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Preliminaries
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Polarized Plane Wave

Figure: Time course of the electric field vector for a monochromatic arbitrary wave and for a monochromatic
plane wave or a monochromatic paraxial wave traveling in the z direction.

Polarized monochromatic plane wave:
E(z , t) = Re{Ae−j ωz

c e jωt} = Ex x̂ + Ey ŷ
Complex envelope: A = Ax x̂ + Ay ŷ = axe

jφx x̂ + aye
jφy ŷ

Intensity: I = (|Ax |2 + |Ay |2)/(2η) ∝ |Ax |2 + |Ay |2

x component: Ex = ax cos
(
ω(t − z

c ) + φx

)
y component: Ey = ay cos

(
ω(t − z

c ) + φy

)
Polarization elliptic: (Ex

ax
)2 + (

Ey

ay
)2 − 2

ExEy

ax ay
cos(φy − φx ) = sin2(φy − φx )
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Polarized Plane Wave

Figure: Jones vectors of linearly polarized (LP) and right- and left-circularly polarized (RCP,LCP) light.

Jones vector representation: J =

[
Ax

Ay

]
Orthogonal polarization: (J1, J2) = A1xA

∗
2x + A1yA

∗
2y = 0

Superposition of two orthogonal polarizations: J = α1J1 + α2J2
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Polarized Plane Wave

Example (Jones representation for RCP)

Jones representation can fully describe a plane wave with RCP.

Ax = a, Ay = ae j π
2 , J =

[
a

ae j π
2

]

E(z, t) = a cos

(
ω(t −

z

c
)

)
x̂ + a cos

(
ω(t −

z

c
) +

π

2

)
ŷ

(
Ex

a
)2 + (

Ey

a
)2 = 1
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Polarized Plane Wave

Example (Orthogonality of horizontal and vertical LPs)

Horizontal and vertical LPs are orthogonal and can be used to represent other
polarization.

J1 =

[
1
0

]
, J2 =

[
0
1

]
J1, J2) = A1x A∗2x + A1y A∗2y = 0 + 0 = 0

J =

[
a

ae j π
2

]
= aJ1 + ae j π

2 J2
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Polarized Plane Wave

Example (Polarizer)

A polarizer can chnage the polarization of a polarized wave.
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Reflection and Refraction

Figure: Reflection and refraction at the boundary between two linear, homogeneous, isotropic, nonmagnetic,
and lossless die1ectric media.

Reflection angle: θ3 = θ1

Snell’s equation: n1 sin(θ1) = n2 sin(θ2)

TE polarization reflectivity: rx = E3x

E1x
= n1 cos(θ1)−n2 cos(θ2)

n1 cos(θ1)+n2 cos(θ2)

TE polarization transmitivity: tx = E2x

E1x
= 1 + rx

TM polarization reflectivity: ry =
E3y

E1y
= n1 sec(θ1)−n2 sec(θ2)

n1 sec(θ1)+n2 sec(θ2)

TM polarization transmitivity: ty =
E2y

E1y
= (1 + ry ) cos(θ1)

cos(θ2)
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Reflection and Refraction

Figure: External and internal reflection for TE polarization.

External reflection: n1 < n2

Internal reflection: n1 > n2

Critical angle: θc = sin−1( n2

n1
)
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Reflection and Refraction

Figure: External and internal reflection for TM polarization.

External reflection: n1 < n2

Internal reflection: n1 > n2

Brewster angle: θB = tan−1( n2

n1
)

Critical angle: θc = sin−1( n2

n1
)
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Reflection and Refraction

Example (Polarizer)

Power reflectance of TE- and TM-polarization plane waves, i.e., |rx |2 and |ry |2, at
the boundary between air (n = 1) and GaAs (n = 3.6) is a function of the incidence
angle θ
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Sellmeier Equation

Figure: Electric waves passing through a linear homogeneous isotropic transparent dielectric plate.

