Basic Circuit Elements

Mohammad Hadi
mohammad.hadi@sharif.edu
@MohammadHadiDastgerdi

Spring 2022

Overview

(1) Signals
(2) Resistor
(3) Capacitor
(4) Inductor
(5) Memristor
(6) Power and Energy
(7) Elements Interconnections

Signals

Elementary Signals

Figure: Constant signal $c(t)=1, \forall t$.

Figure: Step signal
$u(t)=\left\{\begin{array}{l}1, t \geq 0 \\ 0, t<0\end{array}\right.$

Figure: Step signal
$r(t)=\left\{\begin{array}{l}t, t \geq 0 \\ 0, t<0\end{array} \quad=t u(t)=\right.$
$\int_{-\infty}^{t} u(\lambda) d \lambda$.

Elementary Signals

Figure: Exponential signal $f(t)=A e^{a t}$.

Elementary Signals

Example (Rectangular signal)

$\sqcap(t)=u(t+0.5)-u(t-0.5)$.

Elementary Signals

Example (Triangle signal)

$\Lambda(t)=r(t+1)-2 r(t)+r(t-1)$.

$\Lambda(t)=(t+1)[u(t+1)-u(t)]+(1-t)[u(t)-u(t-1)]=r(t+1)-2 r(t)+r(t-1)$

Singular Signals

Figure: Impulse signal $\delta(t)$.
(1) Definition: $\delta(t)=\lim _{T \rightarrow 0} \frac{1}{T} \sqcap\left(\frac{t}{T}\right)=\lim _{T \rightarrow 0} \frac{u(t+0.5 T)-u(t-0.5 T)}{T}= \begin{cases}\infty, & t=0 \\ 0, & t \neq 0\end{cases}$
(2) Surface: $\int_{-\infty}^{+\infty} \delta(t) d t=\int_{0^{-}}^{0^{+}} \delta(t) d t=1$
(3) Sampling: $\int_{-\infty}^{+\infty} f(t) \delta(t) d t=\int_{t_{1}}^{t_{2}} f(t) \delta(t) d t=f(0), 0 \in\left(t_{1}, t_{2}\right), \quad f(t) \delta(t)=f(0) \delta(t)$
(4) Scaling: $\delta(a t)=\frac{1}{|a|} \delta(t)$
(5) Integral: $u(t)=\int_{-\infty}^{t} \delta(\lambda) d \lambda$
(0) Derivative: $\delta^{\prime}(t)=\frac{d \delta(t)}{d t}$

Singular Signals

Figure: Doublet signal $\delta^{\prime}(t)$.
(1) Definition: $\delta(t)=\lim _{T \rightarrow 0} \frac{1}{T} \Lambda\left(\frac{t}{T}\right)=\left\{\begin{array}{ll}\infty, & t=0 \\ 0, & t \neq 0\end{array}, \quad \delta^{\prime}(t)=\frac{d \delta(t)}{d t}\right.$
(2) Surface: $\int_{-\infty}^{+\infty} \delta^{\prime}(t) d t=\int_{0^{-}}^{0^{+}} \delta^{\prime}(t) d t=0$
(3) Sampling: $\int_{t_{1}}^{t_{1}} f(t) \delta^{\prime}(t) d t=-f^{\prime}(0), 0 \in\left(t_{1}, t_{2}\right), \quad f(t) \delta^{\prime}(t)=-f^{\prime}(0) \delta(t)+f(0) \delta^{\prime}(t)$

Singular Signals

Example (Sampling property of $\delta^{\prime}(t)$)

The sampling property of $\delta^{\prime}(t)$ can be roughly verified as the limit of $\frac{1}{T} \Lambda\left(\frac{t}{T}\right)$.

$$
\begin{aligned}
0 & \in\left(t_{1}, t_{2}\right) \\
\int_{t_{1}}^{t_{2}} f(t) \delta^{\prime}(t) d t & =\lim _{T \rightarrow 0}\left[f(-0.5 T) \frac{1}{T^{2}} T-f(0.5 T) \frac{1}{T^{2}} T\right] \\
& =\lim _{T \rightarrow 0} \frac{f(-0.5 T)-f(+0.5 T)}{T} \\
& =-\lim _{T \rightarrow 0} \frac{f(0.5 T)-f(-0.5 T)}{0.5 T-(-0.5 T)}=-f^{\prime}(0)
\end{aligned}
$$

Singular Signals

Example (Relations of singular functions)

Singular functions relate to each other using derivative and integral operations.

$\cdots, \quad \delta^{\prime}(t)=\frac{d \delta(t)}{d t}, \quad \delta(t)=\frac{d u(t)}{d t}, \quad u(t)=\frac{d r(t)}{d t}$,
$\cdots, \quad \delta(t)=\int_{-\infty}^{t} \delta^{\prime}(\lambda) d \lambda, \quad u(t)=\int_{-\infty}^{t} \delta(\lambda) d \lambda, \quad r(t)=\int_{-\infty}^{t} u(\lambda) d \lambda$,

Singular Signals

Example (Derivative and integral of discontinuous function)

Singular functions can be used in derivative and integral calculations.

$$
\begin{aligned}
f(t) & =4 u(t)-6 u(t-1)+2 u(t-2)+4 \delta(t-3) \\
\frac{d f(t)}{d t} & =4 \delta(t)-6 \delta(t-1)+2 \delta(t-2)+4 \delta^{\prime}(t-3)
\end{aligned}
$$

$$
\int_{-\infty}^{t} f(\lambda) d \lambda=4 t u(t)-6(t-1) u(t-1)+2(t-2) u(t-2)+4 u(t-3)
$$

