Introduction

Mohammad Hadi

mohammad.hadi@sharif.edu

@Mohammad Hadi Dast gerdi

Spring 2022

Overview

- Description
- 2 Requirements
- Resources
- 4 Contents
- 6 Assessment
- 6 References

Course Description

Optical Communication Networks

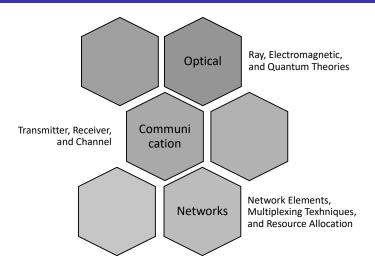


Figure: Puzzle of course title representing the main pillars of optics, communications, and networks.

Optics

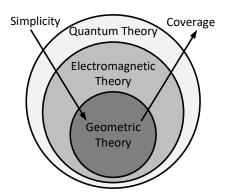


Figure: Coverage-simplicity tradeoff in optical theories.

- **1** Geometric theory: $\partial \int_A^B n(\mathbf{r}) dl = 0$
- **2** Electromagnetic theory: $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$
- **3** Quantum theory: $j\hbar \frac{d}{dt}\ket{\Psi(t)} = \widehat{H}\Psi(t)$

Optics

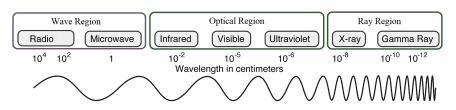


Figure: Electromagnetic spectrum with wave, optical, and ray regions.

- Typical applicability conditions
 - **①** Geometric theory: $\lambda \ll$ system dimension and $h\nu \ll$ system sesitivity
 - 2 Electromagnetic theory: $h\nu \ll \text{system sesitivity}$
 - Quantum theory: Otherwise
- Optical region falls in boundaries of applicability conditions.

Optics

Geometric Optics

- Particle
- Geometry
- Deterministic

Electromagnetic Optics

- Wave
- Continuous
- Deterministic

Quantum Optics

- Particle/Wave
- Continuous/Discrete
- Deterministic/Stochastic

Figure: Comparison of optical theories based on nature, math, and certainty.

 Discrete random process analysis, continuous deterministic differential calculus, and common geometric concepts are widely used in the course.

Communications

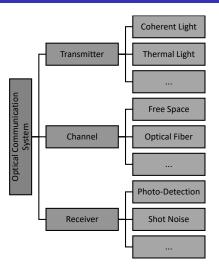


Figure: An optical communication system with its three fundamental blocks transmitter, channel, and receiver. For each fundamental block, two relevant topics are mentioned.

Communications

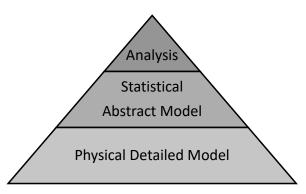


Figure: The course focuses mainly on statistical modeling and performance analysis as well as partially on physical modeling.

• The randomness may originate from information in the transmitter, noise in the channel, stochastic operation in the receiver, etc.

Communications



Figure: A typical point-to-point optical communication link with its physical layer interconnection.

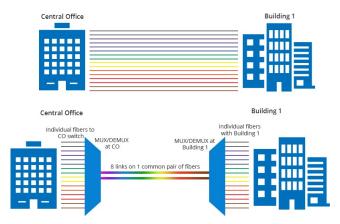


Figure: A simple networking scenario with and without communication multiplexing.

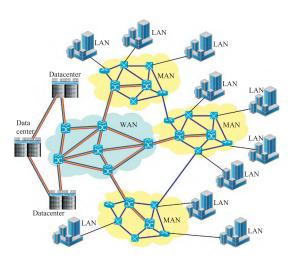


Figure: A typical optical communication network with its physical layer interconnections.

Figure: A typical optical communication network with its physical layer interconnections.

Figure: Optical capacity evolution using various multiplexing techniques.

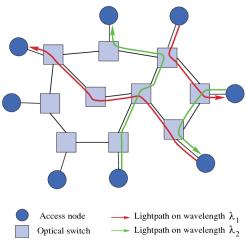


Figure: A sample resource allocation scenario.

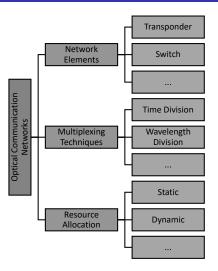


Figure: An optical communication network with its three fundamental concepts network elements, multiplexing technique, and resource allocation. For each fundamental concept, two relevant topics are mentioned.

Course Requirements

Requirements

- Basic Knowledge
 - Communications
 - Networks
 - Optics
- Mathematical Tools
 - Differential Equations
 - Random Processes
 - Mathematical Optimization
 - Classical Geometry
 - Vector Analysis
- Simulation Tools
 - MATLAB
 - YALMIP
 - Pyomo
 - OptiSystem

Course Resources

Resources

- Online teaching class on Sundays and Tuesdays, 15:00-16:30 at https://vc.sharif.edu/ch/mohammad.hadi
- Online practicing class on ???, ???-??? at https://vc.sharif.edu/ch/mohammad.hadi
- Ourse website at http://cw.sharif.edu
- Telegram channel at https://t.me/+8TN1U6Ir_X81Zjg0
- Telegram group at https://t.me/+MZrtsfPomqgyNzQ0
- O Personal email to mohammad.hadi@sharif.edu
- Telegram message to @MohammadHadiDastgerdi

Course Contents

Contents

- Introduction
- Optical Fields
 - Diffraction Integrals, Field Focusing
- Optical Random Fields
 - Coherency, Orthogonal Decomposition
- Optical Transmitters
 - Thermal Light, Coherent Light
- Optical Receivers
 - Photo-detection, Shot Noise
- Optical Communications
 - Direct Detection, On-Off Keying

Contents

- Optical Channels
 - Optical Fiber, Free Space, Channel Impairments, Optical Amplifiers
- Network Elements
 - Transponder, Switch, Converter
- Multiplexing Techniques
 - TDM, WDM, CDM, SDM, OFDM
- Resource Allocation
 - Routing, Assignment, Fragmentation, Grooming, Placement

Course Assessment

Assessments

Item	Frequency	Contribution	Bonus
Work Assignments	5	20%	✓
Midterm Exam	1	25%	X
Final Exam	1	30%	X
Oral Exam	1	10%	X
Software Project	1	10%	✓
Class Attendance	25	5%	X

Table: Items involved in the course assessment. The specified contribution weights are tentative.

Course References

References

R. Gagliardi and Sh. Karp (1995)

Optical Communications

John Wiley & Sons

Joseph W. Goodman (2015)

Statistical Optics

John Wiley & Sons

Bahaa E. Saleh and Carl E. Malvin (2019)

Fundamentals of Photonics

John Wiley & Sons

R. Hui (2019)

Introduction to Fiber-Optic Communications

Academic Press

J. Simmons (2014)

Optical Network Design and Planning

Springer

The End