Question 1

Consider the series RC circuit shown in Fig. 1.

Figure 1: A series RC circuit.
(a) Express the signal $v_{s}(t)$ in terms of elementary signals. Note that D denotes the duty cycle and $v_{s}(t)=0$ for $t<0$.
(b) Find the zero-state response of the capacitor voltage $v_{c}(t)$ for all time.
(c) Find the complete response of the capacitor voltage for $t>0$ if the capacitor initial voltage is $v_{c}\left(0^{-}\right)=V_{0}$.

Question 2

Find an expression for $v_{c}(t)$ in Fig. 1 valid for $t>0$. Further, calculate the steady state voltage of the capacitor.

Figure 2: A first-order circuit.

Question 3

Find the differential equation governing the response $v_{3}(t)$ in the circuit below if the initial conditions are $i_{L}\left(0^{-}\right), v_{1}\left(0^{-}\right), v_{2}\left(0^{-}\right)$, and $v_{3}\left(0^{-}\right)$.

Figure 3: An LTI circuit.

Question 4

Calculate the current through the 2Ω resistor in Fig. 4.

Figure 4: A resistive circuit.