Periodic Signals

Figure: Sinusoidal periodic signals with period T.
(1) Expression: $f(t)=A \cos (\omega t+\theta) \equiv A \sin (\omega t+\theta)$
(2) Period: $T=\frac{2 \pi}{\omega}=\frac{1}{f}$
(3) Frequency: $f=\frac{\omega}{2 \pi}=\frac{1}{T}$
(9) Phase: θ

- Amplitude: A
((Peak to peak amplitude: $2 A$
(1) Average: $f_{\mathrm{av}}=\frac{1}{T} \int_{T} f(t) d t=\frac{1}{T} \int_{T} A \cos (\omega t+\theta) d t=0$
(3) RMS: $f_{r m s}=\sqrt{\frac{1}{T} \int_{T}|f(t)|^{2} d t}=\sqrt{\frac{1}{T} \int_{T} A^{2} \cos ^{2}(\omega t+\theta) d t}=\frac{A}{\sqrt{2}}$

Periodic Signals

Figure: Sinusoidal, sawtooth, and pulse train periodic signals with period T.

Periodic Signals

Example (Pulse train)

A pulse train can be characterized in terms of its average, rms, and duty cycle.

$$
\begin{gathered}
\square \prod_{\square}^{A} \prod_{t}^{f(t)} \overbrace{t} \\
f(t)=A \sqcap\left(\frac{t-0.5 \tau}{\tau}\right), 0 \leq t<T, f(t \pm T)=f(t) \\
f_{a v}=\frac{1}{T} \int_{T} f(t) d t=A \frac{\tau}{T}=A D \\
f_{r m s}=\sqrt{\frac{1}{T} \int_{T}|f(t)|^{2} d t}=A \sqrt{\frac{\tau}{T}}=A \sqrt{D}
\end{gathered}
$$

Other Signals

Example (Underdampled signal)

An underdamped signal can be expressed as the multiplication of sinusoidal and exponential signals.

Other Signals

Example (Complex exponential signal)

A complex signal can be described using its polar or Cartesian presentations.

$$
\begin{gathered}
f(t)=A e^{-\alpha t} e^{j(\omega t+\phi)}=\Re\{f(t)\}+j \Im\{f(t)\}=|f(t)| e^{j \angle f(t)} \\
\Re\{f(t)\}=A e^{-\alpha t} \cos (\omega t+\phi) \\
\Im\{f(t)\}=A e^{-\alpha t} \sin (\omega t+\phi) \\
|f(t)|=|A| e^{-\alpha t} \\
\angle f(t)=\omega t+\phi+\pi u(-A)
\end{gathered}
$$

Resistor

Resistor

Statement (Linear Function)

The function $f(x)$ is (map-) linear if it is homogeneous, i.e., $f(\alpha x)=\alpha f(x)$, and additive, i.e., $f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)$.

Statement (Continuous Function)

The function $f(x)$ is continuous if $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right), \forall x_{0}$.

Statement (Bounded Function)

The function $f(x)$ is bounded if $\left|f\left(x_{0}\right)\right|<M, \forall x_{0}$.
(1) $f(x)=a x$ is a linear function.
(2) $f(x)=a x+b, b \neq 0$ is not a linear function.
(3) $f(x(t))=\frac{d x(t)}{d t}$ is a linear function.
(-) $f(x)=u(x)$ is not continuous but is bounded.
(0) $f(x)=\delta(x)$ is not continuous and is not bounded.

Resistor

Figure: LTI, LTV, NTI, NTV resistors. The units of voltage, current, resistance, and conductance are V, A, Ω, v.
(1) Linear time-invariant resistor: $v(t)=R i(t) \equiv i(t)=G v(t)$
(2) Linear time-variant resistor: $v(t)=R(t) i(t) \equiv i(t)=G(t) v(t)$
(3) Nonlinear time-invariant resistor: $f(v(t), i(t))=0$
(1) Nonlinear time-variant resistor: $f(v(t), i(t), t)=0$
(0) Voltage-controlled resistor: $i(t)=f(v(t), t)$
(0) Current-controlled resistor: $v(t)=f(i(t), t)$
(3) Bilateral resistor: $f(v(t), i(t))=f(-v(t),-i(t))$

Resistor

Figure: LTI, LTV, NTI, NTV resistors. The units of voltage, current, resistance, and conductance are V, A, Ω, v.
(1) Linear time-invariant resistor: $v(t)=R i(t) \equiv i(t)=\operatorname{Gv}(t)$
(2) Linear time-variant resistor: $v(t)=R(t) i(t) \equiv i(t)=G(t) v(t)$
(3) Nonlinear time-invariant resistor: $f(v(t), i(t))=0$
(1) Nonlinear time-variant resistor: $f(v(t), i(t), t)=0$
(0) Voltage-controlled resistor: $i(t)=f(v(t), t)$
(0) Current-controlled resistor: $v(t)=f(i(t), t)$
(3) Bilateral resistor: $f(v(t), i(t))=f(-v(t),-i(t))$

Resistor

Example (Open circuit)

Open circuit is a voltage-controlled bilateral LTI resistor with $G=0$.

Resistor

Example (Short circuit)

Short circuit is a current-controlled bilateral LTI resistor with $R=0$.

Resistor

Example (DC voltage source)

DC voltage source is a current-controlled NTI resistor.

Resistor

Example (AC voltage source)
AC voltage source is a current-controlled NTV resistor.

Resistor

Example (DC current source)

DC current source is a voltage-controlled NTI resistor.

Resistor

Example (AC current source)

AC current source is a voltage-controlled NTV resistor.

Resistor

Example (Ideal diode)

An ideal diode is an NTI resistor.