Electrical displacement: D = ε0E + P = ε0(1 + χ)E = ε0εrE = εE

Polarization density: P = ε0χE = −NeX
Electrical permittivity and susceptivity: εr = 1 + χ = 1 + χ′ + jχ′′

Hemlholtz equation: ∇2U + k2U = 0

z-traveling plane wave: U = Ae−jkz = Ae−0.5αze−jβz

Complex wave number: k = β − 0.5jα = ω
c0

√
εrµr = k0

√
1 + χ ∈ C

Propagation constant: β = Re{k} ∈ R
Attenuation constant: α = −2 Im{k} ∈ R
Characteristic impedance: η =

√
µ0

ε = η0√
1+χ
∈ C
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Sellmeier Equation

Figure: Electric waves passing through a linear homogeneous isotropic transparent dielectric plate.

Refractive index: n = c0

c = β
k0

= j0.5 αk0
+
√

1 + χ′ + jχ′′ ∈ R

Weakly absorbing medium: n ≈
√

1 + χ′, α ≈ − k0

n χ
′′, χ′′ � 1 + χ′

Strongly absorbing medium: n ≈
√
−0.5χ′′, α ≈ 2k0n, |χ′′| � |1 + χ′|
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Sellmeier Equation

Figure: A time-varying electric field, applied to a Lorentz-oscillator atom induces a time-varying dipole moment.

Lorentz oscillator model: d2x(t)
dt2 + σ dx(t)

dt + ω2
0x(t) = − e

mE(t)

Resonant dielectric medium:
d2P(t)

dt2 + σ dP(t)
dt + ω2

0P(t) =
Ne2ε0ω

2
0

mε0ω2
0
E(t) = χ0ε0ω

2
0E(t)

Applied electric field: E(t) = Re{E exp(jωt)}
Induced polarization density:

P(t) = −Nex(t) = Re{P exp(jωt)} = Re{ χ0ε0ω
2
0

ω2
0−ω2+jσω

E exp(jωt)}
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Sellmeier Equation

Figure: Real and imaginary parts of the susceptibility of a resonant dielectric medium, where Q = ν0/∆ν.

Electrical susceptivity: χ(ν) = χ′(ν) + jχ′′(ν) = χ0
ν2

0

ν2
0−ν2+jν∆ν

Resonance vicinity behavior: χ(ν) ≈ χ0
ν0

2(ν0−ν)+j∆ν , ν ∼ ν0

Electrical susceptivity imaginary part: χ′′(ν) ≈ −χ0
ν0∆ν

4(ν0−ν)2+(∆ν)2 , ν ∼ ν0

Electrical susceptivity real part: χ′(ν) ≈ 2ν−ν0

∆ν χ
′′(ν), ν ∼ ν0

Far from resonance susceptivity: χ(ν) ≈ χ′(ν) ≈ χ0
ν2

0

ν2
0−ν2 , |ν − ν0| � ∆ν
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Sellmeier Equation

Figure: Frequency dependence of absorption coefficient and refractive index for a medium with multiple reso-
nances.

Electrical susceptivity: χ(ν) = χ0
ν2

0

ν2
0−ν2+jν∆ν

Multi-resonance electrical susceptivity: χ(ν) =
∑

k χ0k
ν2

k

ν2
k−ν2+jν∆ν

Sellmeier formula:
n2(ν) ≈ 1 +

∑
k χ0k

ν2
k

ν2
k−ν2 = 1 +

∑
k χ0k

λ2

λ2−λ2
k
, |ν − νk | � ∆ν
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Sellmeier Equation

Example (Prism)

A prism decomposes the white light using different refractive indices of the different
wavelengths.
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Sellmeier Equation

Example (Sellmeier equation for silica)

The Sellmeier equation for the silica at room temperature has three resonance
wavelengths.

n2(λ) = 1 +
0.6962λ2

λ2 − 0.068402
+

0.4079λ2

λ2 − 0.11622
+

0.8975λ2

λ2 − 9.89622
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Optical Waveguide

Figure: A cylinderical optical waveguide.

