac{l_{2}(j \omega)}{V_{1}(j \omega)}\right|_{V_{2}(j \omega)=0}=\frac{-2-4 j}{5}
\end{array} \quad \Rightarrow \boldsymbol{Y}=\left[\begin{array}{cc}
\frac{3+6 j}{5} & \frac{-2-4 j}{5} \\
\frac{-2-4 j}{5} & \frac{3+6 j}{5}
\end{array}\right]\right.
$$

Calculation Techniques

Example (Circuit analysis technique)

Two-port description may be found using circuit analysis.

$$
\left[\begin{array}{ccc}
1-j & j & -1 \\
j & 1-j & -1 \\
-1 & -1 & j+2
\end{array}\right]\left[\begin{array}{c}
I_{1} \\
-I_{2} \\
I_{3}
\end{array}\right]=\left[\begin{array}{c}
V_{1} \\
-V_{2} \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{c}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{3+6 j}{5} & \frac{-2-4 j}{5} \\
\frac{-2-4 j}{5} & \frac{3+6 j}{5}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right] \Rightarrow \boldsymbol{Y}=\left[\begin{array}{cc}
\frac{3+6 j}{5} & \frac{-2-4 j}{5} \\
\frac{-2-4 j}{5} & \frac{3+6 j}{5}
\end{array}\right]
$$

Calculation Techniques

Example (Two-port extension)

Two-port description may be found by extending a simple two-port.

$$
\begin{aligned}
& \boldsymbol{Z}_{1}=\left[\begin{array}{cc}
-j & -j \\
-j & -j
\end{array}\right] \Rightarrow \boldsymbol{Z}_{2}=\left[\begin{array}{cc}
1-j & -j \\
-j & 1-j
\end{array}\right] \Rightarrow \boldsymbol{Y}_{2}=\left[\begin{array}{cc}
\frac{3+j}{5} & \frac{-2+j}{5} \\
\frac{-2+j}{5} & \frac{3+j}{5}
\end{array}\right] \\
& \boldsymbol{Y}=\left[\begin{array}{cc}
\frac{3+j}{5}+j & \frac{-2+j}{5}-j \\
\frac{-2+j}{5}-j & \frac{3+j}{5}+j
\end{array}\right]=\left[\begin{array}{cc}
\frac{3+6 j}{5} & \frac{-2-4 j}{5} \\
\frac{-2-4 j}{5} & \frac{3+6 j}{5}
\end{array}\right]
\end{aligned}
$$

Calculation Techniques

Example (Two-port interconnection)

Two-port description may be found by interconnecting several simple two-ports.

$$
\begin{aligned}
& \boldsymbol{Z}_{1}=\left[\begin{array}{cc}
-j & -j \\
-j & -j
\end{array}\right] \Rightarrow \boldsymbol{Z}_{a}=\left[\begin{array}{cc}
1-j & -j \\
-j & 1-j
\end{array}\right] \Rightarrow \boldsymbol{Y}_{\mathrm{a}}=\left[\begin{array}{cc}
\frac{3+j}{\frac{2}{2}+j} & \frac{-2+j}{\frac{3}{5}} \\
\frac{3+j}{5}
\end{array}\right], \quad \boldsymbol{Y}_{b}=\left[\begin{array}{cc}
j & -j \\
-j & j
\end{array}\right] \\
& \boldsymbol{Y}=\boldsymbol{Y}_{a}+\boldsymbol{Y}_{b}=\left[\begin{array}{cc}
\frac{3+6 j}{5} & \frac{-2-4 j}{5-4 j} \\
\frac{2-4}{5} & \frac{3+5 j}{5}
\end{array}\right]
\end{aligned}
$$

Calculation Techniques

Example (Description interrelation)

Two-port description may be found using description interrelations from another available description.

$$
\boldsymbol{Y}=\left[\begin{array}{cc}
\frac{3+6 j}{5} & \frac{-2-4 j}{5} \\
\frac{-2^{2}-4 j}{5} & \frac{3+6 j}{5}
\end{array}\right] \Rightarrow \boldsymbol{Z}=\boldsymbol{Y}^{-1}=\left[\begin{array}{cc}
\frac{3-6 j}{5} & \frac{-2-4 j}{5} \\
\frac{-2-4 j}{5} & \frac{3-6 j}{5}
\end{array}\right]
$$

Multi-ports

Multi-ports

Figure: Three-winding coupled inductors create a three-port with $\left[\begin{array}{c}V_{1} \\ V_{2} \\ V_{3}\end{array}\right]=\left[\begin{array}{ccc}L_{1} s & M_{12} s & M_{13} s \\ M_{21} s & L_{2} s & M_{23} s \\ M_{31} s & M_{32} s & L_{3} s\end{array}\right]\left[\begin{array}{l}I_{1} \\ I_{2} \\ I_{3}\end{array}\right]$.

Figure: Three-winding ideal transformers create a three-port with $\left[\begin{array}{c}V_{1} \\ V_{2} \\ I_{3}\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & \frac{n_{1}}{n_{3}} \\ 0 & 0 & \frac{n_{2}}{n_{3}} \\ -\frac{n_{1}}{n_{3}} & -\frac{n_{2}}{n_{3}} & 0\end{array}\right]\left[\begin{array}{c}I_{1} \\ I_{2} \\ V_{3}\end{array}\right]$.

The End

