Question 1

For the circuit shown in Fig. 1

Figure 1: Lattice network.
(a) Find the network function $H(j \omega)=\frac{V_{2}(j \omega)}{V_{1}(j \omega)}$, where $Z(j \omega)$ and $Y(j \omega)$ denote impedance and admittance of the diagonal single-port passive networks.
$V_{2}(j \omega)=\frac{Y^{-1}+Z}{Y^{-1}+Z+Z} V_{1}(j \omega)-\frac{Z}{Y^{-1}+Z+Z} V_{1}(j \omega)=\frac{Y^{-1}}{Y^{-1}+2 Z} V_{1}(j \omega)=\frac{1}{1+2 Z Y} V_{1}(j \omega)$ So,

$$
H(j \omega)=\frac{V_{2}(j \omega)}{V_{1}(j \omega)}=\frac{1}{1+2 Z(j \omega) Y(j \omega)}
$$

(b) Let $Z(j \omega)=j \omega+\frac{1}{j \omega}$ and $Y(j \omega)=j \omega+\frac{1}{j \omega}$ be a series and a paralle/ LC network, respectively. Find the simplified transfer function $H(j \omega)=\frac{V_{2}(j \omega)}{V_{1}(j \omega)}$ and the corresponding amplitude and phase responses.

$$
\begin{array}{r}
H(j \omega)=\frac{V_{2}(j \omega)}{V_{1}(j \omega)}=\frac{1}{1+2 Z(j \omega) Y(j \omega)}=\frac{1}{1+2\left(j \omega+\frac{1}{j \omega}\right)\left(j \omega+\frac{1}{j \omega}\right)}=\frac{-\omega^{2}}{2 \omega^{4}-5 \omega^{2}+2} \\
|H(j \omega)|=\frac{\omega^{2}}{\left|2 \omega^{4}-5 \omega^{2}+2\right|}= \begin{cases}\frac{\omega^{2}}{2 \omega^{4}-5 \omega^{2}+2}, & \omega<\frac{1}{\sqrt{2}} \\
\frac{-\left(2 \omega^{4}-5 \omega^{2}+2\right)}{2}, & \frac{1}{\sqrt{2}<\omega<\sqrt{2}} \\
2 \omega^{4}-5 \omega^{2}+2 & \omega>\sqrt{2}\end{cases} \\
\angle H(j \omega)=\angle-\omega^{2}-\angle 2 \omega^{4}-5 \omega^{2}+2= \begin{cases}\pi, & \omega<\frac{1}{\sqrt{2}} \\
0, & \frac{1}{\sqrt{2}}<\omega<\sqrt{2} \\
\pi, & \omega>\sqrt{2}\end{cases}
\end{array}
$$

(c) Plot the amplitude and phase response of $H(j \omega)$ calculated in part (b).

Magnitude and phase responses are shown in Fig. 2 and Fig. 3 respectively. The magnitude has two vertical asymptote lines at $\omega=\frac{1}{\sqrt{2}}$ and $\omega=\sqrt{2}$. The magnitude is zero at $\omega=0$. The magnitude also approaches zero for $\omega \rightarrow \infty$. The phase experiences sudden jumps at the frequencies $\omega=\frac{1}{\sqrt{2}}$ and $\omega=\sqrt{2}$.

Figure 2: Magnitude response curve.

Figure 3: Phase response curve.

Question 2

Calculate the Thevenin and Norton equivalent circuits seen from port ab in Fig. 4

Figure 4: An op-amp circuit.

Figure 5: An op-amp circuit.

Consider the annotated circuit shown in Fig. 2 We have,

$$
I=\frac{V_{1}-2 V_{1}}{R}+\frac{V_{1}-V_{2}}{R}=-\frac{V_{2}}{R} \Rightarrow V_{2}=-R I=-R I+0 I_{2} \Rightarrow V_{o c}=-R I, \quad R_{t h}=0
$$

So, the Thevenin equivalent circuit is an alone voltage source as shown in Fig. 5. Consequently, there is no Norton equivalent circuit.