Resistor

Example (Ideal diode)

A real diode with the characteristic curve $i=I_{s}\left(e^{\frac{q v}{k T}}-1\right)=I_{s}\left(e^{\frac{v}{V_{T}}}-1\right)$ is an NTI resistor, where the thermal voltage equals $V_{T}=k T / q \approx 26 \mathrm{mV}$ in room temperature.

Resistor

Example (Battery)

A battery can be modeled as a series connection of a resistor and a voltage source.

$$
\begin{aligned}
& v(t)=V_{0}+V_{R}(t)=V_{0}+R i(t) \\
& i(t)=-I_{0}+i_{R}(t)=-\frac{V_{0}}{R}+\frac{v(t)}{R}
\end{aligned}
$$

Resistor

Example (Time-variant resistor)

A time-variant resistor can create new frequencies from an input single-frequency tone signal.

$$
\begin{aligned}
& i_{s}(t)=I \sin \left(2 \pi f_{1} t\right) \\
& R=1 \Rightarrow v(t)=I \sin \left(2 \pi f_{1} t\right) \\
& R(t)=1+2 \cos \left(2 \pi f_{2} t\right) \Rightarrow \\
& v(t)=I \sin \left(2 \pi f_{1} t\right)+I \sin \left(2 \pi\left(f_{1}+f_{2}\right) t\right)+I \sin \left(2 \pi\left(f_{1}-f_{2}\right) t\right)
\end{aligned}
$$

Resistor

Example (Nonlinear resistor)

The characteristic curve of a nonlinear resistor can be used to draw its voltage or current.

Resistor

Example (Dependent sources)

Linear dependent sources can be usually considered as NTV resistors.

Resistor

Example (Circuit with dependent sources)

Tellegen's theorem can be verified for the circuit below.

$$
\begin{gathered}
i_{6}=20, i_{2}=\frac{10}{2}=5, i_{3}=2 i_{2}=10, i_{4}=-i_{3}=-10, i_{1}=i_{2}-i_{4}=15, i_{5}=20-i_{4}=30 \\
v_{1}=10, v_{2}=10, v_{4}=3 i_{4}=-30, v_{5}=4 i_{1}=60, v_{6}=v_{5}=60, v_{3}=-v_{4}+v_{5}-v_{2}=80 \\
p_{1}=-10 i_{1}=-150, p_{2}=v_{2} i_{2}=50, p_{3}=-v_{3} i_{3}=-800 \\
p_{4}=v_{4} i_{4}=300, p_{5}=v_{5} i_{5}=1800, p_{6}=-v_{6} i_{6}=-1200 \\
p_{1}+p_{2}+p_{3}+p_{4}+p_{5}+p_{6}=0
\end{gathered}
$$

Resistor

Example (Small-signal analysis)

Circuits with nonlinear resistors can be investigated using small-signal analysis.

$$
\begin{aligned}
& i=f(v) \\
& i(t)=f\left(V_{0}+v_{s}(t)\right),\left|v_{s}(t)\right| \ll\left|V_{0}\right| \\
& i(t) \approx f\left(V_{0}\right)+\left.\frac{d f}{d v}\right|_{v=v_{0}} v_{s}(t) \\
& i(t) \approx I_{0}+g v_{s}(t)
\end{aligned}
$$

Capacitor

Capacitor

$$
\begin{array}{r}
i(t) \\
C \\
\underset{-}{+} v(t)
\end{array}
$$

Figure: LTI, LTV, NTI, NTV capacitors. The units of charge, voltage, capacitance, and elastance are C, V, F, F^{-1}.
(1) Linear time-invariant capacitor: $q(t)=C v(t) \equiv v(t)=S q(t)$
(2) Linear time-variant capacitor: $q(t)=C(t) v(t) \equiv v(t)=S(t) q(t)$
(3) Nonlinear time-invariant capacitor: $f(q(t), v(t))=0$
(1) Nonlinear time-variant capacitor: $f(q(t), v(t), t)=0$
(Voltage-controlled capacitor: $q(t)=f(v(t), t)$

- Charge-controlled capacitor: $v(t)=f(q(t), t)$
(3) Bilateral capacitor: $f(q(t), v(t))=f(-q(t),-v(t))$

Capacitor

Figure: LTI, LTV, NTI, NTV capacitors. The units of charge, voltage, capacitance, and elastance are C, V, F, F^{-1}.
(1) Linear time-invariant capacitor: $q(t)=C v(t) \equiv v(t)=S q(t)$
(2) Linear time-variant capacitor: $q(t)=C(t) v(t) \equiv v(t)=S(t) q(t)$
(3) Nonlinear time-invariant capacitor: $f(q(t), v(t))=0$
(3) Nonlinear time-variant capacitor: $f(q(t), v(t), t)=0$
(3) Voltage-controlled capacitor: $q(t)=f(v(t), t)$
(Charge-controlled capacitor: $v(t)=f(q(t), t)$
(0) Bilateral capacitor: $f(q(t), v(t))=f(-q(t),-v(t))$

Capacitor

Figure: LTI, LTV, NTI, NTV capacitors. The units of charge, voltage, capacitance, and elastance are C, V, F, F^{-1}.
(1) Linear time-invariant capacitor:

- Current equation: $i(t)=\frac{d q(t)}{d t}=C \frac{d v(t)}{d t}, \quad v\left(t_{0}\right)$
- Voltage equation: $v(t)=v\left(t_{0}\right)+\frac{1}{C} \int_{t_{0}}^{t} i(\lambda) d \lambda$
- Full description by capacitance C and initial voltage $v\left(t_{0}\right)$
- Memory element
- Linearity of current in terms of voltage
- Continuity of voltage for bounded current
(2) Linear time-variant capacitor: $i(t)=C(t) \frac{d v(t)}{d t}+v(t) \frac{d C(t)}{d t}, \quad v\left(t_{0}\right), C\left(t_{0}\right)$
(3) Voltage-controlled capacitor: $i(t)=\frac{\partial f}{\partial v} \frac{d v(t)}{d t}+\frac{\partial f}{\partial t}$

Capacitor

Example (LTI capacitor)

A capacitor integrates its flowing current.