Spherical Hemholtz equation: ∇2U + n2(r)k2
0U = 0

Wave function: U(r , φ, z) = u(r)e−jlφe−jβz , l = 0,±1, · · ·
Radial profile equation: d2u

dr 2 + 1
r

du
dr + (n2(r)k0 − β2 − l2

r 2 )u = 0

Step-index refractive index profile: n(r) =

{
n1, r ≤ a

n2, r > a
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Optical Waveguide

Figure: Examples of the radial profile u(r) for l = 0 and l = 3.

Fractional refractive index: ∆ = (n1 − n2)/n1

Numerical aperture: NA =
√
n2

1 − n2
2 ≈ n1

√
2∆

V parameter: V = 2π a
λ0
NA

Propagation parameter: k2
T = ( X

a )2 = n2
1k

2
0 − β2

Decay parameter: γ2 = ( Y
a )2 = β2 − n2

2k
2
o , k2

T + γ2 = (NA)2k2
0

Boundary conditions: XJl±1(X )
Jl (X ) = ±Y kT aKl±1(Y )

Kl (Y ) , Y =
√
V 2 − X 2

Radial profile: u(r) ∝

{
Jl (Xlm

r
a ), r ≤ a

Kl (Ylm
r
a ), r > a

, l = 0,±1, · · · ,m = 1, 2, · · · ,Ml
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Optical Waveguide

Figure: Total number of modes M versus the fiber parameter V .

l ,m 1 2 3

0 0 3.832 7.016
1 2.405 5.520 8.654

Table: Cutoff V parameter for low-order modes.

Approximated number of modes: M ≈ 4 V 2

π2 + 2 ≈ 4 V 2

π2 ,V � 1

Single mode condition: V < 2.405
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Nonlinear Schrodinger Equation

Nonlinear dispersive wave equation: ∇2E − 1
c2

0

∂2E
∂t2 = µ0

∂2P
∂t2

Polarization density: P = ε0χE + PNL ≈ ε0χE + 4χ(3)E3

Quasi-monochromatic plane wave: E = Re{A(t, z)e j(ω0t−β0z)}
Nonlinear Schrodinger equation (NSE): ∂A

∂z + jβ2

2
∂2A
∂t2 + α

2A− jγ|A|2A = 0

Group delay dispersion parameter: β2

Attenuation coefficient: α

Nonlinear parameter: γ
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Physical Description of
Optical Fiber
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Physical Structure

Figure: An optical fiber cable consists of core, cladding, coating, strengthening fibers, and cable jacket.

Mohammad Hadi Optical Communication Networks Fall 2021 25 / 69



Physical Structure

Figure: Refractive index profiles for (A) multi-mode fiber (MMF), (B) graded-index fiber (GRIN), (C) single-mode
fiber (SMF), (D) Non-zero dispersion-shifted fiber (NZDSF), and (D) dispersion compensating fiber (DCF).
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Physical Structure

Figure: Space division multiplexed (SDM) optical fibers (a) SMF bundle, (b) multi-core fiber (MCF), (C) few-
mode fiber (FMF), (D) multi-core few-mode fiber (MCFMF), and (D) photonic bandgap fibre (FBF).
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Electromagnetic Description

Figure: Illustration of Fourier split-step algorithm.

Nonlinear dispersive wave equation: ∇2E − 1
c2

0

∂2E
∂t2 = µ0

∂2P
∂t2

Quasi-monochromatic plane wave: E = Re{A(t, z)e j(ω0t−β0z)}

Nonlinear Schrodinger equation: Dν
4π

∂2A(t,z)
∂t2 + γ|A|2A+ j ∂A∂z + j

vg

∂A
∂t = 0
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Ray Description

Figure: Refraction in a graded-index slab.

