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Preliminaries
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Special Relativity

First postulate Einstein's special relativity: The laws of physics are invariant
in all inertial frames of reference.

Second postulate Einstein's special relativity: The speed of light in vacuum is
the same for all observers.

Length contraction: L = Lox/m

Time dilation: To = T+/1—v2/c?

Lorentz factor: v =1/y/T—v2/2 = 1+ %5 ~ 1,v =0

Rest energy: Ey = mpc?

Relativistic mass: m = ymg

Relativistic momentum: p = ymgv

Relativistic kinetic energy: K = (v — 1)moc® = AE = E — By = (v — 1)
Relativistic energy: E = vEg = y/p?c? + (mpc?)?
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Matter Wave
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Figure: Wave-particle duality.

@ Planck’s black body radiation: Waves exhibit particle-like behavior.
@ De Broglie's matter wave: Particles exhibit wave-like behavior.
@ Planck’s photon energy: E = hv
@ Mass-less relativistic energy: E = pc = hv = %
® Mass-less momentum: p= £ = £
@ De Broglie’s wavelength: A =2 = _h_
P Ymov
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Free Particle
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Figure: Non-relativistic free particle wave.
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o Free particle De Broglie's wave: W(x,t) = Acos(2rvt — kx), k = 3F = 277
e Free particle De Broglie's wave at t = 0: 1(x) = ¥(x,0) = Acos(kx), k = 2~

2 _ 1 KK _ 13242
—hok

@ Free particle kinetic energy: K = 2mv T

o Free particle differential equation: 2% dxz = —k21/1 = —2—’”K1p = —2—’"(E - V)

@ Time-independent Schrodinger's equation: 2m dx2 + VY = Evy
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Schrodinger’s Equation

Wave function; W(x, t)
@ Potential function; V/(x, t)

Schrodinger’s equation: _ET + Vv —_jh

Location probability: P(a, b) = fa |W(x, t)|?dx
Time-independent potential: V(x) = W(x,t) = 1(x)o(t)

@ Time-dependence of wave function potential: ( ) x eIt

Time-independent Schrodinger’s equation: —2- 9% 4 Vo) = Eg)
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Classical Harmonic Oscillator
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Figure: Mechanical schematic of a harmonic oscillator.

@ Newton's second law: F = mx”

@ Hooke's spring law: F = —kx

o Oscillator differential equation: x” + ﬁx =0

@ Oscillation frequency: w = /Kk/m

@ Oscillator position equation' x(t) = Acos(wt + ¢)

e Potential energy: V(x) = [’ —F(u)du = $kx* = 1kA? cos®(wt + ¢)
o Kinetic energy: K(X) Imv2 = ImA22sin®(wt + ¢)

e Kinetic energy: E(x) = K(x) + V(x) = 1kA? = I mw?A?
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Quantum Harmonic Oscillator

k

Figure: Mechanical schematic of a harmonic oscillator.

e Potential energy: V(x) = 3rx?

@ Oscillation frequency: w = +/Kk/m

e Unit-mass assumption: V(x) = $w?x?

@ Time-independent Schrodinger's equation: _7W + VY = Evy

@ Discrete energy levels: E, = hu(% +n),n=0,1,---

@ Normalized Hermlte Gaussian Wavefunct|ons:
Un(x) = e ()0 H, [ /Ex] exp( %

@ Normalized tlme dependent Hermite- Gau55|an wavefunctions:
V,(x,t) = \/7 L )02 [ /4X] exp( )exp( j(n+ 0.5)wt)
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Quantum Harmonic Oscillator
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Quantum Harmonic Oscillator

Wi(x)
E- v
. - l’{’(x)
K Es 7
-
< -
Py T
~
E; , AL
o E; T A
. | Eg T — 1
W)
ha/2 X

o

Figure: Wavefunctions quantum harmonic oscillator.

@ Normalized Hermite-Gaussian wavefunctions;
2
Unl) = s () H Ly Fx e (57 )
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Quantum Harmonic Oscillator
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Figure: Mechanical schematic of a harmonic oscillator.

General wavefunction: ¢(x) =", chtpn(x)

General time-dependent wavefunction: W(x,t) = 3", c,e /(M+0-5)wty, (x)
Probability of carrying n quanta of energy: p(n) o |cq|?
Probability density of being at position x: oc [1)(x)|?

Probability density of having momentum p: o |¢(p)[2, ¢(p) = 2=F, ()

Position root mean square: oy

Momentum root mean square: o,

@ Heisenberg position-momentum uncertainty: oxo, > 0.5A
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Quantum Harmonic Oscillator
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Figure: Position probability density for different energy levels of a harmonic oscillator.

