First-order Circuits

Mohammad Hadi
mohammad.hadi@sharif.edu
@MohammadHadiDastgerdi

Spring 2022

Overview

(1) First-order Circuits
(2) First-order LTI RC Circuit
(3) First-order LTI Circuit
(4) First-order NTV Circuit

First-order Circuits

Circuit Types

Statement (Linear Circuit)

A linear circuit is a circuit that includes linear elements and/or independent sources.

Statement (LTI Circuit)

An LTI circuit is a circuit that includes LTI elements and/or independent sources.

Statement (First-order Circuit)

A first-order circuit is a circuit that has one independent energy-storage element.

Statement (First-order LTI Circuit)

A first-order LTI circuit is an LTI circuit that has one independent energystorage element.

- Capacitors and inductors are energy-storage elements.

Circuit Analysis

Definition (Circuit Inputs)

Independent sources are called circuit inputs.

Definition (Circuit Initial Conditions)

The initial voltage of the capacitors and initial currents of the inductors are referred to as circuit initial conditions.

Definition (Circuit Response)

The circuit response is the voltage or current of a desired element of the circuit.

Circuit Responses

Definition (Zero-input response)

Zero-input response is defined as the response of a circuit when its inputs are identically zero.

Definition (Zero-state response)

Zero-state response is defined as the the response of a circuit when its initial conditions are zero.

Definition (Complete response)

Complete response is defined as the response of a circuit to both inputs and initial states.

Circuit Responses

Definition (Impulse Response)

The zero-state response of the LTI circuit to the impulse input is called impulse response.

Definition (Step Response)

The zero-state response of the LTI circuit to the unit step input is called step response.

Circuit Responses

Definition (Transient Response)

Transient response is the part of the circuit response that damps as time proceeds.

Definition (Steady-state response)

Steady-state response is the part of the circuit response that remains as time proceeds.

Linear Circuits

Statement (Zero-input response)

In a linear circuit, the zero-input response is a linear function of the initial conditions.

Statement (Zero-state response)

In a linear circuit, the zero-state response is a linear function of the inputs.

Statement (Complete response)

In a linear circuit, the complete response is the sum of zero-input and zerostate responses.

- Homogeneity property of a linear function:

$$
i_{s}(t) \rightarrow y(t) \Rightarrow K i_{s}(t) \rightarrow K y(t)
$$

- Additivity property of a linear function:

$$
i_{s 1}(t) \rightarrow y_{1}(t), i_{s 2}(t) \rightarrow y_{2}(t) \Rightarrow i_{s 1}(t)+i_{s 2}(t) \rightarrow y_{1}(t)+y_{2}(t)
$$

LTI Circuits

Statement (Input Shift Property)

In an LTI circuit, the zero-state response to a shifted input experiences the same shift.

- Shift property: $i_{s}(t), y\left(0^{-}\right)=0 \rightarrow y(t), t>0 \Rightarrow i_{s}\left(t-t_{0}\right), y\left(t_{0}^{-}\right)=$ $0 \rightarrow y\left(t-t_{0}\right), t>t_{0}$

Statement (Input Derivative Property)

In an LTI circuit, the zero-state response to the derivative of an input equals the derivative of the zero-state response to the input.

- Derivative property:

$$
i_{s}(t), y\left(0^{-}\right)=0 \rightarrow y(t), t>0 \Rightarrow \frac{d i_{s}(t)}{d t}, y\left(0^{-}\right)=0 \rightarrow \frac{d y(t)}{d t}, t>0
$$

First-order LTI RC Circuit

Series RC Circuit

Example (Zero-input response for series RC circuit)

The zero-input response of capacitor voltage in the series RC circuit has exponential form.

$$
\begin{aligned}
& v_{c}\left(0^{-}\right)=V_{0} \Rightarrow v_{c}\left(0^{+}\right)=V_{0} \Rightarrow v_{c}(0)=V_{0} \\
& i_{R}(t)-i_{c}(t)=0 \Rightarrow \frac{v_{R}(t)}{R}-C \frac{d v_{c}(t)}{d t}=0 \\
& -\frac{v_{c}(t)}{R}-C \frac{d v_{c}(t)}{d t}=0 \Rightarrow \frac{d v_{c}(t)}{d t}+\frac{1}{\tau} v_{c}(t)=0, \tau=R C \\
& v_{c}(t)=K e^{-\frac{t}{\tau}}, v_{c}(0)=K=V_{0} \\
& \Rightarrow v_{c}(t)=V_{0} e^{-\frac{t}{\tau}}, t>0
\end{aligned}
$$

Series RC Circuit

Example (Zero-state response for series RC circuit)

The DC-driven zero-state response of capacitor voltage in the series RC circuit has exponential form.