Capacitor

Example (LTI capacitor)

The capacitor voltage remains continuous for the bounded flowing current.

Capacitor

Example (LTI capacitor)

The capacitor voltage experiences discontinuity for the unbounded flowing current.

Capacitor

Example (Initial condition modeling)

The initial voltage can be modeled using an independent voltage source.

$$
\begin{aligned}
& v(t)=v(0)+\frac{1}{C} \int_{0}^{t} i(\lambda) d \lambda=V_{0}+\frac{1}{C} \int_{0}^{t} i(\lambda) d \lambda
\end{aligned}
$$

Capacitor

Example (Thevenin-Norton Equivalency)

The two circuits below are equivalent if $i_{s}(t)=C \frac{d v_{s}(t)}{d t} \equiv v_{s}(t)=\frac{1}{C} \int_{0}^{t} i_{s}(\lambda) d \lambda$ and $v_{C}(0)=0$

$$
v(t)=v_{s}(t)+\frac{1}{C} \int_{0}^{t} i(\lambda) d \lambda
$$

$$
i(t)=-i_{s}(t)+C \frac{d v(t)}{d t}
$$

Inductor

Inductor

Figure: LTI, LTV, NTI, NTV inductors. The units of flux, current, inductance, and reciprocal inductance are $W b, A, H, H^{-1}$.
(1) Linear time-invariant inductor: $\phi(t)=L i(t) \equiv i(t)=\Gamma \phi(t)$
(2) Linear time-variant inductor: $\phi(t)=L(t) i(t) \equiv i(t)=\Gamma(t) \phi(t)$
(3) Nonlinear time-invariant inductor: $f(\phi(t), i(t))=0$
(- Nonlinear time-variant inductor: $f(\phi(t), i(t), t)=0$
(0) Current-controlled inductor: $\phi(t)=f(i(t), t)$
(0) Flux-controlled inductor: $i(t)=f(\phi(t), t)$
(3) Bilateral inductor: $f(\phi(t), i(t))=f(-\phi(t),-i(t))$

Inductor

Figure: LTI, LTV, NTI, NTV inductors. The units of flux, current, inductance, and reciprocal inductance are $W b, A, H, H^{-1}$.
(1) Linear time-invariant inductor: $\phi(t)=L i(t) \equiv i(t)=\Gamma \phi(t)$
(2) Linear time-variant inductor: $\phi(t)=L(t) i(t) \equiv i(t)=\Gamma(t) \phi(t)$
(3) Nonlinear time-invariant inductor: $f(\phi(t), i(t))=0$
(4) Nonlinear time-variant inductor: $f(\phi(t), i(t), t)=0$
(5) Current-controlled inductor: $\phi(t)=f(i(t), t)$
(6) Flux-controlled inductor: $i(t)=f(\phi(t), t)$
(1) Bilateral inductor: $f(\phi(t), i(t))=f(-\phi(t),-i(t))$

Inductor

Figure: LTI, LTV, NTI, NTV inductors. The units of flux, current, inductance, and reciprocal inductance are $W b, A, H, H^{-1}$.
(1) Linear time-invariant inductor:

- Voltage equation: $v(t)=\frac{d \phi(t)}{d t}=L \frac{d i(t)}{d t}, \quad i\left(t_{0}\right)$
- Current equation: $i(t)=i\left(t_{0}\right)+\frac{1}{L} \int_{t_{0}}^{t} v(\lambda) d \lambda$
- Full description by inductance L and initial current $i\left(t_{0}\right)$
- Memory element
- Linearity of voltage in terms of current
- Continuity of current for bounded voltage
(2) Linear time-variant inductor: $v(t)=L(t) \frac{d i(t)}{d t}+i(t) \frac{d L(t)}{d t}, \quad i\left(t_{0}\right), L\left(t_{0}\right)$
(3) Current-controlled inductor: $i(t)=\frac{\partial f}{\partial i} \frac{d i(t)}{d t}+\frac{\partial f}{\partial t}$

Inductor

Example (LTI inductor)

An inductor differentiates its flowing current.

Inductor

Example (NTI inductor)

An NTI inductor can be described by its characteristic curve.

Inductor

Example (Initial condition modeling)

The initial current can be modeled using an independent current source.

$$
i(t)=i(0)+\frac{1}{L} \int_{0}^{t} v(\lambda) d \lambda=I_{0}+\frac{1}{L} \int_{0}^{t} v(\lambda) d \lambda
$$

Inductor

Example (Thevenin-Norton Equivalency)

The two circuits below are equivalent if $v_{s}(t)=L \frac{d i_{s}(t)}{d t} \equiv i_{s}(t)=\frac{1}{L} \int_{0}^{t} v_{s}(\lambda) d \lambda$ and $i_{L}(0)=0$

$$
\begin{aligned}
& \xrightarrow[v(t)]{i(t)} \\
& i(t)=-i_{s}(t)+\frac{1}{L} \int_{0}^{t} v(\lambda) d \lambda \\
& v(t)=v_{s}(t)+L \frac{d i(t)}{d t}
\end{aligned}
$$

Inductor

Example (Hysteresis)

An inductor with hysteresis characteristic is an NTI inductor.