Snell’s law: n(y) cos(θ(y)) = n(y + ∆y) cos(θ(y + ∆y))

Taylor series: n(y + ∆y) cos(θ(y + ∆y)) = [n(y) + dn
dy ∆y ][cos(θ(y))− dθ

dy ∆y sin(θ(y))]

Limit form: dn
dy = n dθ

dy tan(θ)

Paraxial approximation: dn
dy ≈ n dθ

dy θ = n dθ
dy

dy
dz = n dθ

dz = n d2y

dz2

Paraxial ray equation: d2y

dz2 = 1
n(y)

dn(y)
dy

Paraxial ray equation: d
dz (n dx

dz ) ≈ ∂n
∂x ,

d
dz (n dy

dz ) ≈ ∂n
∂y
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Ray Description

Example (Slab with parabolic index profile)

The ray trajectory for a glass slab with index profile n(y) = n0

√
1− α2y2 ≈

n0(1− 0.5α2y2) can be found using the paraxial ray equation.

d2y

dz2
=

1

n(y)

dn(y)

dy
⇒

d2y

dz2
≈ −α2y

y(z) = y0 cos(αz) +
θ0

α
sin(αz), y0 = y(0), θ0 =

dy

dz
|z=0
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Ray Description

Example (Optical fiber with parabolic index profile)

The ray trajectory for an optical fiber with index profile n(r) = n0

√
1− α2r2 ≈

n0(1− 0.5α2r2) can be found using the paraxial ray equation.

d

dz
(n

dx

dz
) ≈

∂n

∂x
,

d

dz
(n

dy

dz
) ≈

∂n

∂y
⇒

d2x

dz2
≈ −α2x,

d2y

dz2
≈ −α2y

x(z) =
θx0

α
sin(αz) + x0 cos(αz), y(z) =

θy0

α
sin(αz) + y0 cos(αz)

Mohammad Hadi Optical Communication Networks Fall 2021 31 / 69



Analytical Description of
Optical Fiber
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Impairments
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Attenuation

Absorption

Rayleigh scattering 

Extrinsic

Dispersion

Modal dispersion

Chromatic dispersion

Material dispersion

Waveguide dispersion

Polarization dispersion

Nonlinear

Stimulated 
scattering

Stimulated Raman scattering (SRS)

Stimulated Brillouin scattering (SBS)

Kerr effect

Self-phase modulation (SPM)

Cross-phase modulation (XPM)

Four-wave mixing (FWM)

Figure: Classification of common impairments in an optical fiber.Mohammad Hadi Optical Communication Networks Fall 2021 33 / 69



Acceptance Cone

Figure: Rays within the acceptance cone are guided by total internal reflection.

Fractional refractive index: ∆ = (n1 − n2)/n1

Numerical aperture: NA =
√
n2

1 − n2
2 ≈ n1

√
2∆

Acceptance cone: 1. sin(θa) = n1 sin
(
π
2 − θc

)
= n1

√
1− ( n2

n1
)2 = NA

V parameter: V = 2π a
λ0
NA

Approximated number of modes: M ≈ 4 V 2

π2 ,V � 1
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Group Velocity

Figure: An optical pulse traveling in a dispersive medium. The envelope travels with group velocity vg while the
underlying wave travels with phase velocity c.

Wavelength dependent propagation constant: β(ω) = ωn(ω)
c0

Weakly dispersive media: β(ω0 + Ω) ≈ β(ω0) + Ω dβ
dω = ω0

c + Ω
vg

Initial complex wavefunction: A(t) exp(jω0t)
Wavefunction component: A(Ω)e j(ω0+Ω)te−jβ(ω0+Ω)z

Approximated wavefunction component: A(Ω)e jω0(t−z/c)e jΩ(t−z/vg )

Traveled complex wavefunction: A(t − z/vg ) exp(jω0(t − z/c))
Group index: N = dβ(ω)

dω |ω=ω0
= n(ω0) + ω0

dn(ω)
dω |ω=ω0

= n(λ0)− λ0
dn(λ)

dλ |λ=λ0

Group velocity: vg = 1
dβ(ω)/dω|ω=ω0

= c0

N

Phace velocity: c = ω0

β(ω0) = c0

n(ω0)
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Attenuation

Figure: Wavelength dependence of the attenuation coefficient of silica-glass fiber.

