Question 1

Calculate the steady state average power consumed by the resistor in the series RC circuit shown in Fig. 1.

Figure 1: A series RC circuit.

The circuit is derived with $v_{s}(t)=v_{p}(t) u(t)$, where $v_{p}(t)$ is an even periodic pulse having the Fourier series

$$
v_{p}(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \frac{2 \pi}{T} t\right)=A D+\sum_{n=1}^{\infty} \frac{2 A}{n \pi} \sin (n \pi D) \cos \left(n \frac{2 \pi}{T} t\right)
$$

So, the circuit is derived with a linear combination of the sinusoidal signals with different frequencies. For a sinusoidal signal $v_{\sin }(t)$ with the frequency ω,

$$
H(j \omega)=\frac{V_{R}}{V_{s i n}}=\frac{R}{R+\frac{1}{j \omega C}}=\frac{j \omega R C}{j \omega R C+1}
$$

Because the circuit is $L T I$, the resistor voltage equals

$$
v_{R}(t)=a_{0}|H(j 0)| \cos (0 t+\angle H(j 0))+\sum_{n=1}^{\infty} a_{n}\left|H\left(j n \frac{2 \pi}{T}\right)\right| \cos \left(n \frac{2 \pi}{T} t+\angle H\left(j n \frac{2 \pi}{T}\right)\right)
$$

Since the sinusoidal components in the resistor voltage have different frequencies, the average power can be found using superposition as

$$
\begin{gathered}
P_{a v R}=\frac{a_{0}^{2}|H(j 0)|^{2} \cos ^{2}(/ H(j 0))}{R}+\sum_{n=1}^{\infty} \frac{a_{n}^{2}\left|H\left(j n \frac{2 \pi}{T}\right)\right|^{2}}{2 R} \\
P_{a v R}=0+\sum_{n=1}^{\infty} \frac{a_{n}^{2}}{2 R} \frac{R^{2} C^{2}\left(n \frac{2 \pi}{T}\right)^{2}}{1+R^{2} C^{2}\left(n \frac{2 \pi}{T}\right)^{2}}=\sum_{n=1}^{\infty} \frac{8 A^{2} R C^{2} \sin ^{2}(n \pi D)}{T^{2}+4 R^{2} C^{2} n^{2} \pi^{2}}
\end{gathered}
$$