Inductor

Example (DC steady state)

If a DC driven inductor (capacitor) reaches its steady state situation, it acts like a short (open) circuit.

Memristor

Memristor

Figure: Basic one-port circuit elements.

- Nonlinear time-variant memristor: $f(q(t), \phi(t), t)=0$

Power and Energy

Power and Energy

Figure: A general one-port element with passive sign convention.
(1) Absorbed power: $p(t)=v(t) i(t)=\frac{d \epsilon(t)}{d t}$
(2) Absorbed energy: $w\left(t_{0}, t\right)=\epsilon(t)-\epsilon\left(t_{0}\right)=\int_{t_{0}}^{t} p(\lambda) d \lambda$
(3) Absolute energy: $\epsilon(t)=\epsilon\left(t_{0}\right)+w\left(t_{0}, t\right)$

Resistor

Figure: LTI, LTV, NTI, NTV resistors. Resistors dissipate power.
(1) LTI resistor absorbed energy: $w\left(t_{0}, t\right)=\int_{t_{0}}^{t} v(\lambda) i(\lambda) d \lambda=R \int_{t_{0}}^{t} i^{2}(\lambda) d \lambda$
(2) LTI resistor passivity condition: $w\left(t_{0}, t\right)=R \int_{t_{0}}^{t} i^{2}(\lambda) d \lambda \geq 0 \Rightarrow R \geq 0$
(3) LTV resistor passivity condition: $R(t) \geq 0, \forall t$
(NTV resistor passivity condition:
$w\left(t_{0}, t\right)=\int_{t_{0}}^{t} p(\lambda) d \lambda \geq 0 \Rightarrow p(t)=v(t) i(t) \geq 0, \forall t$

Capacitor

Figure: LTI, LTV, NTI, NTV capacitors. Capacitors store electrical energy.
(1) LTI capacitor absorbed energy: $w\left(t_{0}, t\right)=\int_{t_{0}}^{t} v(\lambda) i(\lambda) d \lambda=$ $\int_{t_{0}}^{t} v(\lambda) C \frac{d v(\lambda)}{d \lambda} d \lambda=C \int_{v\left(t_{0}\right)}^{v(t)} u d u=\frac{C}{2}\left(v^{2}(t)-v^{2}\left(t_{0}\right)\right)$
(2) LTI capacitor absolute energy: $\epsilon_{E}(t)=\frac{C}{2} v^{2}(t)=\frac{1}{2 C} q^{2}(t)$
(3) LTI capacitor passivity condition: $\epsilon_{E}(t)=\frac{c}{2} v^{2}(t) \geq 0 \Rightarrow C \geq 0$
(- LTV capacitor passivity condition: $C(t), C^{\prime}(t) \geq 0, \forall t$
(0) NTI capacitor passivity condition: $q(t) v(t) \geq 0, \forall t$

Inductor

Figure: LTI, LTV, NTI, NTV inductors. Inductors store magnetic energy.
(1) LTI inductor absorbed energy:
$w\left(t_{0}, t\right)=\int_{t_{0}}^{t} v(\lambda) i(\lambda) d \lambda=\int_{t_{0}}^{t} L \frac{d i(\lambda)}{d \lambda} i(\lambda) d \lambda=L \int_{i\left(t_{0}\right)}^{i(t)} u d u=\frac{L}{2}\left(i^{2}(t)-i^{2}\left(t_{0}\right)\right)$
(2) LTI inductor absolute energy: $\epsilon_{M}(t)=\frac{L}{2} i^{2}(t)=\frac{1}{2 L} \phi^{2}(t)$
(3) LTI inductor passivity condition: $\epsilon_{M}(t)=\frac{L}{2} i^{2}(t) \geq 0 \Rightarrow L \geq 0$
(9) LTV inductor passivity condition: $L(t), L^{\prime}(t) \geq 0, \forall t$
(0) NTI inductor passivity condition: $\phi(t) i(t) \geq 0, \forall t$

Power and Energy

Example (Activity)

A DC voltage source with the voltage V_{0} is active since $p(t)=v(t) i(t)=$ $V_{0}\left(-V_{0}\right)=-V_{0}^{2}<0$.

Example (Passivity)

The NTI resistor with the characteristic curve $i(t)=2(v(t))^{3}$ is passive since $p(t)=v(t) i(t)=2(v(t))^{4} \geq 0$.

Example (Activity)

The LTV resistor with the resistance $R(t)=-(2 t+1)$ is active since $R(0)=-1<$ 0.

Power and Energy

Example (Power and Energy)

The energy and power curves for the shown inductor are plotted as below.

$i_{L}(0)=0$

Power and Energy

Example (Power and Energy)

For the circuit below, $i(t)=3 t, t>0, v_{C}(0)=3$, and $i_{L}(0)=0 . w_{R}(0,1)=6$, $p_{L}(2)=54$, and $\epsilon_{C}(4)=225$.

$$
\begin{aligned}
& w_{R}(0,1)=2 \int_{0}^{1}(3 \lambda)^{2} d \lambda=6 \\
& i_{L}(2)=6, v_{L}(2)=3 i_{L}^{\prime}(2)=9 \Rightarrow p_{L}(2)=v_{L}(2) i_{L}(2)=54 \\
& v_{c}(4)=3+\frac{1}{2} \int_{0}^{4} 3 \lambda d \lambda=15 \Rightarrow \epsilon_{C}(4)=\frac{1}{2}(2) v_{C}^{2}(4)=225
\end{aligned}
$$

Elements Interconnections

Equivalent One-ports

Figure: A same equation governs ports of two equivalent one-ports.

