MATHEMATICAL QUESTIONS

Question 1

Consider the triangle periodic signal shown in Fig. 1.

Question 2

Calculate the delivered power and voltage of the dependent source in Fig. 2.

Question 3

Consider the linear time-variant capacitor of Fig. 3 with the capacitance $C(t) = C_0 + C_1 \cos(\omega_1 t)$.

Figure 3: A linear time-variant capacitor with capacitance $C(t) = C_0 + C_1 \cos(\omega_1 t)$.

(a) Find the capacitor current if $v_s(t) = A \cos(\omega_2 t)$. Further, calculate the energy stored in the capacitor during the interval [0, t].

(b) Find the capacitor current if $v_s(t) = A$. Further, calculate the energy stored in the capacitor during the interval [0, t]. Does the capacitor act like open circuit as $t \to \infty$?

(c) Find the capacitor current if $v_s(t) = A$ and $C_1 = 0$. Does the capacitor act like open circuit as $t \to \infty$?

Question 4

In the circuit shown in Fig. 4, $v_s(t) = A\cos(\omega t)u(t)$ and $i_s(t) = B(1 - e^{-\alpha t})u(t)$. Calculate $v_L(t)$ and $i_C(t)$. Is $v_L(t)$ continuous? How about $i_C(t)$?

Question 5

Write a simple MATLAB program that calculates the average and RMS values of a given periodic signal f(t). The function f(t) is represented by a function handle in its fundamental period $t \in [0, T]$.

Question 6

Find the RMS and average values of the real periodic signal $f(t) = a_0 + \sum_{k=1}^{\infty} \left[a_k \cos(\frac{2\pi k}{T}t) + b_k \sin(\frac{2\pi k}{T}t) \right]$ expanded in its Fourier series form.

Question 7

Return your answers by filling the LATEXtemplate of the assignment.

EXTRA QUESTIONS

Question 8

Feel free to solve the following questions from the book *"Basic Circuit Theory"* by C. Desoer and E. Kuh.

- 1. Chapter 2, question 2.
- 2. Chapter 2, question 7.
- 3. Chapter 2, question 8.
- 4. Chapter 2, question 10.
- 5. Chapter 2, question 15.
- 6. Chapter 2, question 16.
- 7. Chapter 2, question 17.
- 8. Chapter 2, question 18.