$$
\begin{aligned}
& v_{c}\left(0^{-}\right)=0 \Rightarrow v_{c}\left(0^{+}\right)=0 \Rightarrow v_{c}(0)=0 \\
& v_{R}(t)+v_{c}(t)-v_{s}(t)=0 \\
& \Rightarrow R i_{R}(t)+v_{c}(t)=R i_{c}(t)+v_{c}(t)=v_{s}(t) \\
& \Rightarrow R C \frac{d v_{c}(t)}{d t}+v_{c}(t)=v_{s}(t) \\
& \Rightarrow \frac{d v_{C}(t)}{d t}+\frac{1}{\tau} v_{c}(t)=\frac{v_{s}(t)}{\tau}, \quad \tau=R C \\
& \Rightarrow \frac{d v_{C}(t)}{d t}+\frac{1}{\tau} v_{c}(t)=\frac{V_{s}}{\tau} \\
& v_{c}(t)=K e^{-\frac{t}{\tau}}+v_{s}, v_{c}(0)=K+V_{s}=0 \Rightarrow K=-v_{s} \\
& \Rightarrow v_{c}(t)=V_{s}\left(1-e^{-\frac{t}{\tau}}\right), t>0
\end{aligned}
$$

Series RC Circuit

Example (Complete response for series RC circuit)

The DC-driven complete response of capacitor voltage in the series RC circuit has exponential form.

$$
\begin{aligned}
& v_{c}\left(0^{-}\right)=V_{0} \Rightarrow v_{c}\left(0^{+}\right)=v_{0} \Rightarrow v_{c}(0)=V_{0} \\
& v_{R}(t)+v_{c}(t)-v_{s}(t)=0 \\
& \Rightarrow R i_{R}(t)+v_{c}(t)=R i_{c}(t)+v_{c}(t)=v_{s}(t) \\
& \Rightarrow R C \frac{d v_{C}(t)}{d t}+v_{c}(t)=v_{s}(t) \\
& \Rightarrow \frac{d v_{C}(t)}{d t}+\frac{1}{\tau} v_{c}(t)=\frac{v_{s}(t)}{\tau}, \quad \tau=R C \\
& \Rightarrow \frac{d v_{C}(t)}{d t}+\frac{1}{\tau} v_{c}(t)=\frac{v_{s}}{\tau}
\end{aligned}
$$

$$
\begin{aligned}
& v_{c}(t)=K e^{-\frac{t}{\tau}}+V_{s}, v_{c}(0)=K+V_{s}=V_{0} \Rightarrow K=V_{0}-V_{s} \\
& \Rightarrow v_{c}(t)=\left(V_{0}-V_{s}\right) e^{-\frac{t}{\tau}}+V_{s}, t>0
\end{aligned}
$$

Series RC Circuit

Example (Complete response for series RC circuit)

The compete respone is the sum of the zero-input and zero-state responses in the DC-driven series RC circuit.

$$
\begin{aligned}
& v_{c}(t)=\left(V_{0}-V_{s}\right) e^{-\frac{t}{\tau}}+V_{s}, t>0 \\
& v_{c}(t)=V_{0} e^{-\frac{t}{\tau}}+V_{s}\left(1-e^{-\frac{t}{\tau}}\right), t>0
\end{aligned}
$$

Series RC Circuit

Example (Transient and steady state responses for series RC circuit)

The DC-driven series RC circuit with $\tau>0$ has a damping exponential transient response and a constant steady state response.

$$
v_{c}(t)=\left(V_{0}-V_{s}\right) e^{-\frac{t}{\tau}}+V_{s}, t>0
$$

Series RC Circuit

Example (Current response for series RC circuit)

The current response experiences a discontinuity at $t=0$ in the series RC circuit.

$$
\begin{aligned}
& i\left(0^{-}\right)=0, i\left(0^{+}\right)=\frac{V_{s}-V_{0}}{R} \\
& v_{c}(t)=\left(V_{0}-V_{s}\right) e^{-\frac{t}{\tau}}+V_{s}, t>0 \\
& i(t)=C \frac{d v_{c}(t)}{d t}=\frac{V_{s}-V_{0}}{R} e^{-\frac{t}{\tau}}
\end{aligned}
$$

Series RC Circuit

Example (Stored energy for series RC circuit)

$\frac{1}{2} C V_{s}^{2}$ of electrical energy is stored in the zero-state DC-driven series RC circuit.

$$
\begin{aligned}
& v_{c}(t)=V_{s}\left(1-e^{-\frac{t}{\tau}}\right), t>0 \\
& i(t)=\frac{V_{s}}{R} e^{-\frac{t}{\tau}} \\
& p(t)=\frac{V_{s}^{2}}{R} e^{-\frac{t}{\tau}}\left(1-e^{-\frac{t}{\tau}}\right) \\
& w(0, \infty)=\int_{0}^{\infty} p(t) d t=\frac{1}{2} C V_{s}^{2}
\end{aligned}
$$

Series RC Circuit

Example (Step response)

Step response of the series RC circuit has exponential form.