Figure: Same equations govern ports of two equivalent two-ports.

Resistors

Figure: Two series resistors with $i=i_{1}=i_{2}$ and $v=v_{1}+v_{2}$. Series connection of two current-controlled resistors has the characteristic curve $v=v_{1}+v_{2}=f_{1}\left(i_{1}\right)+f_{2}\left(i_{2}\right)=f(i)$.

Resistors

Figure: Two parallel resistors with $v=v_{1}=v_{2}$ and $i=i_{1}+i_{2}$. Parallel connection of two voltage-controlled resistors has the characteristic curve $i=i_{1}+i_{2}=f_{1}\left(v_{1}\right)+f_{2}\left(v_{2}\right)=f(v)$.

Resistors

Example (Series connection of LTI resistors)

If the LTI resistors $R_{1}, R_{2}, \ldots, R_{N}$ are connected in series, they can be replaced with the equivalent LTI resistor $R_{e q}=\sum_{k=1}^{N} R_{k}$.

Resistors

Example (Parallel connection of LTI resistors)

If the LTI resistors $G_{1}, G_{2}, \ldots, G_{N}$ are connected in parallel, they can be replaced with the equivalent LTI resistor $G_{e q}=\sum_{k=1}^{N} G_{k}$.

$$
\begin{aligned}
& \left.\begin{array}{l|l}
\overrightarrow{+} \\
v & \xi_{1} \\
= & \left\{\begin{array}{l}
i \\
R_{2}
\end{array}\right\} R_{N} \equiv \\
\overrightarrow{+} \\
-
\end{array}\right\} R_{e q} \\
& i=\sum_{k=1}^{N} i_{k}=\sum_{k=1}^{N} G_{k} v_{k}=v \sum_{k=1}^{N} G_{k}=G_{e q} i
\end{aligned}
$$

Resistors

Example (Series connection of voltage sources)

If the voltage sources $v_{s 1}, v_{s 2}, \ldots, v_{s N}$ are connected in series, they can be replaced with the equivalent voltage source $v_{s}=\sum_{k=1}^{N} v_{s k}$.

Resistors

Example (Parallel connection of voltage sources)

The parallel connection of the voltage sources $v_{s 1}, v_{s 2}, \ldots, v_{s N}$ is possible if $v_{s 1}=$ $v_{s 2}=\cdots=v_{s N}$.

$$
v_{s}=v_{s 1}=v_{s 2}=\cdots=v_{s N}
$$

Resistors

Example (Series connection of current sources)

The series connection of the current sources $i_{s 1}, i_{s 2}, \ldots, i_{s N}$ is possible if $i_{s 1}=i_{s 2}=$ $\cdots=i_{s N}$.

$$
i_{s}=i_{s 1}=i_{s 2}=\cdots=i_{s N}
$$

Resistors

Example (Parallel connection of current sources)

If the current sources $i_{s 1}, i_{s 2}, \ldots, i_{s N}$ are connected in parallel, they can be replaced with the equivalent current source $i_{s}=\sum_{k=1}^{N} i_{s k}$.

Resistors

Example (Series connection of diodes)

Series connection of two ideal diodes results in an equivalent ideal diode or open circuit.

Resistors

Example (Parallel connection of diodes)

Parallel connection of two ideal diodes results in an equivalent ideal diode or short circuit.

Resistors

Example (Series connection of several elements)

The direction of elements is important in elements interconnection.

Resistors

Example (Parallel connection of several elements)

The direction of elements is important in elements interconnection.

Resistors

Example (Interconnection of several elements)

Interconnection of various elements leads to interesting characteristic curves.

Resistors

Example (Circuit Synthesis)

A desired circuit can be synthesized in different ways.

Resistors

Example (Circuit Synthesis)

A desired circuit can be synthesized in different ways.

Resistors

Example (Rectifier)

Diodes can be used for rectification.

Resistors

Figure: Resistive Δ (triangle, Π) and Y (star, T) networks. If the two networks are equivalent, then the port voltages and currents must be equal.

$$
\begin{aligned}
R_{A}=\frac{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}{R_{2}} & R_{1} & =\frac{R_{A} R_{B}}{R_{A}+R_{B}+R_{C}} \\
R_{B}=\frac{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}{R_{3}} & R_{2} & =\frac{R_{B} R_{C}}{R_{A}+R_{B}+R_{C}} \\
R_{C}=\frac{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}{R_{1}} & R_{3} & =\frac{R_{C} R_{A}}{R_{A}+R_{B}+R_{C}}
\end{aligned}
$$

Capacitors

Figure: Two series NTI capacitors with $i=i_{1}=i_{2}$ and $v=v_{1}+v_{2}$. Series connection of two charge-controlled capacitors has the characteristic curve $v=v_{1}+v_{2}=f_{1}\left(q_{1}\right)+f_{2}\left(q_{2}\right)=f(q)$ provided that $q_{1}(0)=q_{2}(0)$.

$$
\begin{gathered}
i=i_{1}=i_{2} \Rightarrow \frac{d q}{d t}=\frac{d q_{1}}{d t}=\frac{d q_{2}}{d t} \Rightarrow q(t)-q(0)=q_{1}(t)-q_{1}(0)=q_{2}(t)-q_{2}(0) \\
q(0)=q_{1}(0)=q_{2}(0) \Rightarrow q(t)=q_{1}(t)=q_{2}(t)
\end{gathered}
$$

Capacitors

Figure: Two parallel NTI capacitors with $v=v_{1}=v_{2}$ and $i=i_{1}+i_{2}$. Parallel connection of two voltage-controlled capacitors has the characteristic curve $q=q_{1}+q_{2}=f_{1}\left(v_{1}\right)+f_{2}\left(v_{2}\right)=f(v)$.

