## Question 1

Consider the circuit shown in Fig. 1 , where $i_{s}(t)$ is a positive-value bounded signal and diode is ideal.


Figure 1: A circuit with a capacitor.


Figure 2: The circuit of Fig. 1 for $t<0$.


Figure 3: The circuit of Fig. 1 for $t>0$.
(a) Find an expression for the câpacitor voltage $v_{c}(t)$ valid for all time $t$.

For $t<0$, the capacitor is fully charged by the DC voltage source and gets the voltage $v_{c}(t)=V_{0}, t<0$, as shown in Fig. 2 Clearly, $v_{c}\left(0^{-}\right)=V_{0}$. The circuit for $t>0$ is shown in Fig. 3 A discontinuity in the capacitor voltage at $t=0$ leads to an impulse in the capacitor current and cannot be supplied by the bounded signal $i_{s}(t)$. So, $v_{c}\left(0^{+}\right)=v_{c}\left(0^{-}\right)=V_{0}$. Now, for $t>0$,

$$
v_{c}(t)=v_{c}(0+)+\frac{1}{C} \int_{0^{+}}^{t} i_{s}(\lambda) d \lambda=V_{0}+\frac{1}{C} \int_{0}^{t} i_{s}(\lambda) d \lambda
$$

Note that the diode acts like a short circuit as long as $i_{s}(t)>0$.
(b) Find the steady state response of $v_{c}(t)$ when $i_{s}(t)=1$.

We have,

$$
v_{c}(t)=V_{0}+\frac{1}{C} \int_{0^{+}}^{t} i_{s}(\lambda) d \lambda=V_{0}+\frac{1}{C} \int_{0^{+}}^{t} d \lambda=V_{0}+\frac{t}{C}
$$

Clearly, $v_{c}(t)$ has no steady state response since $v_{c}(\infty)=\infty$.
(c) Find the steady state response of $v_{c}(t)$ when $i_{s}(t)=e^{-t}$.

We have,

$$
v_{c}(t)=V_{0}+\frac{1}{C} \int_{0^{+}}^{t} i_{s}(\lambda) d \lambda=V_{0}+\frac{1}{C} \int_{0^{+}}^{t} e^{-\lambda} d \lambda=V_{0}+\frac{1-e^{-t}}{C}
$$

Clearly, $v_{c}(t)$ approaches the steady state constant value of $V_{0}+\frac{1}{C}$ as time proceeds.

## Question 2

Find an expression for $i_{C}(t), t>1$ in Fig. 4 where

1. The resistor is LTV with the resistance $R(t)=t$.
2. The inductor is LTV with the inductance $L(t)=t^{2}$.
3. The capacitor is LTI with the capacitance $C=1$.
4. The voltage source is $v_{s}(t)=t, t>1$.
5. The initial conditions are $v_{C}\left(1^{+}\right)=0$ and $i_{L}\left(1^{+}\right)=0$.


Figure 4: A second-order circuit.

Writing a KVL for the circuit loop,

$$
v_{R}(t)+v_{L}(t)+v_{C}(t)=R(t) i_{R}(t)+L(t) \frac{d i_{L}(t)}{d t}+i_{L}(t) \frac{d L(t)}{d t}+v_{C}\left(1^{+}\right)+\frac{1}{C} \int_{1^{+}}^{t} i_{C}(\lambda) d \lambda=v_{s}(t)
$$

Since $i_{R}(t)=i_{L}(t)=i_{C}(t)$,

$$
t i_{C}(t)+t^{2} \frac{d i_{C}(t)}{d t}+2 t i_{C}(t)+v_{C}\left(1^{+}\right)+\int_{1^{+}}^{t} i_{C}(\lambda) d \lambda=t, t>1
$$

Taking the time derivative of the equation,

$$
\begin{gathered}
i_{C}(t)+t \frac{d i_{C}(t)}{d t}+2 t \frac{d i_{C}(t)}{d t}+t^{2} \frac{d^{2} i_{C}(t)}{d t^{2}}+2 i_{C}(t)+2 t \frac{d i_{C}(t)}{d t}+i_{C}(t)=1, t>1 \\
t^{2} \frac{d^{2} i_{C}(t)}{d t^{2}}+5 t \frac{d i_{C}(t)}{d t}+4 i_{C}(t)=1, t>1
\end{gathered}
$$

This is a non-homogeneous Euler differential equation with the characteristic equation

$$
m^{2}+(5-1) m+4=0 \Rightarrow m=-2,-2
$$

The solution is of the form

$$
i_{C}(t)=K_{1} t^{-2}+K_{2} t^{-2} \ln (t)+\frac{1}{4}, t>1
$$

Initial conditions give $i_{C}\left(1^{+}\right)=i_{L}\left(1^{+}\right)=0$ and

$$
i_{C}\left(1^{+}\right)+\left.\frac{d i_{C}(t)}{d t}\right|_{t=1^{+}}+2 i_{C}\left(1^{+}\right)+v_{C}\left(1^{+}\right)+\int_{1^{+}}^{1^{+}} i_{C}(\lambda) d \lambda=\left.1 \Rightarrow \frac{d i_{C}(t)}{d t}\right|_{t=1^{+}}=1
$$

So,

$$
\begin{gathered}
i_{C}\left(1^{+}\right)=K_{1}+\frac{1}{4}=0 \Rightarrow K_{1}=-\frac{1}{4} \Rightarrow i_{C}(t)=-\frac{1}{4} t^{-2}+K_{2} t^{-2} \ln (t)+\frac{1}{4} \\
i_{C}^{\prime}(t)=\frac{1}{2} t^{-3}-2 K_{2} t^{-3} \ln (t)+K_{2} t^{-2} \frac{1}{t} \Rightarrow i_{C}^{\prime}\left(1^{+}\right)=K_{2}+\frac{1}{2}=1 \Rightarrow K_{2}=\frac{1}{2}
\end{gathered}
$$

Finally,

$$
i_{C}(t)=-\frac{1}{4} t^{-2}+\frac{1}{2} t^{-2} \ln (t)+\frac{1}{4}, t>1
$$