$$
\left.\begin{array}{l}
v_{c}\left(0^{-}\right)=0 \Rightarrow v_{c}\left(0^{+}\right)=0 \\
\frac{d v_{c}(t)}{d t}+\frac{1}{\tau} v_{c}(t)=\frac{1}{\tau} \\
\Rightarrow v_{c}(t)=1-e^{-\frac{t}{\tau}}, t>0 \\
v_{c}(t)=s(t)=\left\{\begin{array}{lll}
0, & t \leq 0 \\
1-e^{-\frac{t}{\tau}}, & t>0
\end{array}=\left(1-e^{-\frac{t}{\tau}}\right) u(t)\right.
\end{array}\right\} \begin{aligned}
& u\left(\begin{array}{lllll}
0.63 & 0.86 & 0.95 & 0.98
\end{array}\right. \\
& \qquad s(t)=v_{c}(t) \left\lvert\, \begin{array}{llll}
-\cdots & 2 \tau & 3 \tau & 4 \tau
\end{array}\right.
\end{aligned}
$$

Series RC Circuit

Example (Linearity and shift property of LTI circuits)

Zero-state response to a complex input can be found using linearity and shift properties of an LTI circuit.

$$
\begin{aligned}
& v_{c}\left(0^{-}\right)=0, v_{s}(t)=\frac{u(t)-u(t-T)}{T} \\
& \frac{d v_{c}(t)}{d t}+\frac{1}{\tau} v_{c}(t)=\frac{u(t)-u(t-T)}{T \tau} \\
& \Rightarrow v_{c}(t)= \begin{cases}0, & t \leq 0 \\
\frac{1-e^{-\frac{t}{\tau}}}{T}, & 0 \leq t<T \\
\frac{e^{-\frac{t-T}{\tau}}-e^{-\frac{t}{\tau}}}{T}, & t \geq T\end{cases} \\
& \Rightarrow v_{c}(t)=\frac{1}{T}\left(1-e^{-\frac{t}{\tau}}\right) u(t)-\frac{1}{T}\left(1-e^{-\frac{t-T}{\tau}}\right) u(t-T)
\end{aligned}
$$

Series RC Circuit

Example (Impulse response)

Impulse response of the series RC circuit is the derivative of the step response.

$$
\begin{aligned}
& v_{c}\left(0^{-}\right)=0, \delta(t)=\lim _{T \rightarrow 0} \frac{u(t)-u(t-T)}{T} \\
& \frac{d v_{C}(t)}{d t}+\frac{1}{\tau} v_{c}(t)=\frac{u(t)-u(t-T)}{T \tau} \\
& \Rightarrow v_{c}(t)= \begin{cases}0, & t \leq 0 \\
\frac{1-e^{-\frac{t}{\tau}}}{T}, & 0 \leq t<T \\
\frac{e^{-\frac{t-T}{\tau}}-e^{-\frac{t}{\tau}}}{T}, & t \geq T\end{cases}
\end{aligned}
$$

$h(t)=\lim _{T \rightarrow 0} v_{c}(t)=\left\{\begin{array}{ll}0, & t \leq 0 \\ \frac{1}{\tau} e^{-\frac{t}{\tau}}, & t \geq 0\end{array}=\frac{1}{\tau} e^{-\frac{t}{\tau}} u(t)=\frac{d s(t)}{d t}\right.$

Series RC Circuit

Example (Impulse response (cont.))

Impulse response of the series RC circuit is the derivative of the step response.

$$
\begin{aligned}
& \frac{d v_{c}(t)}{d t}+\frac{1}{\tau} v_{c}(t)=\frac{\delta(t)}{\tau}, v_{c}\left(0^{-}\right)=0 \\
& \frac{d v_{c}(t)}{d t}+\frac{1}{\tau} v_{c}(t)=0, t>0, v_{c}\left(0^{+}\right)=? \\
& \int_{0^{-}}^{0^{+}}\left[\frac{d v_{c}(t)}{d t}+\frac{1}{\tau} v_{c}(t)\right] d t=\int_{0^{-}}^{0^{+}} \frac{\delta(t)}{\tau} d t \\
& \left(v_{c}\left(0^{+}\right)-v_{c}\left(0^{-}\right)\right)+0=\frac{1}{\tau} \Rightarrow v_{c}\left(0^{+}\right)=\frac{1}{\tau} \\
& \frac{d v_{c}(t)}{d t}+\frac{1}{\tau} v_{c}(t)=0, v_{c}\left(0^{+}\right)=\frac{1}{\tau} \\
& h(t)=\frac{1}{\tau} e^{-\frac{t}{\tau}} u(t)=\frac{d s(t)}{d t}
\end{aligned}
$$

Parallel RC Circuit

Example (Complete response for parallel RC circuit)

The DC-driven complete response of capacitor voltage in the parallel RC circuit has exponential form.