@ Probability density of being at position x: oc [)(x)|?
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Quantum Harmonic Oscillator

Figure: Position probability density for a high-energy level of a harmonic oscillator.
@ Probability density of being at position x: oc [1)(x)|?
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Quantum Harmonic Oscillator

Example (Coherent light communication)

The amplitude of the classical harmonic oscillator can be selected such that its
energy equals to that of a quantum harmonic oscillator in energy state n.

1 1 h
“mw?A? = (n405)hy = A= —1/(2n+ 1) —
2 27 mv
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Monochromatic Plane Wave
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Figure: Phasor of a monochromatic plane wave.

Monochromatic plane wave: e(r,t) = Re{E(r,t)}
Monochromatic plane wave complex function: E(r,t) = Ae/k-re/2mvt
Classical wave energy: 1e|A[2V

Quantum wave energy: hv|a|?

Phasor quandrature components: x = Re{a}, p=Im{a}
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Analogy Between Optical Mode and Harmonic Oscillator

AWANJAN
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Figure: Phasor of a monochromatic plane wave.

Energy of an electromagnetic mode: hv|a|? = hv(x? + p?)

@ Energy of harmonic oscillator: 3(p? + w?x?)
. . . _ wx
@ Electromagnetic mode location: x = NG

Electromagnetic mode momentum: p = \/;Tw

Heisenberg position-momentum uncertainty: oxop > 0.25
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Coherent Light

Figure: Phasor of a coherent light. Representative values of E(t) = exp(j2mwvt) are drawn by choosing several
arbitrary points within the uncertainty circle.

@ Minimum uncertainty: oxop = 0.25
@ Equal uncertainty: ox = 0p = 0.5

o Gaussian momentum wavefuntion: ¢(p) o exp [ — (p — ap)?]

Gaussian location wavefuntion: 1(x) oc exp [ — (x — ax)?]
2

Gaussian location probability: [1(x, t)|? o< exp [ — 2(x — ax cos(wt — 6))?]

Probability of carrying n quanta of energy:

p(n) = e = e "%, =0l + 03
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Statistical Description of
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Figure: Phasor of a coherent light.

@ Probability of carrying n quanta of energy:
p(n)=lc>=e"h, A=ai+03

n

e Probability of having n photons: p(n) = e™ "%
@ Mean photon number: w = i1 = hl—VfOT Pdt = £ = hl—yfoT Ja 1(r)dAdt
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Coherent Light
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Figure: Constant optical power and the corresponding random photon generation times.

@ Independent photon generation time

@ Photon generation probability in each sub-interval T/N: p = %

@ Photon absence probability in each sub-interval T/N: 1 —p=1— %

@ Probability of n generations in interval T: p(n) = %p”(l — p)N-n
@ Probability of n generations in interval T: n — oo = p(n) = e_’_’%
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Figure: Time-varying optical power and the corresponding random photon generation times.

Mean photon number for monochromatic wave:

— 1 T
W:”:E—hufo Efo Ja l(r, t)dAdt
Mean photon number for quasi-monochromatic wave:
w=i~E =L [TP(t)dt =% [ [, I(r,t)dAdt
Random mean photon number pdf: p(w)

Conditional Poisson distribution: p(n|w) = e*‘""’,‘:—!"

Mandel's formula: p(n) = [;° e p(w)dw
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Analytical Description of
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Coherent Light

p(n)
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Figure: Poisson distribution p(n) of the photon number n.

@ Poisson distribution: P(n) = e~ "% ne W

nl>
2 =2
H N T . mean n -
@ Signal to noise ratio: SNR = varance = & =1
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Example (Coherent light communication)

In a simple on-off keying digital optical communication system using monochromatic
coherent light, where P(n) = exp(—n )n,, the bit error rate 10~° corresponds to to
a mean number of photons i = 20.

P. = Plpe\l + POPe\O = - (0) - exp( n) <10™ :> n>20

Example (Thermal light communication)

In a simple on-off keying digital optical communication system using monochromatic
thermal light, the bit error rate 10~? corresponds to to a mean number of photons
n=5x 108

1 1
2a+1

1
Pe = PrPes + PoPejo = - P(0) = <107° = 7 > 499999999
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Arbitrary Light
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Figure: Comparison of the photon statistics for light with a Poisson distribution, and those for sub-Poissonian
and super-Poissonian light. The distributions have been drawn with the same mean photon number. .

@ Sub-Poissonian light: An < /A
e Poissonian light: An=+/n
@ Super-Poissonian light: An > /A
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The End
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