MATHEMATICAL QUESTIONS

Question 1

Consider the triangle periodic signal shown in Fig. 1 .

Figure 1: Triangle periodic signal.
(a) Express the periodic signal $f(t)$ in terms of elementary signals for $0 \leq t<T$.

For $0 \leq t \leq \tau$, we have

$$
f(t)=\frac{A}{\tau} t
$$

For $\tau<t \leq T$, we have,

$$
f(t)=A-\frac{A}{T-\tau}(t-\tau)
$$

So,

$$
\begin{gathered}
f(t)=\frac{A}{\tau} t(u(t)-u(t-\tau))+\left(A-\frac{A}{T-\tau}(t-\tau)\right)(u(t-\tau)-u(t-T)) \\
f(t)=\frac{A}{\tau} r(t)-\frac{A T}{\tau(T-\tau)} r(t-\tau)+\frac{A}{T-\tau} r(t-T)
\end{gathered}
$$

(b) Find the average and $R M$ S values of $f(t)$.

$$
\begin{gathered}
f_{\text {average }}=\frac{1}{T} \int_{0}^{T} f(t) d t=\frac{1}{T} \int_{0}^{\tau} \frac{A}{\tau} t d t+\frac{1}{T} \int_{\tau}^{T}\left(A-\frac{A}{T-\tau}(t-\tau)\right) d t=\frac{A}{2} \\
f_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} f^{2}(t) d t}=\sqrt{\frac{1}{T} \int_{0}^{\tau}\left(\frac{A}{\tau} t\right)^{2} d t+\frac{1}{T} \int_{\tau}^{T}\left(A-\frac{A}{T-\tau}(t-\tau)\right)^{2} d t}=\frac{A}{\sqrt{3}}
\end{gathered}
$$

(c) Plot $f^{\prime}(t)$, the derivative of $f(t)$.

The derivative $f^{\prime}(t)=\frac{A}{\tau} u(t)-\frac{A T}{\tau(T-\tau)} u(t-\tau)+\frac{A}{T-\tau} u(t-T)$ is plotted as

(d) Let $g(t)=B+f(t)$, where B is a real number. Find the average and RMS values of $g(t)$.

$$
\begin{gathered}
g_{a v}=\frac{1}{T} \int_{0}^{T}(f(t)+B) d t=\frac{1}{T} \int_{0}^{T} B d t+\frac{1}{T} \int_{0}^{T} f(t) d t=f_{\text {average }}+B=\frac{A}{2}+B \\
g_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T}(f(t)+B)^{2} d t}=\sqrt{\frac{1}{T} \int_{0}^{T} f^{2}(t) d t+\frac{1}{T} \int_{0}^{T} B^{2} d t+\frac{1}{T} \int_{0}^{T} 2 B f(t) d t} \\
=\sqrt{f_{r m s}^{2}+B^{2}+2 B f_{a v}}=\sqrt{\frac{A^{2}}{3}+B^{2}+B A}
\end{gathered}
$$

Question 2

Calculate the delivered power and voltage of the dependent source in Fig. 2 .

Figure 2: A circuit with dependent source.

$$
\begin{gathered}
i_{3}=\frac{v_{x}}{3} \rightarrow v_{x}=3 i_{3} \\
K C L:-6+\frac{v_{x}}{3}+\frac{v_{x}}{9}-0.9 i_{3}+\frac{v_{x}}{15+(6| | 6)}+4=0
\end{gathered}
$$

Hence,

$$
-6+i_{3}+\frac{i_{3}}{3}-0.9 i_{3}+\frac{i_{3}}{6}+4=0 \rightarrow i_{3}=\frac{10}{3} \rightarrow v_{x}=10
$$

So, the delivered power is

$$
p=\left(0.9 i_{3}\right)\left(v_{x}\right)=\left(0.9 i_{3}\right)\left(3 i_{3}\right)=(3)(10)=30
$$

Question 3

Consider the linear time-variant capacitor of Fig. 3 with the capacitance $C(t)=C_{0}+C_{1} \cos \left(\omega_{1} t\right)$.