z-traveling plane wave: U(z) = Ae−jkz = Ae−0.5αze−jβz

Power attenuation: P(z) = |U(z)|2 = A2e−αz = P(0)e−αz

Power attenuation: P(z)dB = P(0)dB − [10 log10 e]αz

Attenuation coefficient: αdB = 10α log10 e = 4.3478α
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Attenuation

Figure: Attenuation coefficient αdB of silica glass versus wavelength λ. There is a local minimum at 1.3 µm
(αdB ≈ 0.3 dB/km) and an absolute minimum at 1.55 µm (αdB ≈ 0.15 dB/km).

Absorption: Infrared and altraviolet absorption due to vibrational and
electronic transitions

Rayleigh scattering: random localized variations of the molecular position,
proportional to 1/λ4

Extrinsic effects: random impurities such as OH, random variation in
geometry by bend, mode-dependent attenuation
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Attenuation

Example (1.3 µm optical communication)

An optical transmitter injects 0 dBm power to an optical fiber which connects to
an optical receiver with power sensitivity of −19 dBm. So, the optical fiber length
should be less than 19

0.3 = 63.3 km if the operating wavelength is 1.3 µm.

Example (1.55 µm optical communication)

An optical transmitter injects 0 dBm power to an optical fiber which connects to
an optical receiver with power sensitivity of −19 dBm. So, the optical fiber length
should be less than 19

0.15 = 126.6 km if the operating wavelength is 1.55 µm.
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Attenuation

Example (Power budgeting)

An optical transmitter injects 0 dBm power to an optical fiber which connects to
an optical receiver with power sensitivity of −19 dBm. The fiber connects to the
transmitter and receiver using LC connectors with 0.3 dB loss. So, the optical fiber
length should be less than 19−0.3−0.3

0.15 = 122.6 km if the operating wavelength is
1.55 µm.
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Attenuation

Example (Power budgeting)

An optical transmitter injects 0 dBm power to a two-segment optical fiber which
connects to an optical receiver with power sensitivity of −19 dBm. The fiber
segments connect to the transmitter, receiver, and each other using using LC
connectors with 0.3 dB loss. So, the optical fiber length should be less than
19−0.3−0.3−0.3

0.15 = 120.6 km if the operating wavelength is 1.55 µm.
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Modal Dispersion

Figure: Modal dispersion in step-index multi-mode fiber.

Modal dispersion delay: στ = ( z
sin(θc ) − z) n1

c = z n1

c
n1

n2
∆ ≈ z n1

c ∆

Rate-distance product: στ < Tb = 1
Rb
⇒ Rbz . c

n1∆
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Modal Dispersion

Figure: Modal dispersion in graded-index multi-mode fiber.

Modal dispersion delay: στ ≈ z n1

c ∆ ∆
2

Rate-distance product: στ < Tb = 1
Rb
⇒ Rbz . 2c

n1∆2
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Modal Dispersion

Example (Unclad step-index MMF)

Rate-distance product of an unclad step-index MMF with n1 = 1.5, n2 = 1, and
∆ = 0.33 is 0.6 Mbps.km.

Example (Cladded step-index MMF)

Rate-distance product of an cladded step-index MMF with n1 = 1.5, n2 = 1.497,
and ∆ = 0.002 is 100 Mbps.km.

Example (Cladded graded-index MMF)

Rate-distance product of an cladded graded-index MMF with n1 = 1.5, n2 = 1.497,
and ∆ = 0.002 is 105 Mbps.km.
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Material Dispersion

Figure: An optical pulse traveling in a SMF is broadened due to chromatic dispersion at a rate proportional to
the product of the dispersion coefficient Dv (ps/km.GHz), the spectral width σν (GHz), and the distance
traveled z (km).

