MATHEMATICAL QUESTIONS

Question 1

Design a circuit with the lowest number of op-amps that implements $v_{o}(t)=-4 v_{s 1}(t)+7 v_{s 2}(t)$.

Figure 1: Designed op-amp circuit.

A sample design can be as the circuit shown in Fig. 17 where

$$
\begin{gathered}
v_{s 2}=v_{+}=v_{-}, \quad \frac{v_{-}-v_{s 1}}{R_{1}}+\frac{v_{-}-0}{R_{2}}+\frac{v_{-}-v_{o}}{R_{f}}=0 \\
v_{o}=-\frac{R_{f}}{R_{1}} v_{s 1}+R_{f}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{f}}\right) v_{s 2} \\
v_{o}=-\frac{4 R}{R} v_{s 1}+4 R\left(\frac{1}{R}+\frac{1}{2 R}+\frac{1}{4 R}\right) v_{s 2}=-4 v_{s 1}+7 v_{s 2}
\end{gathered}
$$

Question 2

Consider the non-inverting amplifier shown in Fig. 2(a).

Figure 2: A non-inverting amplifier.
(a) Calculate $G=\frac{v_{o}}{v_{s}}$ in Fig. 2(a).

By writing KCL at node v_{-},

$$
\frac{v_{-}}{R}+\frac{v_{-}-v_{s}}{R_{i n}}+\frac{v_{-}-v_{o}}{R_{f}}=0
$$

and by writing KCL at node v_{o},

$$
\frac{v_{o}-v_{-}}{R_{f}}+\frac{\left.v_{o}-A\left(v_{s}-v_{-}\right)\right)}{R_{\text {out }}}+\frac{v_{o}}{R_{L}}=0
$$

So,

$$
\left(\begin{array}{cc}
\frac{1}{R}+\frac{1}{R_{i n}}+\frac{1}{R_{f}} & -\frac{1}{R_{f}} \\
\frac{A}{R_{o u t}}-\frac{1}{R_{f}} & \frac{1}{R_{L}}+\frac{1}{R_{o u t}}+\frac{1}{R_{f}}
\end{array}\right)\binom{v_{-}}{v_{o}}=\binom{\frac{v_{s}}{R_{\text {in }}}}{\frac{A}{R_{\text {out }}} v_{s}}
$$

By Cramer's rule,

$$
\begin{gathered}
v_{o}=\frac{\left|\begin{array}{cc}
\frac{1}{R}+\frac{1}{R_{i n}}+\frac{1}{R_{f}} & \frac{1}{R_{\text {in }}} \\
\frac{A}{R_{\text {out }}}-\frac{1}{R_{f}} & \frac{1}{R_{\text {out }}}
\end{array}\right|}{\left|\begin{array}{cc}
\frac{1}{R}+\frac{1}{R_{\text {in }}}+\frac{1}{R_{f}} & -\frac{1}{R_{f}} \\
\frac{A}{R_{\text {out }}}-\frac{1}{R_{f}} & \frac{1}{R_{L}}+\frac{1}{R_{\text {out }}}+\frac{1}{R_{f}}
\end{array}\right|} v_{s} \Rightarrow \\
G=\frac{R_{L}\left(R_{f} R_{\text {in }} A+R R_{\text {in }} A+R R_{\text {out }}\right)}{R_{f} R_{\text {in }} R_{\text {out }}+R_{f} R_{\text {in }} R_{L}+R_{\text {in }} R_{\text {out }} R_{L}+R R_{\text {in }} R_{\text {out }}+R_{L} R R_{\text {in }}+R R_{f} R_{\text {out }}+R R_{f} R_{L}+R R_{\text {out }} R_{L}+A R R_{\text {in }} R_{L}}
\end{gathered}
$$

(b) Under which conditions the calculated $G=\frac{v_{o}}{v_{s}}$ equals the gain of ideal non-inverting amplifier in Fig. 22(b)?

The gain of ideal non-inverting amplifier can be obtained by writing KCL at node v_{-}.

$$
\frac{v_{s}}{R}+\frac{v_{s}-v_{o}}{R_{f}}=0 \Rightarrow \Rightarrow \frac{v_{o}}{v_{s}}=1+\frac{R_{f}}{R}
$$

If we assume $A \rightarrow \infty$, then the gain of part (a) will be as follows.

$$
\lim _{A \rightarrow \infty} G=\frac{v_{s} R_{L}\left(R_{f} R_{i n} A+R R_{i n} A\right)}{A R R_{i n} R_{L}}=\frac{R_{f}}{R}+1
$$

So, the desired condition is that $A \rightarrow \infty$.
(c) Do the currents crossing the red closed surface of Fig. 2 (b) constitute a KCL?