$$
\begin{aligned}
& v_{c}\left(0^{-}\right)=V_{0} \Rightarrow v_{c}\left(0^{+}\right)=V_{0} \Rightarrow v_{c}(0)=V_{0} \\
& i_{R}(t)+i_{c}(t)-i_{s}(t)=0 \\
& \Rightarrow \frac{v_{c}(t)}{R}+C \frac{d v_{c}(t)}{d t}=i_{s}(t) \\
& \Rightarrow R C \frac{d v_{C}(t)}{d t}+v_{c}(t)=R i_{s}(t) \\
& \Rightarrow \frac{d v_{C}(t)}{d t}+\frac{1}{\tau} v_{c}(t)=\frac{i_{s}(t)}{C}, \quad \tau=R C \\
& \Rightarrow \frac{d v_{c}(t)}{d t}+\frac{1}{\tau} v_{c}(t)=\frac{I_{s}}{C}, t>0 \\
& \Rightarrow v_{c}(t)=K e^{-\frac{t}{\tau}}+R I_{s}, v_{c}(0)=K+R I_{s}=V_{0} \Rightarrow K=V_{0}-R I_{s} \\
& \Rightarrow v_{c}(t)=\left(V_{0}-R I_{s}\right) e^{-\frac{t}{\tau}}+R I_{s}, t>0 \\
& \Rightarrow v_{c}(t)=V_{0} e^{-\frac{t}{\tau}}+R I_{s}\left(1-e^{-\frac{t}{\tau}}\right), t>0
\end{aligned}
$$

First-order LTI Circuit

DC-driven RL Circuit

Example (Complete response for an RL circuit)

The DC-driven complete response of inductor current in the RL circuit has exponential form.

$$
\begin{aligned}
& i_{L}\left(0^{-}\right)=I_{0} \Rightarrow i_{L}\left(0^{+}\right)=I_{0} \Rightarrow i_{L}(0)=I_{0} \\
& i_{R}(t)+i_{L}(t)-i_{s}(t)=0 \\
& \Rightarrow \frac{v_{L}(t)}{R}+i_{L}(t)=i_{s}(t) \\
& \Rightarrow \frac{L}{R} \frac{d i_{L}(t)}{d t}+i_{L}(t)=i_{s}(t) \\
& \Rightarrow \frac{d i_{L}(t)}{d t}+\frac{1}{\tau} i_{L}(t)=\frac{i_{s}(t)}{\tau}, \quad \tau=\frac{L}{R} \\
& \Rightarrow \frac{d i_{L}(t)}{d t}+\frac{1}{\tau} i_{L}(t)=\frac{I_{s}}{\tau}, t>0 \\
& \Rightarrow i_{L}(t)=K e^{-\frac{t}{\tau}}+I_{s}, i_{L}(0)=K+I_{s}=I_{0} \Rightarrow K=I_{0}-I_{s} \\
& \Rightarrow i_{L}(t)=\left(I_{0}-I_{s}\right) e^{-\frac{t}{\tau}}+I_{s}, t>0 \\
& \Rightarrow i_{L}(t)=I_{0} e^{-\frac{t}{\tau}}+I_{s}\left(1-e^{-\frac{t}{\tau}}\right), t>0
\end{aligned}
$$

DC-driven Complete Response

Statement (DC-driven First Order LTI Circuit Describing Equation)

A DC-driven first-order LTI circuit is described by the constant-coefficient linear differential equation $\frac{d f(t)}{d t}+\frac{1}{\tau} f(t)=F_{s}, f\left(t_{0}^{+}\right)=F_{0}, t>t_{0}$, where F_{0} is a suitably calculated initial value at $t=t_{0}$.

Statement (DC-driven First Order LTI Circuit Complete Response)

A DC-driven first-order LTI circuit achieving steady state situation has the complete response $f(t)=f(\infty)+\left[f\left(t_{0}^{+}\right)-f(\infty)\right] e^{-\frac{t-t_{0}}{\tau}}, t>t_{0}$, where $\tau=R_{e q} C$ or $\tau=\frac{L}{R_{e q}}$ and $R_{e q}$ is the equivalent resistance seen from the energy-storage element in the in-rest circuit. $f\left(t_{0}^{+}\right)$is a suitably calculated initial value at $t=t_{0}$ and $f(\infty)$ is the steady state value when the energystorage element acts like short or open circuit.

DC-driven LTI First-order Circuit

Example (LTI first-order circuit with two time constants)

Switching may change the time constant of an LTI first-order circuit.

$$
\begin{aligned}
& i(t)=0, t<0 \Rightarrow i_{L}(t)=\frac{20}{5}=4, t<0 \\
& i\left(0^{-}\right)=0, i_{L}\left(0^{-}\right)=4
\end{aligned}
$$

DC-driven LTI First-order Circuit

Example (LTI first-order circuit with two time constants (cont.))