Question 3

The zero-state response of an LTI circuit to the input $x(t)=\left(e^{-t}-\cos (t)+\sin (t)\right) u(t)$ is $y(t)=$ $2 \sin (t) u(t)$. Find the impulse response, step response, and zero-state response to the input $x_{1}(t)=e^{-2 t} \sin (3 t) u(t)$.

We use properties of LTI circuits to find the impulse response.

$$
\begin{aligned}
& x(t)=\left(e^{-t}-\cos (t)+\sin (t)\right) u(t) \rightarrow y(t)=2 \sin (t) u(t) \\
& x^{\prime}(t)=\left(-e^{-t}+\sin (t)+\cos (t)\right) u(t) \rightarrow y^{\prime}(t)=2 \cos (t) u(t) \\
& x(t)+x^{\prime}(t)=2 \sin (t) u(t) \rightarrow y(t)+y^{\prime}(t)=2(\sin (t)+\cos (t)) u(t) \\
& x^{\prime}(t)+x^{\prime \prime}(t)=2 \cos (t) u(t) \rightarrow y^{\prime}(t)+y^{\prime \prime}(t)=2(\cos (t)-\sin (t)) u(t)+2 \delta(t) \\
& x^{\prime \prime}(t)+x^{\prime \prime \prime}(t)=-2 \sin (t) u(t)+2 \delta(t) \rightarrow y^{\prime \prime}(t)+y^{\prime \prime \prime}(t)=2(-\sin (t)-\cos (t)) u(t) \\
&+2 \delta(t)+2 \delta^{\prime}(t) \\
& x(t)+x^{\prime}(t)+x^{\prime \prime}(t)+x^{\prime \prime \prime}(t)=2 \delta(t) \rightarrow y(t)+y^{\prime}(t)+y^{\prime \prime}(t)+y^{\prime \prime \prime}(t)=2 \delta(t)+2 \delta^{\prime}(t) \\
& \delta(t) \rightarrow h(t)=\delta(t)+\delta^{\prime}(t)
\end{aligned}
$$

For the step response,

$$
x(t)=u(t) \rightarrow s(t)=h(t) * u(t)=\left(\delta(t)+\delta^{\prime}(t)\right) * u(t)=u(t)+\delta(t)
$$

And finally, the output corresponding to the input $x_{1}(t)=e^{-2 t} \sin (3 t) u(t)$ is

$$
y_{1}(t)=x_{1}(t) * h(t)=\left(\delta(t)+\delta^{\prime}(t)\right) * x_{1}(t)=x_{1}(t)+x_{1}^{\prime}(t)=\left(3 e^{-2 t} \cos (3 t)-e^{-2 t} \sin (3 t)\right) u(t)
$$

Question 4

The one ports \mathcal{N}_{1} and \mathcal{N}_{2} in Fig. 6 are in sinusoidal steady state. When the one-ports are connected as Fig. $6(\mathbf{a}), V_{a a^{\prime}}=\sqrt{2} /-45^{\circ}, I_{a b}=1 \angle 0^{\circ}$ while $V_{a a^{\prime}}=\sqrt{2} \angle 45^{\circ}, I_{a b^{\prime}}=3 \angle 0^{\circ}$ when the one-ports are connected as Fig. 6(b).

Figure 6: Two one-ports in sinusoidal steady state.

Figure 7: Thevenin equivalent circuits of the one-ports in Fig. 6

Figure 8: Thevenin equivalent circuit seen from port $a a^{\prime}$ in Fig. 6(a).
(a) Find the Thevenin equivalent circuits of the two one-ports.

The one ports are replaced with their equivalent Thevenin circuits in Fig. 7 We have,

$$
\begin{array}{ll}
I_{a b 1}=\frac{V_{t h 1}-V_{t h 2}}{Z_{t h 1}+Z_{t h 2}}, & V_{a a^{\prime} 1}=V_{t h 1}-I_{a b 1} Z_{t h 1} \\
I_{a b^{\prime} 2}=\frac{V_{t h 1}+V_{t h 2}}{Z_{t h 1}+Z_{t h 2}}, & V_{a a^{\prime} 2}=V_{t h 1}-I_{a b^{\prime} 2} Z_{t h 1}
\end{array}
$$