Differential group delay of two identical pulses at frequencies ν and ν + δν:
στ = dτd

dν δν = d
dν ( z

vg
)δν = Dνzδν

Dispersion coefficient: Dν = d
dν ( 1

vg
) = 2πβ′′(ω0) =

λ3
0

c2
0

d2n(λ)
dλ2 |λ=λ0

Dispersion coefficient: Dλ = −λ0

c0

d2n(λ)
dλ2 |λ=λ0

Pulse spread: στ = |Dν |σνz = |Dλ|σλz
Rate-distance product: στ < Tb = 1

Rb
⇒ Rbz . 1

|Dλ|σλ = 1
|Dν |σν
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Material Dispersion

Figure: Propagation of an optical pulse through media with normal and anomalous dispersion.

Normal dispersion: Dν > 0 ≡ Dλ < 0

Anomalous dispersion: Dν < 0 ≡ Dλ > 0
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Material Dispersion

Figure: Dispersion coefficient Dλ for a silica-glass fiber as a function of wavelength λ. At λ = 1.312 µm, the
dispersion coefficient vanishes.
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Material Dispersion

Example (SMF at 0.87 µm)

The dispersion coefficient Dλ for a silica-glass fiber is approximately −80 ps/km-nm
at λ = 0.87 µm. For an LED source of spectral linewidth σλ = 50 nm, the pulse-
spread rate in a SMF with no other sources of dispersion is |Dλ|σλ = 4 ns/km. So,
the rate-distance product is 250 Mbps.km.

Example (SMF at 1.3 µm)

The dispersion coefficient Dλ for a silica-glass fiber is approximately −1 ps/km-nm
at λ = 1.3 µm. For a LASER source of spectral linewidth σλ = 2 nm, the pulse-
spread rate in a SMF with no other sources of dispersion is |Dλ|σλ = 2 ps/km. So,
the rate-distance product is 5× 105 Mbps.km.
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Waveguide Dispersion

Figure: Dependency of the propagation constant β01 of the fundamental mode of SMF on frequency ω leads
to waveguide dispersion. Waveguide dispersion may be controlled by altering the radius of the core or, for
graded-index fibers, the index grading profile.

V parameter: V = 2π a
λ0
NA = aNA

c0
ω

Group velocity at zero modal and material dispersion:
1
vg

= dβ
dω = dβ

dV
dV
dω = aNA

c0

dβ
dV

Waveguide dispersion coefficient: Dw = d
dλ ( 1

vg
) = − 1

2πc0
V 2 d2β

dV 2

Pulse spread: στ = |Dw |σλz
Rate-distance product: στ < Tb = 1

Rb
⇒ Rbz . 1

|Dw |σλ
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Chromatic Dispersion

Figure: Chromatic dispersion in Dispersion Shifted Fiber (DSF).

Chromatic dispersion: Combined effects of material and waveguide
dispersions

DSF: Zero dispersion at 1.55 µm
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Chromatic Dispersion

Figure: Chromatic dispersion in Dispersion Flattened Fiber (DFF).

Chromatic dispersion: Combined effects of material and waveguide
dispersions

DSF: Flattened dispersion around 1.55 µm
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Chromatic Dispersion

Figure: Chromatic dispersion in Dispersion Flattened Fiber (DCF).

Chromatic dispersion: Combined effects of material and waveguide
dispersions

DCF: Compensating compensation for conventional fibers
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Polarization Dispersion

Figure: Differential group delay associated with polarization mode dispersion (PMD). PMD appears since the
fiber is not perfectly circular and isotropic.

x polarization group index: Nx

y polarization group index: Ny

x polarization group delay: τx = z Nx

c0

y polarization group delay: τy = z
Ny

c0

Differential group delay: στ = |Nx − Ny | z
c0

Rate-distance product: στ < Tb = 1
Rb
⇒ Rbz . c0

|Nx−Ny |
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Kerr Effects

Figure: Optical power density versus core diameter in an optical fiber.