Switching may change the time constant of an LTI first-order circuit.

$$
\begin{aligned}
& i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=4 \Rightarrow-10+5\left(i\left(0^{+}\right)+i_{L}\left(0^{+}\right)\right)+20 i\left(0^{+}\right)=0 \Rightarrow i\left(0^{+}\right)=-0.4 \\
& i(\infty)=0 \Rightarrow i_{L}(\infty)=\frac{10}{5}=2 \\
& R_{e q}=20 \| 5=4 \Rightarrow \tau=\frac{L}{R_{e q}}=1 \\
& i_{L}(t)=\left[i_{L}\left(0^{+}\right)-i_{L}(\infty)\right] e^{-\frac{t}{\tau}}+i_{L}(\infty)=2+2 e^{-t}, 0<t<1 \\
& i(t)=\left[i\left(0^{+}\right)-i(\infty)\right] e^{-\frac{t}{\tau}}+i(\infty)=-0.4 e^{-t}=\frac{v_{L}(t)}{20}=\frac{4}{20} \frac{d i_{L}(t)}{d t}, 0<t<1 \\
& i_{L}\left(1^{-}\right)=2+2 e^{-1} \approx 2.74
\end{aligned}
$$

DC-driven LTI First-order Circuit

Example (LTI first-order circuit with two time constants (cont.))

Switching may change the time constant of an LTI first-order circuit.

$$
\begin{aligned}
& i_{L}\left(1^{+}\right)=i_{L}\left(1^{-}\right)=2.74 \Rightarrow-10+5\left(i\left(1^{+}\right)+i_{L}\left(1^{+}\right)+\frac{20 i\left(1^{+}\right)}{4}-4\right)+20 i\left(1^{+}\right)=0 \Rightarrow i\left(1^{+}\right)=-0.33 \\
& \quad i(\infty)=0 \Rightarrow i_{L}(\infty)=\frac{10}{5}+4=6 \\
& R_{e q}=20\|5\| 4=2 \Rightarrow \tau=\frac{L}{R_{e q}}=2 \\
& i_{L}(t)=\left[i_{L}\left(1^{+}\right)-i_{L}(\infty)\right] e^{-\frac{t-1}{\tau}}+i_{L}(\infty)=6-3.2 e^{-\frac{t-1}{2}}, t>1 \\
& i(t)=\left[i\left(1^{+}\right)-i(\infty)\right] e^{-\frac{t-1}{\tau}}+i(\infty)=-0.33 e^{-\frac{t-1}{2}}=\frac{v_{L}(t)}{20}=\frac{4}{20} \frac{d i_{L}(t)}{d t}, t>1
\end{aligned}
$$

DC-driven LTI First-order Circuit

Example (LTI first-order circuit with two time constants (cont.))

Switching may change the time constant of an LTI first-order circuit.

DC-driven LTI First-order Circuit

Example (Step response calculation)

Step response can be found using various methods.

$$
\begin{aligned}
& -v_{s}(t)+5 i(t)+v_{C}(t)=0, \quad i(t)=\frac{1}{2} \frac{v_{C}(t)}{d t}+\frac{v_{C}(t)}{20} \\
& \frac{d v_{C}(t)}{d t}+\frac{1}{2} v_{C}(t)=\frac{2}{5} v_{s}(t)
\end{aligned}
$$

$$
\frac{d v_{C}(t)}{d t}+\frac{1}{2} v_{C}(t)=\frac{2}{5} u(t), v_{C}\left(0^{-}\right)=0
$$

$$
\frac{d v_{C}(t)}{d t}+\frac{1}{2} v_{C}(t)=\frac{2}{5}, t>0, v_{C}\left(0^{+}\right)=0
$$

$$
v_{C}(t)=\frac{4}{5}\left(1-e^{-\frac{t}{2}}\right), t>0, \quad s_{v}(t)=\frac{4}{5}\left(1-e^{-\frac{t}{2}}\right) u(t)
$$

$s_{v}(t)=\left\{\begin{array}{l}0, \quad t<0 \\ {\left[v_{C}\left(0^{+}\right)-v_{C}(\infty)\right] e^{-\frac{t}{\tau}}+v_{C}(\infty), \quad t>0 \quad=\frac{4}{5}\left(1-e^{-\frac{t}{2}}\right) u(t)}\end{array}\right.$

DC-driven LTI First-order Circuit

Example (Step response calculation (cont.))