No, because operational amplifiers are active elements and need power supplies. These power supplies also require currents which cross the red closed surface and should be considered in the KCL.

Question 3

Consider the circuit shown in Fig. 3, where $V_{\text {ref }}$ is provided by a regulated voltage source. Show that the circuit can act like a current source and find the constant current I_{s} flowing to the resistive load R_{L}.

Figure 3: An op amp-based current source.

The voltage at the inputs of the Op Amp is 0 . A KCL at the inverting leg of the Op Amp results in $\frac{V_{r e f}}{R_{r e f}}=I_{S}$. Clearly, the constant current I_{S} does not depend on R_{L} and flows through the load resistor R_{L}, regardless of its value. Practically, the load current remains constant as long as voltage or current saturation constraints hold.

Question 4

Apply a unit-step function, $x(t)=u(t)$, as the input to a system whose impulse response is $h(t)=u(t)-2 u(t-1)+u(t-2)$, and determine the corresponding output $y(t)=x(t) * h(t)$.

(a)

(b)

Figure 4: Sketches of (a) the input signal and (b) the unit impulse response for a linear system.

Figure 5: The result of convolving $x(t)$ and $h(t)$ as shown in Fig. 4

We use the analytical method. Note that $u(t) * u(t)=r(t)$ and $f(t) * \delta\left(t-t_{0}\right)=f\left(t-t_{0}\right)$. We have

$$
\begin{gathered}
y(t)=x(t) * h(t)=u(t) *(u(t)-2 u(t-1)+u(t-2))=u(t) * u(t)-2 u(t) * u(t-1)+u(t) * u(t-2) \\
y(t)=r(t)-2 u(t) * u(t) * \delta(t-1)+u(t) * u(t) * \delta(t-2)=r(t)-2 r(t-1)+r(t-2)
\end{gathered}
$$

$y(t)$ is plotted in Fig. 5

Question 5

Find the convolution of the two exponential signals $e^{-\alpha t} u(t)$ and $e^{-\beta t} u(t)$. Feel free to use graphical, analytical, or any other method you know.

Assuming $\alpha \neq \beta$,

$$
\begin{aligned}
& e^{-\alpha t} u(t) * e^{-\beta t} u(t)=\int_{-\infty}^{\infty} e^{-\alpha \tau} u(\tau) e^{-\beta(t-\tau)} u(t-\tau) d \tau=e^{-\beta t} u(t) \int_{0}^{t} e^{(\beta-\alpha) \tau} d \tau \\
= & \left.u(t) e^{-\beta t} \frac{1}{\beta-\alpha} e^{(\beta-\alpha) \tau}\right|_{0} ^{t}=u(t) \frac{1}{\beta-\alpha} e^{-\beta t}\left(e^{(\beta-\alpha) t}-1\right)=\frac{1}{\beta-\alpha}\left(e^{-\alpha t}-e^{-\beta t}\right) u(t)
\end{aligned}
$$

For $\alpha=\beta$,

$$
e^{-\alpha t} u(t) * e^{-\alpha t} u(t)=\int_{-\infty}^{\infty} e^{-\alpha \tau} u(\tau) e^{-\alpha(t-\tau)} u(t-\tau) d \tau=e^{-\alpha t} u(t) \int_{0}^{t} d \tau=t e^{-\alpha t} u(t)
$$

Question 6

Consider a series RL circuit driven with the voltage source $v(t)$, where the loop current $i(t)$ should be calculated.
(a) Find the zero-input response if the initial current is $i(0)=I_{0}$.

$$
L i^{\prime}(t)+R i(t)=0, \quad i(0)=I_{0}
$$

, which is a homogeneous first-order equation with the solution

$$
i(t)=I_{0} e^{-\frac{R}{L} t}
$$

(b) Find the step response.

$$
L i^{\prime}(t)+R i(t)=u(t), \quad i(0)=0
$$

, which is a non-homogeneous first-order equation with the solution

$$
s(t)=i(t)=\frac{1}{R}\left(1-e^{-\frac{R}{L} t}\right) u(t)
$$

(c) Find the impulse response.