So,

$$
\begin{gathered}
V_{a a^{\prime} 1}-V_{a a^{\prime} 2}=Z_{t h 1}\left(I_{a b^{\prime} 2}-I_{a b 1}\right) \\
\Rightarrow Z_{t h 1}=\frac{V_{a a^{\prime} 1}-V_{a a^{\prime} 2}}{I_{a b^{\prime} 2}-I_{a b 1}}=\frac{\sqrt{2}\left(\frac{1}{\sqrt{2}}-j \frac{1}{\sqrt{2}}\right)-\sqrt{2}\left(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}}\right)}{3-1}=-j \\
V_{t h 1}=V_{a a^{\prime} 1}+I_{a b 1} Z_{t h 1}=\sqrt{2}\left(\frac{1}{\sqrt{2}}-j \frac{1}{\sqrt{2}}\right)-j=1-2 j \\
I_{a b 1}+I_{a b^{\prime} 2}=\frac{2 V_{t h 1}}{Z_{t h 1}+Z_{t h 2}} \Rightarrow Z_{t h 2}=\frac{2 V_{t h 1}}{I_{a b 1}+I_{a b^{\prime} 2}}-Z_{t h 1}=\frac{2-4 j}{4}+j=\frac{1}{2} \\
V_{t h 2}=I_{a b^{\prime} 2}\left(Z_{t h 1}+Z_{t h 2}\right)-V_{t h 1}=3\left(\frac{1}{2}-j\right)-1+2 j=\frac{1}{2}-j
\end{gathered}
$$

(b) Find the resistance of the resistive load R_{L} connected between a and a^{\prime} in Fig. [6(a) that absorbs the maximum average power.

Note that we have a pure resistive load here and we cannot use the simple form of the maximum power transfer theorem. Consider Fig. 8, where that the series combination of the voltage source V_{s} and impedance Z_{s} drives the load $Z_{L}=R_{L}$. We have,

$$
\begin{aligned}
& I=\frac{V_{s}}{Z_{s}+Z_{L}}=\frac{V_{s}}{\left(R_{s}+R_{L}\right)+j X_{s}} \Rightarrow P_{a v L}=\frac{\Re\left\{Z_{L}\right\}}{2}|I|^{2}=\frac{1}{2} \frac{R_{L}}{\left(R_{L}+R_{s}\right)^{2}+X_{s}^{2}}\left|V_{s}\right|^{2} \\
& \frac{d P_{a v L}}{d R_{L}}=0 \Rightarrow\left(R_{L}+R_{s}\right)^{2}+X_{s}^{2}-2\left(R_{L}+R_{s}\right) R_{L}=0 \Rightarrow R_{L}=\sqrt{R_{s}^{2}+X_{s}^{2}}=\left|Z_{s}\right|
\end{aligned}
$$

The equivalent impedance seen from the port $a a^{\prime}$ in Fig. 7 (a) is shown in Fig. 8 and equal to

$$
Z_{s}=Z_{t h 1} \| Z_{t h 2}=\frac{-j \frac{1}{2}}{-j+\frac{1}{2}}
$$

So, the desired load should have the resistance

$$
R_{L}=\left|Z_{s}\right|=\left|\frac{-j \frac{1}{2}}{-j+\frac{1}{2}}\right|=\frac{\sqrt{5}}{5}
$$

(c) Find the maximum power absorbed by the resistive load R_{L} calculated in the previous part.

We know that

$$
Z_{s}=Z_{t h 1} \| Z_{t h 2}=\frac{-j \frac{1}{2}}{-j+\frac{1}{2}}=\frac{2}{5}-j \frac{1}{5}=R_{s}+j X_{s}
$$

Further, using superposition in Fig.7(a),

$$
V_{o c}=\frac{Z_{t h 2}}{Z_{t h 1}+Z_{t h 2}} V_{t h 1}+\frac{Z_{t h 1}}{Z_{t h 1}+Z_{t h 2}} V_{t h 2}=\frac{1+3 j}{-1+2 j}=1-j
$$

The maximum power is consumed for $R_{L}=\frac{\sqrt{5}}{5}$ and equals

$$
P_{a v L}=\frac{1}{2} \frac{R_{L}}{\left(R_{L}+R_{s}\right)^{2}+X_{s}^{2}}\left|V_{s}\right|^{2}=\frac{1}{2} \frac{\frac{\sqrt{5}}{5}}{\left(\frac{\sqrt{5}}{5}+\frac{2}{5}\right)^{2}+\left(-\frac{1}{5}\right)^{2}}|1-j|^{2}=\frac{5}{2 \sqrt{5}+4}
$$

Question 5

Let $R_{1}=3 \Omega, R_{2}=6 \Omega$, and $L=\frac{2}{3} \mathbf{H}$ in the first order RL circuit shown in Fig. 9 .

