

Pale Blue Dot

A perspective on humanity's place in the universe

- Taken on Feb. 14, 1990, by the Voyager 1 space probe
- A record distance of about 6 billion km, or equivalently 40.5 AU
- 1-pixel apparent for the Earth

0

*

Deep Space

NASA: Any distance further than the moon which is roughly 384,000 km ESA: Any distance greater than 2,000,000 km from the earth

Deep Space Communication

Reliable communication with a spacecraft located in deep space, to send commands or software updates, track location and receive telemetry, images, and scientific data

Challenges

0

Strange Numbers

	Operator	Weight	Power	Distance	RTT	Rate
Rosetta	ESA (04-16)	1230 kg	850 W	4.66 AU	77.81 min	~100 kb/s
Cassini	NASA/ESA (97-17)	2523 kg	885 W	9.13 AU	2.54 h	~20 kb/s
Voyager 2	NASA (77-21)	721 kg	470 W	152.08 AU	1.76 d	~20 b/s

Deep space communication capability will need to grow by nearly a factor of 10 during each of the coming three decades.

Stringent Requirements

Low-mass

Strict size and weight constraints Usually, some kilograms for telecommunication 44 kg for radio frequency subsystem in Voyager 4.2 kg for modem subsystem in Voyager 50 kg for antenna subsystem in Voyager

Sensitive

Sensitive equipment for signal manipulation High tolerance manufacturing and design 15 K low noise receiver in Voyager's ground station 70 m diameter 3850 m² dish with 1 cm accuracy Dish positioning with <0.001/s accuracy

Low-power

Solar power vs radioisotope thermoelectric generator 360 W for telecommunication in Voyager

Reliable

No physical maintenance Travels usually longer than 10 years 43-year lifetime of Voyager Galileo's high gain antenna failure Phobos-Grunt's control lost

Interstellar Probe

Interstellar Probe

Voyager's Path

Voyager's Path

Voyager's Sub-systems

Control and Communications Subsystems Bus High Gain Antenna (HGA) Voyager's Attitude Control Power Subsystem Sub-systems Data Storage Subsystem Computer Command Subsystem Flight Data Subsystem Instrument Subsystems Imaging Science Subsystem (ISS) Infrared Interferometer Spectrometer and Radiometer (IRIS) Ultraviolet Spectrometer (UVS) Photopolarimeter Subsystem (PPS) Planetary Radio Astronomy (PRA) Plasma Wave Subsystem (PWS) Radio Science Subsystem (RSS) Magnetometer (MAG) Plasma Subsystem (PLS) Low-Energy Charged Particle (LECP) Cosmic Ray subsystem (CRS)

Deep Space Network

DSN has three centers in California (USA), Canberra (Australia) and Madrid (Spain), each has one 70mdiameter antenna, one 34m and one 26m antenna.

DSN consists of three centers, located roughly 120 degrees apart, to provide full 24/7, 360 degree coverage as the earth rotates.

DSN usually uses microwave spectrum divided in: L-Band: 1.67–1.71 GHz S-Band: 2.025–2.3 GHz X-Band: 8-9 GHz Ka--Band: 20–-30 GHz

DSN commonly utilizes

- BPSK modulation
- Circular polarization
- RS and Turbo coding

Deep Space Network

X

Power Budget

 $\overline{S} = P\overline{G_T}L_S\overline{L_A}\overline{G_R}$

$$L_{s} = \left(\frac{\lambda}{4\pi D}\right)^{2} = \left(\frac{c}{4\pi f D}\right)^{2}$$

Quantity	Name	Unit
P, S	Transmit/Receive Power	W
G_T, G_R	Transmit/Receive Antenna Gain	dB
d_T , d_R	Transmit/Receive Antenna Diameter	т
e_T, e_R	Transmit/Receive Antenna Efficiency	-
L_S , L_A	Free Space/Atmosphere Loss	dB
λ, f	Wavelength/Frequency	m
D	Communication Distance	m
С	Light Speed	m/s

Shannon Capacity

 $R = B \log_2(1 + \frac{S}{N})$

 $R = B \log_2(1 + \frac{S}{N_0 B})$

Quantity	Name	Unit
R	Channel Capacity	b/s
В	Channel Bandwidth	Hz
S	Receive Power	W
Ν	Noise Power	W
N ₀	Noise Spectral Density	W/Hz

Power-limited Capacity

 $R = B \log_2(1 + \frac{S}{N_0 B})$

$$R = \frac{B}{\ln 2} \ln(1 + \frac{S}{N_0 B})$$

$$R \approx \frac{B}{\ln 2} \frac{S}{N_0 B} = 1.44 \frac{S}{N_0}$$

Quantity	Name	Unit
R	Channel Capacity	b/s
В	Channel Bandwidth	Hz
S	Receive Power	W
Ν	Noise Power	W
N ₀	Noise Spectral Density	W/Hz

Deep Space Rate

 $R \approx 1.44 \frac{PG_T L_A G_R}{N_0} \left(\frac{c}{4\pi f D}\right)^2$

 $R \propto \frac{1}{D^2}$

Quantity	Value	Unit
С	3e8	m/s
f	8.42e9	Hz
Р	12.3	W
G_T	48.2	dB
G_R	73.7	dB
L _A	-4.8	dB
N ₀	2.8980e-22	W/Hz
D	2.2749e+13	т
R	487	b/s

Optical Communication

Higher bandwidth over long distances Arraying Antenna

Larger antenna gain

A

0

0

0

0

A network of interconnected nodes on Earth, in space, and orbiting other planets

References

For more information, visit

<u>https://voyager.jpl.nasa.gov/</u> <u>https://eyes.jpl.nasa.gov/dsn/dsn.html</u>

Thanks!

Do you have any questions? Contact me via mohammad.hadi@sharif.edu Visit me at room 424, EED, SHUT.