Step response can be found using various methods.

$$
\begin{aligned}
& -v_{s}(t)+5 i(t)+v_{C}(t)=0, \quad i(t)=\frac{1}{2} \frac{v_{C}(t)}{d t}+\frac{v_{C}(t)}{20} \\
& \frac{d i(t)}{d t}+\frac{1}{2} i(t)=\frac{1}{50} v_{s}(t)+\frac{1}{5} \frac{d v_{s}(t)}{d t} \\
& \frac{d i(t)}{d t}+\frac{1}{2} i(t)=\frac{1}{50} u(t)+\frac{1}{5} \delta(t), i\left(0^{-}\right)=0 \\
& \int_{0^{-}}^{0^{+}} \frac{d i(t)}{d t} d t+\frac{1}{2} \int_{0^{-}}^{0^{+}} i(t) d t=\frac{1}{50} \int_{0^{-}}^{0^{+}} u(t) d t+\frac{1}{5} \int_{0^{-}}^{0^{+}} \delta(t) d t \\
& \left(i\left(0^{+}\right)-i\left(0^{-}\right)\right)+0=0+\frac{1}{5} \Rightarrow i\left(0^{+}\right)=\frac{1}{5} \\
& \frac{d i(t)}{d t}+\frac{1}{2} i(t)=\frac{1}{50}, i\left(0^{+}\right)=\frac{1}{5} \\
& i(t)=\frac{4}{25} e^{-\frac{t}{2}}+\frac{1}{25}, t>0, \quad s_{i}(t)=\left[\frac{4}{25} e^{-\frac{t}{2}}+\frac{1}{25}\right] u(t)
\end{aligned}
$$

DC-driven LTI First-order Circuit

Example (Step response calculation (cont.))

Step response can be found using various methods.
$i(t)=\frac{v_{s}(t)-v_{C}(t)}{5} \Rightarrow s_{i}(t)=\frac{u(t)-s_{v}(t)}{5}=\left[\frac{4}{25} e^{-\frac{t}{2}}+\frac{1}{25}\right] u(t)$
$s_{i}(t)=\left\{\begin{array}{l}0, \quad t<0 \\ {\left[i\left(0^{+}\right)-i(\infty)\right] e^{-\frac{t}{\tau}}+i(\infty), \quad t>0}\end{array}=\left[\frac{4}{25} e^{-\frac{t}{2}}+\frac{1}{25}\right] u(t)\right.$

DC-driven LTI First-order Circuit

Example (Impulse response calculation)

Impulse response can be found using various methods.

$$
\begin{aligned}
& -v_{s}(t)+5 i(t)+v_{C}(t)=0, \quad i(t)=\frac{1}{2} \frac{d v_{C}(t)}{d t}+\frac{v_{C}(t)}{20} \\
& \frac{d v_{C}(t)}{d t}+\frac{1}{2} v_{C}(t)=\frac{2}{5} v_{S}(t) \\
& \frac{d v_{C}(t)}{d t}+\frac{1}{2} v_{C}(t)=\frac{2}{5} \delta(t), v_{C}\left(0^{-}\right)=0 \\
& \int_{0^{-}}^{0^{+}} \frac{d v_{C}(t)}{d t} d t+\frac{1}{2} \int_{0^{-}}^{0^{+}} v_{C}(t) d t=\frac{2}{5} \int_{0^{-}}^{0^{+}} \delta(t) d t \\
& \left(v_{C}\left(0^{+}\right)-v_{C}\left(0^{-}\right)\right)+0=0+\frac{2}{5} \Rightarrow v_{C}\left(0^{+}\right)=\frac{2}{5} \\
& \frac{d v_{C}(t)}{d t}+\frac{1}{2} v_{C}(t)=0, v_{C}\left(0^{+}\right)=\frac{2}{5} \\
& v_{C}(t)=\frac{2}{5} e^{-\frac{t}{2}} t>0, \quad h_{v}(t)=\frac{2}{5} e^{-\frac{t}{2}} u(t) \\
& h_{v}(t)=\frac{d s_{v}(t)}{d t}=\frac{d}{d t}\left[\left(1-e^{-\frac{t}{2}}\right) u(t)\right]=\frac{2}{5} e^{-\frac{t}{2}} u(t)
\end{aligned}
$$

DC-driven LTI First-order Circuit

Example (Impulse response calculation (cont.))

Impulse response can be found using various methods.

$$
\begin{aligned}
& h_{i}(t)=\frac{d s_{i}(t)}{d t}=\frac{d}{d t}\left[\left(\frac{4}{25} e^{-\frac{t}{2}}+\frac{1}{25}\right) u(t)\right]=\frac{-2}{25} e^{-\frac{t}{2}} u(t)+\frac{1}{5} \delta(t) \\
& i(t)=\frac{v_{s}(t)-v_{C}(t)}{5} \Rightarrow h_{i}(t)=\frac{\delta(t)-h_{v}(t)}{5}=\frac{-2}{25} e^{-\frac{t}{2}} u(t)+\frac{1}{5} \delta(t) \\
& \frac{d i(t)}{d t}+\frac{1}{2} i(t)=\frac{1}{50} \delta(t)+\frac{1}{5} \delta^{\prime}(t), i\left(0^{-}\right)=0 \\
& h_{i}(t)=\frac{-2}{25} e^{-\frac{t}{2}} u(t)+\frac{1}{5} \delta(t)
\end{aligned}
$$

DC-driven LTI First-order Circuit

Example (LTI first-order circuit with two capacitors)

Each capacitive loop decrements the number of independent capacitors.