$$
h(t)=s^{\prime}(t)=\frac{1}{R}\left(1-e^{-\frac{R}{L} t}\right) \delta(t)+\frac{1}{L} e^{-\frac{R}{L} t} u(t)=\frac{1}{L} e^{-\frac{R}{L} t} u(t)
$$

(d) Find the zero-state response if $v(t)=V_{0} e^{-t} u(t)$.

$$
i(t)=V_{0} e^{-t} u(t) * \frac{1}{L} e^{-\frac{R}{L} t} u(t)=\frac{V_{0}}{L} e^{-t} u(t) * e^{-\frac{R}{L} t} u(t)
$$

If $R \neq L$,

$$
i(t)=\frac{V_{0}}{L} \frac{1}{\frac{R}{L}-1}\left(e^{-t}-e^{-\frac{R}{L} t}\right) u(t)=\frac{V_{0}}{R-L}\left(e^{-t}-e^{-\frac{R}{L} t}\right) u(t)
$$

When $R=L$,

$$
i(t)=\frac{V_{0}}{L} t e^{-t} u(t)
$$

(e) Find the complete response if $v(t)=V_{0} e^{-t} u(t)$ and $i(0)=I_{0}$.

If $R \neq L$,

$$
i(t)=I_{0} e^{-\frac{R}{L} t}+\frac{V_{0}}{R-L}\left(e^{-t}-e^{-\frac{R}{L} t}\right) u(t)
$$

When $R=L$,

$$
i(t)=I_{0} e^{-t}+\frac{V_{0}}{L} t e^{-t} u(t)
$$

SOFTWARE QUESTIONS

Question 7

Simulate a non-inverting amplifier with the gain 2 and an inverting amplifier with the gain -2 in PSpice. Use LM324 for the op amp. Apply a suitable periodic voltage to each amplifier and investigate the corresponding output. Increase the frequency and amplitude of the input and observe the results.

Figure 6: Schematic of the inverting amplifier with gain 2.

Figure 7: Normal operation of the inverting amplifier when the input amplitude is 2 V , the input frequency is 1 kHz , and the supply voltages are ± 15.

Figure 8: Output saturation for the inverting amplifier when the input amplitude is 10 V , the input frequency is 1 kHz , and the supply voltages are ± 15.

Figure 9: Output slew rate for the inverting amplifier when the input amplitude is 2 V , the input frequency is 100 kHz , and the supply voltages are ± 15.

Figure 10: Schematic of the non-inverting amplifier with gain 2.

Figure 11: Normal operation of the non-inverting amplifier when the input amplitude is 2 V , the input frequency is 1 kHz , and the supply voltages are ± 15.

Figure 12: Output saturation for the non-inverting amplifier when the input amplitude is 10 V , the input frequency is 1 kHz , and the supply voltages are ± 15.

Figure 13: Output slew rate for the non-inverting amplifier when the input amplitude is 2 V , the input frequency is 100 kHz , and the supply voltages are ± 15.

The schematic of the inverting amplifier is shown in Fig. 6. Fig. 7 shows the normal operation of the inverting amplifier while Figs. 89 demonstrate how voltage saturation and slew rate affects the normal operation of the amplifier. Figs. 10.13 shows the results for the non-inverting amplifier.

BONUS QUESTIONS

Question 8

Repeat Question 6 if $v(t)=V_{0} \cos (\omega t+\theta) u(t)$.

The zero-input, impulse, and step responses do not change by altering the input voltage. When the input is $v(t)=V_{0} \cos (\omega t+\theta) u(t)$, the zero-state response equals