Figure 3: A linear time-variant capacitor with capacitance $C(t)=C_{0}+C_{1} \cos \left(\omega_{1} t\right)$.
(a) Find the capacitor current if $v_{s}(t)=A \cos \left(\omega_{2} t\right)$. Further, calculate the energy stored in the capacitor during the interval $[0, t]$.

$$
\begin{gathered}
i(t)=\frac{d}{d t}(C(t) v(t)), \quad v(t)=v_{s}(t)=A \cos \left(\omega_{2} t\right) \\
\Rightarrow i(t)=\frac{d}{d t}\left[\left(c_{0}+c_{1} \cos \left(\omega_{1} t\right)\right)\left(A \cos \left(\omega_{2} t\right)\right)\right]=\frac{d}{d t}\left[c_{0} A \cos \left(\omega_{2} t\right)+c_{1} A \cos \left(\omega_{1} t\right) \cos \left(\omega_{2} t\right)\right] \\
=-c_{0} A \omega_{2} \sin \left(\omega_{2} t\right)-c_{1} A \omega_{1} \sin \left(\omega_{1} t\right) \cos \left(\omega_{2} t\right)-c_{1} A \omega_{2} \sin \left(\omega_{2} t\right) \cos \left(\omega_{1} t\right) \\
w(0, t)=\int_{0}^{t} v(x) i(x) d x=\int_{0}^{t}-c_{0} A^{2} \omega_{2} \sin \left(\omega_{2} x\right) \cos \left(\omega_{2} x\right) d x \\
+\int_{0}^{t}-c_{1} A^{2} \omega_{1} \sin \left(\omega_{1} x\right) \cos ^{2}\left(\omega_{2} x\right) d x+\int_{0}^{t}-c_{1} A^{2} \omega_{2} \sin \left(\omega_{2} x\right) \cos \left(\omega_{1} x\right) \cos \left(\omega_{2} x\right) d x=
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{c_{0} A^{2}}{4}\left[\cos \left(2 \omega_{2} t\right)-1\right]+c_{1} A^{2} \omega_{1}\left[\frac{\cos \left(\left(2 \omega_{2}+\omega_{1}\right) t\right)-1}{4\left(2 \omega_{2}+\omega_{1}\right)}+\frac{1-\cos \left(\left(2 \omega_{2}-\omega_{1}\right) t\right)}{4\left(2 \omega_{2}-\omega_{1}\right)}+\frac{\cos \left(\omega_{1} t\right)-1}{2 \omega_{1}}\right]+ \\
& c_{1} A^{2} \omega_{2}\left[\frac{\cos \left(\left(2 \omega_{2}+\omega_{1}\right) t\right)-1}{4\left(2 \omega_{2}+\omega_{1}\right)}+\frac{\cos \left(\left(2 \omega_{2}-\omega_{1}\right) t\right)-1}{4\left(2 \omega_{2}-\omega_{1}\right)}\right]
\end{aligned}
$$

(b) Find the capacitor current if $v_{s}(t)=A$. Further, calculate the energy stored in the capacitor during the interval $[0, t]$. Does the capacitor act like open circuit as $t \rightarrow \infty$?

$$
\begin{gathered}
i(t)=\frac{d}{d t}(C(t) v(t)), \quad v(t)=v_{s}(t)=A \\
\Rightarrow i(t)=\frac{d}{d t}\left[A\left(c_{0}+c_{1} \cos \left(\omega_{1} t\right)\right)\right]=-c_{1} A \omega_{1} \sin \left(\omega_{1} t\right) \\
w(0, t)=\int_{0}^{t} v(x) i(x) d x=\int_{0}^{t}-c_{1} A^{2} \omega_{1} \sin \left(\omega_{1} x\right) d x=c_{1} A^{2}\left(\cos \left(\omega_{1} t\right)-1\right)
\end{gathered}
$$

Capacitor doesn't act like open circuit as $t \rightarrow \infty$ since the current doesn't converge to zero as $t \rightarrow \infty$.
(c) Find the capacitor current if $v_{s}(t)=A$ and $C_{1}=0$. Does the capacitor act like open circuit as $t \rightarrow \infty$?

$$
\begin{gathered}
i(t)=\frac{d}{d t}(C(t) v(t)), \quad v(t)=v_{s}(t)=A \\
\Rightarrow i(t)=\frac{d}{d t}\left[A c_{0}\right]=0
\end{gathered}
$$

Capacitor acts like open circuit as $t \rightarrow \infty$ since the current is always zeros and therefore, converges to zero as $t \rightarrow \infty$.

Question 4

In the circuit shown in Fig. 4, $v_{s}(t)=A \cos (\omega t) u(t)$ and $i_{s}(t)=B\left(1-e^{-\alpha t}\right) u(t)$. Calculate $v_{L}(t)$ and $i_{C}(t)$. Is $v_{L}(t)$ continuous? How about $i_{C}(t)$?