$$
\begin{aligned}
& v_{1}\left(0^{-}\right)=2, \quad v_{2}\left(0^{-}\right)=1 \\
& \left\{\begin{array}{l}
-v_{2}(t)+u(t)+v_{1}(t)=0 \\
\frac{v_{2}(t)}{2}+3 \frac{d v_{2}(t)}{d t}+i_{4}(t)+i_{3}(t)+2 \frac{d v_{1}(t)}{d t}+\frac{v_{1}(t)}{2}=0, \quad i_{4}(t)=i_{3}(t)=0 \quad, t>0 \\
\left\{\begin{array} { l }
{ - v _ { 2 } (0 ^ { + }) + u (0 ^ { + }) + v _ { 1 } (0 ^ { + }) = 0 } \\
{ 0 + 3 (v _ { 2 } (0 ^ { + }) - v _ { 2 } (0 ^ { - })) + 0 + 0 + 2 (v _ { 1 } (0 ^ { + }) - v _ { 1 } (0 ^ { - })) + 0 = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
v_{1}\left(0^{+}\right)=0.8 \\
v_{2}\left(0^{+}\right)=1.8
\end{array}\right.\right. \\
\frac{d v_{2}(t)}{d t}+\frac{1}{5} v_{2}(t)=0.1 u(t)+0.4 \delta(t), v_{2}\left(0^{+}\right)=1.8 \\
v_{2}(t)=0.5+1.3 e^{-\frac{t}{5}}, t>0
\end{array}\right. \\
& \hline
\end{aligned}
$$

DC-driven LTI First-order Circuit

Example (LTI first-order circuit with two capacitors (cont.))

Each capacitive loop decrements the number of independent capacitors.

$$
\begin{aligned}
& v_{1}\left(0^{-}\right)=2, \quad v_{2}\left(0^{-}\right)=1 \Rightarrow v_{1}\left(0^{+}\right)=0.8, \quad v_{2}\left(0^{+}\right)=1.8 \\
& v_{1}(\infty)=-0.5, \quad v_{2}(\infty)=0.5 \\
& R_{e q}=2 \| 2=1, \quad C_{e q}=2+3=5 \Rightarrow \tau=R_{e q} C_{e q}=5 \\
& v_{1}(t)=\left(v_{1}\left(0^{+}\right)-v_{1}(\infty)\right) e^{-\frac{t}{\tau}}+v_{1}(\infty)=-0.5+1.3 e^{-\frac{t}{5}} \\
& v_{2}(t)=\left(v_{2}\left(0^{+}\right)-v_{2}(\infty)\right) e^{-\frac{t}{\tau}}+v_{2}(\infty)=0.5+1.3 e^{-\frac{t}{5}}
\end{aligned}
$$

DC-driven LTI First-order Circuit

Example (LTI first-order circuit with two inductors)

Each inductive Gaussian surface decrements the number of independent inductors.

$$
R_{e q}=R_{5}+\left(R_{4} \|\left(R_{1}+R_{2}+R_{3}\right)\right), \quad L_{e q}=L_{1}+L_{2} \Rightarrow \tau=\frac{L_{e q}}{R_{e q}}
$$

Exponentially-driven LTI First-order Circuit

Example (Exponential input)

In the circuit below with $R=1 \Omega, c=0.5 \mathrm{~F}, v_{C}\left(0^{+}\right)=2 \mathrm{~V}$, and $i_{s}(t)=$ $5 e^{-t}$, the capacitor voltage has no steady state response.

$$
\begin{aligned}
& \frac{d v_{C}(t)}{d t}+2 v_{C}(t)=2 i_{s}(t), v_{C}\left(0^{+}\right)=2 \\
& \frac{d v_{C}(t)}{d t}+2 v_{C}(t)=10 e^{-t}, v_{C}\left(0^{+}\right)=2 \\
& v_{C}(t)=K e^{-2 t}+A e^{-t} \\
& \frac{d\left[A e^{-t}\right]}{d t}+2 A e^{-t}=10 e^{-t} \Rightarrow A=10 \\
& v_{C}\left(0^{+}\right)=K+10=2 \Rightarrow K=-8 \\
& v_{C}(t)=-8 e^{-2 t}+10 e^{-t}, t>0 \\
& v_{C}(t \rightarrow \infty)=0
\end{aligned}
$$

Exponentially-driven LTI First-order Circuit

Example (Sinusoidal input)

In the circuit below with $R=1 \Omega, c=0.5 \mathrm{~F}, v_{C}\left(0^{+}\right)=2 \mathrm{~V}$, and $i_{s}(t)=$ $5 \cos (t)$, the capacitor voltage has sinusoidal steady state response.