$$
\begin{gathered}
i=i_{1}+i_{2} \Rightarrow \frac{d q}{d t}=\frac{d q_{1}}{d t}+\frac{d q_{2}}{d t} \Rightarrow q(t)-q(0)=q_{1}(t)-q_{1}(0)+q_{2}(t)-q_{2}(0) \\
q(0)=q_{1}(0)+q_{2}(0) \Rightarrow q(t)=q_{1}(t)+q_{2}(t)
\end{gathered}
$$

Capacitors

Example (Series connection of LTI capacitors)

If the LTI capacitors $S_{1}, S_{2}, \ldots, S_{N}$ with the initial voltages $v_{1}(0), v_{2}(0), \ldots, v_{N}(0)$ are connected in series, they can be replaced with the equivalent LTI capacitor $S_{e q}=\sum_{k=1}^{N} S_{k}$ with the initial voltage $v(0)=\sum_{k=1}^{N} v_{k}(0)$.

$v=\sum_{k=1}^{N} v_{k}=\sum_{k=1}^{N}\left[v_{k}(0)+S_{k} \int_{0}^{t} i_{k}(\lambda) d \lambda\right]=\sum_{k=1}^{N} v_{k}(0)+\left(\sum_{k=1}^{N} S_{k}\right) \int_{0}^{t} i(\lambda) d \lambda$

Capacitors

Example (Parallel connection of LTI capacitors)

If the LTI capacitors $C_{1}, C_{2}, \ldots, C_{N}$ with the initial voltages $v_{1}\left(0^{-}\right), v_{2}\left(0^{-}\right), \ldots$, $v_{N}\left(0^{-}\right)$are connected in parallel, they can be replaced with the equivalent LTI capacitor $C_{e q}=\sum_{k=1}^{N} C_{k}$ with a suitable initial voltage $v\left(0^{+}\right)=v_{1}\left(0^{+}\right)=\cdots=$ $v_{N}\left(0^{+}\right)$.

$$
i=\sum_{k=1}^{N} i_{k}=\sum_{k=1}^{N} C_{k} \frac{d v_{k}}{d t}=\left(\sum_{k=1}^{N} C_{k}\right) \frac{d v}{d t}
$$

Capacitors

Example (Initial voltage of two parallel LTI capacitors)

If the LTI capacitors C_{1} and C_{2} with the initial voltages $v_{1}\left(0^{-}\right)$and $v_{2}\left(0^{-}\right)$are connected in parallel, they can be replaced with the equivalent LTI capacitor $C_{e q}=$ $C_{1}+C_{2}$ with having the initial voltage $v\left(0^{+}\right)=\frac{C_{1} v_{1}\left(0^{-}\right)+C_{2} v_{2}\left(0^{-}\right)}{C_{1}+C_{2}}$.

$$
q\left(0^{-}\right)=q\left(0^{+}\right) \Rightarrow C_{1} v_{1}\left(0^{-}\right)+C_{2} v_{2}\left(0^{-}\right)=C_{1} v_{1}\left(0^{+}\right)+C_{2} v_{2}\left(0^{+}\right)=\left(C_{1}+C_{2}\right) v\left(0^{+}\right)
$$

Capacitors

Example (Initial voltage of two parallel LTI capacitors)

If the LTI capacitors C_{1} and C_{2} with the initial voltages $v_{1}\left(0^{-}\right)$and $v_{2}\left(0^{-}\right)$are connected in parallel, they can be replaced with the equivalent LTI capacitor $C_{e q}=$ $C_{1}+C_{2}$ with having the initial voltage $v\left(0^{+}\right)=\frac{C_{1} v_{1}\left(0^{-}\right)+C_{2} v_{2}\left(0^{-}\right)}{C_{1}+C_{2}}$.

$$
\begin{gathered}
i_{1}(t)+i_{2}(t)=C_{1} \frac{d v_{1}}{d t}+C_{2} \frac{d v_{2}}{d t}=0 \Rightarrow \int_{0^{-}}^{0^{+}}\left[C_{1} \frac{d v_{1}}{d t}+C_{2} \frac{d v_{2}}{d t}\right] d t=0 \Rightarrow C_{1} \int_{v_{1}\left(0^{-}\right)}^{v_{1}\left(0^{+}\right)} d v_{1}+C_{2} \int_{v_{2}\left(0^{-}\right)}^{v_{2}\left(0^{+}\right)} d v_{2}=0 \\
C_{1}\left[v_{1}\left(0^{+}\right)-v_{1}\left(0^{-}\right)\right]+C_{2}\left[v_{2}\left(0^{+}\right)-v_{2}\left(0^{-}\right)\right]=0 \Rightarrow C_{1} v_{1}\left(0^{-}\right)+C_{2} v_{2}\left(0^{-}\right)=\left(C_{1}+C_{2}\right) v\left(0^{+}\right)
\end{gathered}
$$

Inductors

Figure: Two series NTI inductors with $i=i_{1}=i_{2}$ and $v=v_{1}+v_{2}$. Series connection of two current-controlled inductors has the characteristic curve $\phi=\phi_{1}+\phi_{2}=f_{1}\left(i_{1}\right)+f_{2}\left(i_{2}\right)=f(i)$.

$$
\begin{gathered}
v=v_{1}+v_{2} \Rightarrow \frac{d \phi}{d t}=\frac{d \phi_{1}}{d t}+\frac{d \phi_{2}}{d t} \Rightarrow \phi(t)-\phi(0)=\phi_{1}(t)-\phi_{1}(0)+\phi_{2}(t)-\phi_{2}(0) \\
\phi(0)=\phi_{1}(0)+\phi_{2}(0) \Rightarrow \phi(t)=\phi_{1}(t)+\phi_{2}(t)
\end{gathered}
$$