Figure 9: An RL circuit.
(a) Assume that $v_{s}(t)=e^{-\frac{9}{2} t} u(t)$. Calculate the initial current I_{0} of the inductor such that $v_{o}(t)=$ $0, t>0$.

$$
\begin{gathered}
v_{L}=L \frac{d i_{L}}{d t}, \quad i_{R 2}=i_{L}+i_{R 1}=i_{L}+\frac{L}{R_{1}} \frac{d i_{L}}{d t}, \quad v_{o}=R_{2} i_{R_{2}}=R_{2}\left(i_{L}+\frac{L}{R_{1}} \frac{d i_{L}}{d t}\right) \\
v_{s}=v_{o}+v_{L}=R_{2}\left(i_{L}+\frac{L}{R_{1}} \frac{d i_{L}}{d t}\right)+L \frac{d i_{L}}{d t}=R_{2} i_{L}+L\left(1+\frac{R_{2}}{R_{1}}\right) \frac{d i_{L}}{d t} \\
2 \frac{d i_{L}}{d t}+6 i_{L}=e^{-\frac{9}{2} t}, t>0 \Rightarrow i_{L}=K e^{-3 t}-\frac{1}{3} e^{-\frac{9}{2} t}, t>0 \\
v_{o}=6 i_{L}+\frac{4}{3} \frac{d i_{L}}{d t}=2 K e^{-3 t}=0, t>0 \Rightarrow K=0 \Rightarrow i_{L}(0)=I_{0}=K-\frac{1}{3}=-\frac{1}{3}
\end{gathered}
$$

(b) Assume that $v_{s}(t)=8 \cos (\sqrt{3} t+\phi) u(t) \vee$ and let the inductor initial current $i_{L}(0)=I_{0}=1 \mathrm{~A}$. Calculate the phase ϕ such that no transient response appears in $i_{L}(t), t>0$.

We know that

$$
\begin{gathered}
v_{s}=R_{2} i_{L}+L\left(1+\frac{R_{2}}{R_{1}}\right) \frac{d i_{L}}{d t} \Rightarrow 2 \frac{d i_{L}}{d t}+6 i_{L}=8 \cos (\sqrt{3} t+\phi), t>0 \\
i_{L}=i_{h}+i_{p}=K e^{-3 t}+I_{m} \cos (\sqrt{3} t+\alpha)
\end{gathered}
$$

Using phasor analysis,
$2 j \sqrt{3} I_{p}+6 I_{p}=8 e^{j \phi} \Rightarrow I_{p}=\frac{8 e^{j \phi}}{2 j \sqrt{3}+6}=\frac{8 e^{j \phi}}{\sqrt{48} e^{j \frac{\pi}{6}}}=\frac{2}{\sqrt{3}} e^{j\left(\phi-\frac{\pi}{6}\right)} \Rightarrow i_{p}=\frac{2}{\sqrt{3}} \cos \left(\sqrt{3} t+\phi-\frac{\pi}{6}\right)$
Overall,

$$
i_{L}=K e^{-3 t}+\frac{2}{\sqrt{3}} \cos \left(\sqrt{3} t+\phi-\frac{\pi}{6}\right)
$$

To remove the transient part of the response $K=0$. Further,

$$
i_{L}(0)=I_{0}=1=K+\frac{2}{\sqrt{3}} \cos \left(\phi-\frac{\pi}{6}\right)=\frac{2}{\sqrt{3}} \cos \left(\phi-\frac{\pi}{6}\right) \Rightarrow \cos \left(\phi-\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} \Rightarrow \phi=\frac{\pi}{6}+\frac{\pi}{6}=\frac{\pi}{3}
$$

