# **Question 1**

For the circuit shown in Fig. 1,



Figure 1: Lattice network.

(a) Find the network function  $H(j\omega) = \frac{V_2(j\omega)}{V_1(j\omega)}$ , where  $Z(j\omega)$  and  $Y(j\omega)$  denote impedance and admittance of the diagonal single-port passive networks.

(b) Let  $Z(j\omega) = j\omega + \frac{1}{j\omega}$  and  $Y(j\omega) = j\omega + \frac{1}{j\omega}$  be a series and a parallel LC network, respectively. Find the simplified transfer function  $H(j\omega) = \frac{V_2(j\omega)}{V_1(j\omega)}$  and the corresponding amplitude and phase responses.

(c) Plot the amplitude and phase response of  $H(j\omega)$  calculated in part (b).

## **Question 2**

Calculate the Thevenin and Norton equivalent circuits seen from port ab in Fig. 2,



## **Question 3**

The zero-state response of an LTI circuit to the input  $x(t) = (e^{-t} - \cos(t) + \sin(t))u(t)$  is  $y(t) = 2\sin(t)u(t)$ . Find the impulse response, step response, and zero-state response to the input  $x_1(t) = e^{-2t}\sin(3t)u(t)$ .

## **Question 4**

The one ports  $N_1$  and  $N_2$  in Fig. 3 are in sinusoidal steady state. When the one-ports are connected as Fig. 3(a),  $V_{aa'} = \sqrt{2/-45^\circ}$ ,  $I_{ab} = 1/0^\circ$  while  $V_{aa'} = \sqrt{2/45^\circ}$ ,  $I_{ab'} = 3/0^\circ$  when the one-ports are connected as Fig. 3(b).



Figure 3: Two one-ports in sinusoidal steady state.

(a) Find the Thevenin equivalent circuits of the two one-ports.

(b) Find the resitance of the resistive load  $R_L$  connected between a and a' in Fig. 3(a) that absorbs the maximum average power.

(c) Find the maximum power absorbed by the resistive load  $R_L$  calculated in the previous part.

### **Question 5**

Let  $R_1 = 3\Omega$ ,  $R_2 = 6\Omega$ , and  $L = \frac{2}{3}H$  in the first order RL circuit shown in Fig. 4.



(a) Assume that  $v_s(t) = e^{-\frac{9}{2}t}u(t)$ . Calculate the initial current  $I_0$  of the inductor such that  $v_o(t) = 0, t > 0$ .

(b) Assume that  $v_s(t) = 8\cos(\sqrt{3}t + \phi)u(t)$  V and let the inductor initial current  $i_L(0) = I_0 = 1$  A. Calculate the phase  $\phi$  such that no transient response appears in  $i_L(t), t > 0$ .