Inductors

Figure: Two parallel NTI inductors with $v=v_{1}=v_{2}$ and $i=i_{1}+i_{2}$. Parallel connection of two flux-controlled inductors has the characteristic curve $i=i_{1}+i_{2}=f_{1}\left(\phi_{1}\right)+f_{2}\left(\phi_{2}\right)=f(\phi)$ provided that $\phi_{1}(0)=\phi_{2}(0)$.

$$
\begin{gathered}
v=v_{1}=v_{2} \Rightarrow \frac{d \phi}{d t}=\frac{d \phi_{1}}{d t}=\frac{d \phi_{2}}{d t} \Rightarrow \phi(t)-\phi(0)=\phi_{1}(t)-\phi_{1}(0)=\phi_{2}(t)-\phi_{2}(0) \\
\phi(0)=\phi_{1}(0)=\phi_{2}(0) \Rightarrow \phi(t)=\phi_{1}(t)=\phi_{2}(t)
\end{gathered}
$$

Inductors

Example (Series connection of LTI inductors)

If the LTI inductors $L_{1}, L_{2}, \ldots, L_{N}$ with the initial currents $i_{1}\left(0^{-}\right), i_{2}\left(0^{-}\right), \ldots, i_{N}\left(0^{-}\right)$ are connected in series, they can be replaced with the equivalent LTI inductor $L_{e q}=\sum_{k=1}^{N} L_{k}$ with a suitable initial current $i\left(0^{+}\right)=i_{1}\left(0^{+}\right)=\cdots=i_{N}\left(0^{+}\right)$.

$$
\begin{aligned}
& \text { III } \\
& i \xlongequal{\uparrow+L_{e q}}{ }^{m} \\
& v=\sum_{k=1}^{N} v_{k}=\sum_{k=1}^{N} L_{k} \frac{d i_{k}}{d t}=\left(\sum_{k=1}^{N} L_{k}\right) \frac{d i}{d t}
\end{aligned}
$$

Inductors

Example (Initial current of two series LTI inductors)

If the LTI inductors L_{1} and L_{2} with the initial currents $i_{1}\left(0^{-}\right)$and $i_{2}\left(0^{-}\right)$are connected in series, they can be replaced with the equivalent LTI inductor $L_{e q}=L_{1}+L_{2}$ with having the initial current $i\left(0^{+}\right)=\frac{L_{1} i_{1}\left(0^{-}\right)+L_{2} i_{2}\left(0^{-}\right)}{L_{1}+L_{2}}$.

$$
\phi\left(0^{-}\right)=\phi\left(0^{+}\right) \Rightarrow L_{1} i_{1}\left(0^{-}\right)+L_{2} i_{2}\left(0^{-}\right)=L_{1} i_{1}\left(0^{+}\right)+L_{2} i_{2}\left(0^{+}\right)=\left(L_{1}+L_{2}\right) i\left(0^{+}\right)
$$

Inductors

Example (Initial current of two series LTI inductors)

If the LTI inductors L_{1} and L_{2} with the initial currents $i_{1}\left(0^{-}\right)$and $i_{2}\left(0^{-}\right)$are connected in series, they can be replaced with the equivalent LTI inductor $L_{\text {eq }}=L_{1}+L_{2}$ with having the initial current $i\left(0^{+}\right)=\frac{L_{1} i_{1}\left(0^{-}\right)+L_{2} i_{2}\left(0^{-}\right)}{L_{1}+L_{2}}$.

$$
\begin{gathered}
v_{1}(t)+v_{2}(t)=L_{1} \frac{d i_{1}}{d t}+L_{2} \frac{d i_{2}}{d t}=0 \Rightarrow \int_{0^{-}}^{0^{+}}\left[L_{1} \frac{d i_{1}}{d t}+L_{2} \frac{d i_{2}}{d t}\right] d t=0 \Rightarrow L_{1} \int_{i_{1}\left(0^{-}\right)}^{i_{1}\left(0^{+}\right)} d i_{1}+L_{2} \int_{i_{2}\left(0^{-}\right)}^{i_{2}\left(0^{+}\right)} d i_{2}=0 \\
L_{1}\left[i_{1}\left(0^{+}\right)-i_{1}\left(0^{-}\right)\right]+L_{2}\left[i_{2}\left(0^{+}\right)-i_{2}\left(0^{-}\right)\right]=0 \Rightarrow L_{1} i_{1}\left(0^{-}\right)+L_{2} i_{2}\left(0^{-}\right)=\left(L_{1}+L_{2}\right) i\left(0^{+}\right)
\end{gathered}
$$

Inductors

Example (Parallel connection of LTI inductors)

If the LTI inductors $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{N}$ with the initial currents $i_{1}(0), i_{2}(0), \ldots, i_{N}(0)$ are connected in parallel, they can be replaced with the equivalent LTI inductor $\Gamma_{e q}=\sum_{k=1}^{N} \Gamma_{k}$ with the initial current $i(0)=\sum_{k=1}^{N} i_{k}(0)$.

$$
i=\sum_{k=1}^{N} i_{k}=\sum_{k=1}^{N}\left[i_{k}(0)+\Gamma_{k} \int_{0}^{t} v_{k}(\lambda) d \lambda\right]=\sum_{k=1}^{N} i_{k}(0)+\left(\sum_{k=1}^{N} \Gamma_{k}\right) \int_{0}^{t} v(\lambda) d \lambda
$$

The End