Figure 4: A circuit with LTI elements.

$$
\begin{gathered}
i_{C}=C \frac{d v_{C}}{d t}, \quad v_{C}=-v_{s}=-A \cos (\omega t) u(t) \\
\rightarrow i_{C}(t)=A C[\omega \sin (\omega t) u(t)-\delta(t)] \\
v_{L}=L_{1} \frac{d i_{L_{1}}}{d t}, \quad i_{L_{1}}=i_{s}=B\left(1-e^{-\alpha t}\right) u(t) \\
\rightarrow v_{L}(t)=L_{1} B \alpha e^{-\alpha t} u(t)+L_{1} B\left(1-e^{-\alpha t}\right) \delta(t)=L_{1} B \alpha e^{-\alpha t} u(t)
\end{gathered}
$$

$v_{L}(t)$ is not continuous due to function $u(t)$ which creates a discontinuity at $t=0$
$i_{C}(t)$ is not continuous due to function $\delta(t)$ which creates a discontinuity at $t=0$.

SOFTWARE QUESTIONS

Question 5

Write a simple MATLAB program that calculates the average and RMS values of a given periodic signal $f(t)$. The function $f(t)$ is represented by a function handle in its fundamental period $t \in[0, T]$.

Here is a sample MATLAB implementation of the desired function.
function [avg, rms] = avg_rms_cal (f, T)
\% average
avg $=$ integral $(f, 0, T) / T$;

```
5
% rms
fsqr = @(t) f(t).^2;
s rms = sqrt(integral(fsqr,0,T)/T);
end
```

You may use the following mfile to call the developed function and see its results.
clear all
clc
\% sample average and rms calculation
[avg, rms] = avg_rms_cal(@sin, 2*pi);
avg
rms
\% sample average and rms calculation
f = @(t) t ;
[avg, rms] = avg_rms_cal(f, 1);
avg
rms

The mfile prints the average values of -1.6289×10^{-17} and 0.5000 and the RMS values of 0.7071 and 0.5774 for the periodic functions $f(t)=\sin (t), 0 \leq t \leq 2 \pi$ and $f(t)=t, 0 \leq t \leq$ 1 , respectively.

BONUS QUESTIONS

Question 6

Find the RMS and average values of the real periodic signal $f(t)=a_{0}+\sum_{k=1}^{\infty}\left[a_{k} \cos \left(\frac{2 \pi k}{T} t\right)+\right.$ $\left.b_{k} \sin \left(\frac{2 \pi k}{T} t\right)\right]$ expanded in its Fourier series form.

Before answering the main problem, let us express a lemma.
Lemma: For integer numbers n and m,

$$
\left.\left.\begin{array}{l}
\int_{0}^{T} \cos \left(\frac{2 \pi m}{T} t\right) \cos \left(\frac{2 \pi n}{T} t\right) d t= \begin{cases}T / 2 & m=n \neq 0 \\
T / 2 & m=-n \neq 0 \\
T & m=n=0 \\
0 & |m| \neq|n|\end{cases}
\end{array}\right\} \begin{array}{l}
T / 2 \\
m=n \neq 0 \\
-T / 2 \tag{3}\\
0 \\
\int_{0}^{T} \min \left(\frac{2 \pi m}{T} t\right) \sin \left(\frac{2 \pi n}{T} t\right) d t=n=0 \\
0
\end{array}|m| \neq|n| \begin{array}{l}
\mid m
\end{array}\right\}
$$

Proving the lemma is straightforward and it is suggested to do it yourself.

Average:

We know that integral of a sinusoidal signal on a period is zero (check it!). So,

$$
\begin{aligned}
f_{a v} & =\frac{1}{T} \int_{0}^{T} f(t) d t=\frac{1}{T} \int_{0}^{T} a_{0} d t+\frac{1}{T} \int_{0}^{T} \underbrace{\sum_{k=1}^{\infty}\left[a_{k} \cos \left(\frac{2 \pi k}{T} t\right)+b_{k} \sin \left(\frac{2 \pi k}{T} t\right)\right]}_{y(t)} d t \\
& =a_{0}+y_{a v}=a_{0}+\frac{1}{T} \sum_{k=1}^{\infty} \underbrace{\int_{0}^{T}\left[a_{k} \cos \left(\frac{2 \pi k}{T} t\right)+b_{k} \sin \left(\frac{2 \pi k}{T} t\right)\right] d t}_{0}=a_{0}
\end{aligned}
$$

Note that $y_{a v}=0$.