$$
\begin{aligned}
& v(t) * h(t)=V_{0} \cos (\omega t+\theta) u(t) * \frac{1}{L} e^{-\frac{R}{L} t} u(t)=\frac{V_{0}}{L}\left[\frac{e^{j(\omega t+\theta)}+e^{-j(\omega t+\theta)}}{2}\right] u(t) * e^{-\frac{R}{L} t} u(t) \\
& =\frac{V_{0}}{2 L}\left[e^{j \theta} e^{j \omega t} u(t) * e^{-\frac{R}{L} t} u(t)+e^{-j \theta} e^{-j \omega t} u(t) * e^{-\frac{R}{L} t} u(t)\right] \\
& =\frac{V_{0}}{2 L}\left[e^{j \theta} \frac{1}{\frac{R}{L}+j \omega}\left(e^{j \omega t}-e^{-\frac{R}{L} t}\right) u(t)+e^{-j \theta} \frac{1}{\frac{R}{L}-j \omega}\left(e^{-j \omega t}-e^{-\frac{R}{L} t}\right) u(t)\right] \\
& =\frac{V_{0}}{2 L} u(t)\left[\frac{1}{\frac{R}{L}+j \omega} e^{j(\omega t+\theta)}+\frac{1}{\frac{R}{L}-j \omega} e^{-j(\omega t+\theta)}\right]-\frac{V_{0}}{2 L} u(t) e^{-\frac{R}{L} t}\left[\frac{1}{\frac{R}{L}+j \omega} e^{j \theta}+\frac{1}{\frac{R}{L}-j \omega} e^{-j \theta}\right] \\
& =\frac{V_{0}}{2 L} u(t) \times 2 \operatorname{Re}\left\{\frac{1}{\frac{R}{L}+j \omega} e^{j(\omega t+\theta)}\right\}-\frac{V_{0}}{2 L} u(t) e^{-\frac{R}{L} t} \times 2 \operatorname{Re}\left\{\frac{1}{\frac{R}{L}+j \omega} e^{j \theta}\right\} \\
& =\frac{V_{0}}{L} u(t) \times \operatorname{Re}\left\{\frac{1}{\sqrt{\frac{R^{2}}{L^{2}}+\omega^{2}}} e^{j\left(\omega t+\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right)}\right\}-\frac{V_{0}}{L} u(t) e^{-\frac{R}{L} t} \times \operatorname{Re}\left\{\frac{1}{\sqrt{\frac{R^{2}}{L^{2}}+\omega^{2}}} e^{j\left(\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right)}\right\} \\
& =\frac{V_{0}}{L} u(t) \frac{1}{\sqrt{\frac{R^{2}}{L^{2}}+\omega^{2}}} \cos \left(\omega t+\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right)-\frac{V_{0}}{L} u(t) e^{-\frac{R}{L} t} \frac{1}{\sqrt{\frac{R^{2}}{L^{2}}+\omega^{2}}} \cos \left(\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right) \\
& =\frac{V_{0}}{\sqrt{R^{2}+\omega^{2} L^{2}}} \cos \left(\omega t+\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right) u(t)-\frac{V_{0}}{\sqrt{R^{2}+\omega^{2} L^{2}}} e^{-\frac{R}{L} t} \cos \left(\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right) u(t)
\end{aligned}
$$

Finally, the complete solution equals

$$
\begin{gathered}
i(t)=I_{0} e^{-\frac{R}{L} t}+ \\
\frac{V_{0}}{\sqrt{R^{2}+\omega^{2} L^{2}}} \cos \left(\omega t+\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right) u(t)-\frac{V_{0}}{\sqrt{R^{2}+\omega^{2} L^{2}}} e^{-\frac{R}{L} t} \cos \left(\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right) u(t)
\end{gathered}
$$

When the transients die, the complete response is equal to

$$
i(t)=\frac{V_{0}}{\sqrt{R^{2}+\omega^{2} L^{2}}} \cos \left(\omega t+\theta-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right) u(t)
$$

, which is exactly the steady state sinusoidal current. In a better presentation,

$$
i(t)=\left|\frac{V_{0} e^{j \theta}}{R+j \omega L}\right| \cos \left(\omega t+\angle\left[\frac{V_{0} e^{j \theta}}{R+j \omega L}\right]\right) u(t)
$$

, where $\frac{V_{0} e^{j \theta}}{R+j \omega L}$ is the phasor of the current.

Question 9

EXTRA QUESTIONS

Question 10

Feel free to solve the following questions from the book "Engineering Circuit Analysis" by W. Hayt, J. Kemmerly, and S. Durbin.

1. Chapter 6, question 12.
2. Chapter 6, question 13.
3. Chapter 6, question 14.
4. Chapter 6, question 17.
5. Chapter 6, question 20.
6. Chapter 6, question 21.
7. Chapter 6, question 23.
8. Chapter 6, question 28.
9. Chapter 6, question 29.
10. Chapter 6, question 34.
11. Chapter 6, question 38.
12. Chapter 6, question 40.
13. Chapter 6, question 45.