SMF cross section: a = 5 µ m⇒ 80µ m2

SMF power density in core: P(0) = 10 mW⇒ 12.5kW/cm2

Power-dependent refractive index: n = n0 + n2
P

Aeff
= n0 + n2I

Fiber cross-section: Aeff
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Kerr Effects

Quasi-monochromatic plane wave: E = Re{A(t, z)e j(ω0t−β0z)}, β0 = β(ω0)

Complex envelope: A(t, z)

Nonlinear Schrodinger equation (NSE): ∂A
∂z + jβ2

2
∂2A
∂t2 + α

2A− jγ|A|2A = 0

Group delay dispersion parameter: β2 = β′′(ω0) = − λ2
0

2πc0
Dλ

Attenuation coefficient: α

Nonlinear parameter: γ = n2ω0

c0Aeff
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Kerr Effects

Example (NSE for β2 = 0, α = 0, and γ = 0)

The NSE can be solved for β2 = 0, α = 0, and γ = 0.

∂A
∂z

+
jβ2

2

∂2A
∂t2

+
α

2
A− jγ|A|2A = 0

∂A
∂z

= 0

A(z, t) = A(0, t)

P(z, t) = P(0, t)
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Kerr Effects

Example (NSE for β2 = 0, α 6= 0, and γ = 0)

The NSE can be solved for β2 = 0, α 6= 0, and γ = 0.

∂A
∂z

+
jβ2

2

∂2A
∂t2

+
α

2
A− jγ|A|2A = 0

∂A
∂z

+
α

2
A = 0

A(z, t) = A(0, t)e−0.5αz

P(z, t) = P(0, t)e−αz
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Kerr Effects

Example (NSE for β2 6= 0, α = 0, and γ = 0)

The NSE can be solved for β2 6= 0, α = 0, and γ = 0.

∂A
∂z

+
jβ2

2

∂2A
∂t2

+
α

2
A− jγ|A|2A = 0

∂A
∂z

+
jβ2

2

∂2A
∂t2

= 0

A(z, t) =
1

2π

∫ +∞

−∞
A(z, ω)e jωt dω

A(z, ω) = A(0, ω)e j0.5ω2β2z

A(z, t) =
1

2π

∫ +∞

−∞
A(0, ω)e j0.5ω2β2z e jωt dω

P(z, t) = |A(z, t)|2

δΦ = ω0δt = 0.5(ω2 − ω2
0)β2z ≈ ω0(ω − ω0)β2z

δt ≈ β2z(ω − ω0) = β2zδω ≡ Dλzδλ

|δt| ≈ |Dλ|zδλ
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Kerr Effects

Example (NSE for β2 = 0, α 6= 0, and γ 6= 0)

The NSE can be solved for β2 = 0, α 6= 0, and γ 6= 0.

∂A
∂z

+
jβ2

2

∂2A
∂t2

+
α

2
A− jγ|A|2A = 0

∂A
∂z

+
α

2
A = jγ|A|2A

P(z, t) = |A(z, t)|2 = P(0, t)e−αz

A(z, t) =
√
P(0, t)e−0.5αzE(z, t), |E(z, t)| = 1

∂E
∂z

= jγP(0, t)e−αzE

E(z, t) = E(0, t)e jΦNL = E(0, t)e jγP(0,t)Leff , Leff =
1− e−αz

α
≈

1

α

Mohammad Hadi Optical Communication Networks Fall 2021 58 / 69



SPM

Example (SPM)

Self-phase modulation occurs since the nonlinear phase shift follows the time-
dependent change of the optical power.

E(z, t) = E(0, t)e jγP(0,t)Leff

δf (t) =
1

2π
γLeff

∂P(0, t)

∂t

δλ(t) =
λ2

0

2πc0
γLeff

∂P(0, t)

∂t
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SPM

Example (Soliton transmission)

Self-phase modulation and linear dispersion can compensate each other.
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XPM

Example (SPM/XPM/FWM)

Self-phase and cross-phase modulations and four-wave mixing affect fiber transmis-
sion when several wavelengths are used for transmission.