RMS:

The signal $f(t)$ consists of a DC term a_{0} and an AC term $y(t)$ with zero average $y_{a v}=0$ as

$$
f(t)=a_{0}+\underbrace{\sum_{k=1}^{\infty}\left[a_{k} \cos \left(\frac{2 \pi k}{T} t\right)+b_{k} \sin \left(\frac{2 \pi k}{T} t\right)\right]}_{y(t)}
$$

So,

$$
f_{\mathrm{rms}}=\sqrt{\frac{1}{T} \int_{0}^{T} f^{2}(t) d t}=\sqrt{a_{0}^{2}+y_{\mathrm{rms}}^{2}+2 a_{0} y_{a v}}=\sqrt{a_{0}^{2}+y_{\mathrm{rms}}^{2}}
$$

, where

$$
y_{\mathrm{rms}}=\sqrt{\frac{1}{T} \int_{0}^{T} y^{2}(t) d t}
$$

Note that all the terms of $y(t)$ are periodic with the period T. First, we should compute $y^{2}(t)$:

$$
\begin{aligned}
y^{2}(t) & =\left(\sum_{i=1}^{\infty}\left[a_{i} \cos \left(\frac{2 \pi i}{T} t\right)+b_{i} \sin \left(\frac{2 \pi i}{T} t\right)\right]\right)\left(\sum_{j=1}^{\infty}\left[a_{j} \cos \left(\frac{2 \pi j}{T} t\right)+b_{j} \sin \left(\frac{2 \pi j}{T} t\right)\right]\right) \\
& =\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i} a_{j} \cos \left(\frac{2 \pi i}{T} t\right) \cos \left(\frac{2 \pi j}{T} t\right)+\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} b_{i} b_{j} \sin \left(\frac{2 \pi i}{T} t\right) \sin \left(\frac{2 \pi j}{T} t\right) \\
& +\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i} b_{j} \cos \left(\frac{2 \pi i}{T} t\right) \sin \left(\frac{2 \pi j}{T} t\right)+\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} b_{i} a_{j} \sin \left(\frac{2 \pi i}{T} t\right) \cos \left(\frac{2 \pi j}{T} t\right)
\end{aligned}
$$

Next, we should compute $\int_{0}^{T} y^{2}(t) d t$ which means putting an integral before each of above terms (don't be afraid of these long terms, it is just an expansion).

$$
\begin{aligned}
\int_{0}^{T} y^{2}(t) d t & =\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i} a_{j} \int_{0}^{T} \cos \left(\frac{2 \pi i}{T} t\right) \cos \left(\frac{2 \pi j}{T} t\right) d t+\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} b_{i} b_{j} \int_{0}^{T} \sin \left(\frac{2 \pi i}{T} t\right) \sin \left(\frac{2 \pi j}{T} t\right) d t \\
& +\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i} b_{j} \int_{0}^{T} \cos \left(\frac{2 \pi i}{T} t\right) \sin \left(\frac{2 \pi j}{T} t\right) d t+\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} b_{i} a_{j} \int_{0}^{T} \sin \left(\frac{2 \pi i}{T} t\right) \cos \left(\frac{2 \pi j}{T} t\right) d t
\end{aligned}
$$

Now, we use the lemma. Last two terms are zero because they are made of the product of sines and cosines which are orthogonal in a period as given in (3). From first two terms, only the same-frequency sines and cosines remain as can be interpreted from (17) and (2). So,

$$
\begin{aligned}
\int_{0}^{T} y^{2}(t) d t & =\sum_{i=1}^{\infty} a_{i}^{2} \frac{T}{2}+\sum_{i=1}^{\infty} b_{i}^{2} \frac{T}{2} \\
& =\frac{T}{2} \sum_{i=1}^{\infty}\left(a_{i}^{2}+b_{i}^{2}\right)
\end{aligned}
$$

So far, we have proven the Parseval's theorem which is a famous theorem and you will learn its details in the engineering mathematics course. Rest of the solution is quite simple.

$$
\begin{aligned}
& \frac{1}{T} \int_{0}^{T} y^{2}(t) d t=\frac{1}{2} \sum_{i=1}^{\infty}\left(a_{i}^{2}+b_{i}^{2}\right) \\
\Rightarrow & y_{\mathrm{rms}}=\sqrt{\frac{1}{T} \int_{0}^{T} y^{2}(t) d t}=\frac{\sqrt{\sum_{i=1}^{\infty}\left(a_{i}^{2}+b_{i}^{2}\right)}}{\sqrt{2}}
\end{aligned}
$$

Hence

$$
f_{\mathrm{rms}}=\sqrt{a_{0}^{2}+\frac{1}{2} \sum_{i=1}^{\infty}\left(a_{i}^{2}+b_{i}^{2}\right)}
$$

Question 7

Return your answers by filling the LT_{E} Xtemplate of the assignment.

EXTRA QUESTIONS

Question 8

Feel free to solve the following questions from the book "Basic Circuit Theory" by C. Desoer and E. Kuh.

1. Chapter 2, question 2.

2. Chapter 2, question 7.
3. Chapter 2, question 8.
4. Chapter 2, question 10.
5. Chapter 2, question 15.
6. Chapter 2, question 16.
7. Chapter 2, question 17.
8. Chapter 2, question 18.