$$
\begin{aligned}
& \frac{d v_{C}(t)}{d t}+2 v_{C}(t)=2 i_{s}(t), v_{C}\left(0^{+}\right)=2 \\
& \frac{d v_{C}(t)}{d t}+2 v_{C}(t)=10 \cos (t), v_{C}\left(0^{+}\right)=2 \\
& v_{C}(t)=K e^{-2 t}+A \cos (t)+B \sin (t) \\
& \frac{d[A \cos (t)+B \sin (t)]}{d t}+2[A \cos (t)+B \sin (t)]=10 \cos (t) \\
& (2 A+B) \cos (t)+(2 B-A) \sin (t)=10 \cos (t) \\
& \left\{\begin{array}{l}
2 A+B=10 \quad \Rightarrow A=4, B=2 \\
2 B-A=0
\end{array}\right. \\
& v_{C}\left(0^{+}\right)=K+4=2 \Rightarrow K=-2 \\
& v_{C}(t)=-2 e^{-2 t}+4 \cos (t)+2 \sin (t), t>0 \\
& v_{C}(t)=-2 e^{-2 t}+2 \sqrt{5} \cos \left(t-\tan ^{-1}(0.5)\right), t>0 \\
& v_{C}(t \rightarrow \infty)=2 \sqrt{5} \cos \left(t-\tan ^{-1}(0.5)\right)
\end{aligned}
$$

First-order NTV Circuit

First-order NTV Circuit

Example (First-order LTV circuit)

Generally, a first-order LTV circuit is not described by constant coefficient linear differential equation.

$$
\begin{aligned}
& R(t)=\frac{1}{1+0.5 \cos (t)}, v_{C}(0)=2 \\
& i_{C}(t)+i_{R}(t)=0 \Rightarrow \frac{d v_{C}(t)}{d t}+(1+0.5 \cos (t)) v_{C}(t)=0, t>0 \\
& \frac{d v_{C}}{v_{C}}=-(1+0.5 \cos (t)) d t, t>0 \\
& \int_{v_{C}(0)}^{v_{C}(t)} \frac{d v_{C}}{v_{C}}=-\int_{0}^{t}(1+0.5 \cos (t)) d t \\
& \ln \left(v_{C}(t)\right)-\ln \left(v_{C}(0)\right)=-t-0.5 \sin (t), t>0 \\
& v_{C}(t)=2 e^{-t-0.5 \sin (t)}, t>0
\end{aligned}
$$

First-order NTV Circuit

Example (First-order NTI circuit)

Generally, a first-order NTI circuit is not described by constant coefficient linear differential equation.

$$
\begin{aligned}
& i_{R}(t)=v_{R}^{2}(t), v_{C}(0)=2 \\
& i_{C}(t)+i_{R}(t)=0 \Rightarrow \frac{d v_{C}(t)}{d t}+v_{C}^{2}(t)=0, t>0 \\
& \frac{d v_{C}}{v_{C}^{2}}=-d t, t>0 \\
& \int_{v_{C}(0)}^{v_{C}(t)} \frac{d v_{C}}{v_{C}^{2}}=-\int_{0}^{t} d t \\
& -\frac{1}{v_{C}(t)}+\frac{1}{v_{C}(0)}=-t, t>0 \\
& v_{C}(t)=\frac{1}{t+0.5}, t>0
\end{aligned}
$$

First-order NTV Circuit

Example (First-order LTV circuit)

Aa first-order LTV circuit may be treated as an LTI circuit in different time intervals.

$$
v_{C}(t)=\frac{4}{4+6} 20=8, t<0 \Rightarrow v_{C}\left(0^{-}\right)=8
$$

First-order NTV Circuit

Example (First-order LTV circuit (cont.))

Generally, a first-order LTV circuit may be treated as an LTI circuit in different time intervals.

$$
\begin{aligned}
& v_{C}(t)=\left[v_{C}\left(0^{+}\right)-v_{C}(\infty)\right] e^{-\frac{t}{\tau}}+v_{C}(\infty), t>0 \\
& v_{C}\left(0^{+}\right)=v_{C}\left(0^{-}\right)=8
\end{aligned}
$$

First-order NTV Circuit

Example (First-order LTV circuit (cont.))

Generally, a first-order LTV circuit may be treated as an LTI circuit in different time intervals.

$$
\begin{aligned}
& v_{C}(t)=\left[v_{C}\left(0^{+}\right)-v_{C}(\infty)\right] e^{-\frac{t}{\tau}}+v_{C}(\infty), t>0 \\
& v_{C}(\infty)=v_{o c}=4
\end{aligned}
$$

First-order NTV Circuit

Example (First-order LTV circuit (cont.))

Generally, a first-order LTV circuit may be treated as an LTI circuit in different time intervals.

$$
\begin{aligned}
& v_{C}(t)=\left[v_{C}\left(0^{+}\right)-v_{C}(\infty)\right] e^{-\frac{t}{\tau}}+v_{C}(\infty)=4+4 e^{-t}, t>0 \\
& R_{e q}=2 \Rightarrow \tau=R_{e q} C=1
\end{aligned}
$$

The End