A(z, t) = A1(z, t)e−jθ1 +A2(z, t)e−jθ2 , θi = nωi/c
∂A1
∂z +

jβ2
2
∂2A1
∂t2 + α

2 A1 = jγ|A1|2A1 + jγ|A2|2A2 + jγA2
1A
∗
2 e j(θ1−θ2)

∂A2
∂z +

jβ2
2
∂2A2
∂t2 + α

2 A2 = jγ|A2|2A2 + jγ|A1|2A1 + jγA2
2A
∗
1 e j(θ2−θ1)
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FWM

Example (FWM)

In four-wave mixing, the refractive index is modulated at the frequency ∆ωjk = ωj−
ωk , which in turn phase-modulates a third carrier ωl and creates extra modulation
sidebands ωjkl = ωl ±∆ωjk .

ωjkl = ωl ± ωk ∓ ωj

ωl = ωk ⇒ ωj , ωl = 2ωk − ωj

ωl = ωj ⇒ ωk , ωi = 2ωj − ωk
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FWM

Example (FWM)

FWM can be mitigating by increasing the channel spaces.

Pjkl (z) = ηFWMγ
2L2

eff Pj (0)Pk (0)Pl (0), ηFWM =
α2

∆β2
jkl + α2

,∆βjkl =
2πcDλ

λ2
0

(λj − λl )(λk − λl )
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Scattering

Figure: Several forms of light scattering: (a) Rayleigh, (b) Raman (Stokes), (c) Raman (anti-Stokes), and (d)
Brillouin.
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SBS

Figure: SBS can be mitigated by increasing source linewidth.

Origination: Interaction of signal photons and acoustic (electrostriction)

Shifted Stokes photon frequency: ∆f ≈ 11 GHz at 1550 nm

Features: Threshold effect, narrow band (∼ 20 MHz), and directional
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SRS

Figure: SRS can be mitigated by reducing injected power.

Origination: Interaction of signal photons and molecular-level vibrations.

Shifted Stokes photon frequency: ∆f ≈ 13.2 GHz at 1550 nm

Features: Threshold effect, wide band (10 THz), and bidirectional
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Fiber Impairments

Example (Dispersion-aware resource allocation)

Assume that a network topology is described by directional graph G (N, L), where
each link l = (b, e) ∈ L begins at node b ∈ N, ends at node e ∈ N, and has
length Wl . There are R requests, where request r = (s, d) ∈ R originates from
source node S(r) = s ∈ N, terminates at destination node D(r) = d ∈ N, and
requires transmission rate Br . The requests can be routed by the following simple
dispersion-aware resource allocation optimization process, where xl,r = 1 if the
request r passes through link l , 0 otherwise.

1 3

2

4

5

1

2
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Fiber Impairments

Example (Dispersion-aware resource allocation)

Assume that a network topology is described by directional graph G (N, L), where
each link l = (b, e) ∈ L begins at node b ∈ N, ends at node e ∈ N, and has
length Wl . There are R requests, where request r = (s, d) ∈ R originates from
source node S(r) = s ∈ N, terminates at destination node D(r) = d ∈ N, and
requires transmission rate Br . The requests can be routed by the following simple
dispersion-aware resource allocation optimization process, where xl,r = 1 if the
request r passes through link l , 0 otherwise.

min
xl,r

∑
l,r

xl,r s.t

∑
l∈L:b=n

xl,r = 1,
∑

l∈L:e=n

xl,r = 0, ∀r ∈ R, ∀n ∈ N : n = S(r)

∑
l∈L:e=n

xl,r = 1,
∑

l∈L:b=n

xl,r = 0, ∀r ∈ R, ∀n ∈ N : n = D(r)

∑
l∈L:e=n

xl,r =
∑

l∈L:b=n

xl,r , ∀r ∈ R, ∀n ∈ N : n 6= S(r), n 6= D(r)

Br

∑
l∈L

xl,r Wl ≤
1

|Dλ|σλ
, ∀r ∈ R
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The End
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