Shot Noise

Mohammad Hadi

mohammad.hadi@sharif.edu

@MohammadHadiDastgerdi

Fall 2021

・ロト ・四ト ・ヨト ・ヨト

- 1 Physical Description of Shot Noise
- 2 Statistical Description of Shot Noise
- 3 Analytical Description of Shot Noise
- 4 Complex Examples

イロト イヨト イヨト イヨ

Physical Description of Shot Noise

Mohammad Hadi

< □ > < □ > < □ > < □ > < □ >

Figure: Electron current and hole current.

- Mean drift velocity: $v = \mu E = \frac{a\tau_{col}}{m}E$
- Carrier mobility: $\mu = \frac{a\tau_{col}}{m}$.
- Ramo's formula: $-QEdx = -Q\frac{V}{w}dx = i(t)Vdt$.
- Ramo's formula: $i(t) = -\frac{Q}{w}v(t)$.
- Transit-time spread: x/v_h , $(W-x)/v_e$, $v_h < v_e$.

< □ > < □ > < □ > < □ > < □ >

Figure: Impulse response function for a uniformly illuminated detector subject to transit-time spread.

- Total current: $i(t) = i_h(t) + i_e(t)$
- Generated charge: Ne

イロト イヨト イヨト イヨ

Characteristic Curve

Figure: Generic photodiode and its i-V relation. .

- Photo-diode characteristic curve: $i = i_s [\exp(eV/kT) 1] i_p$
- Dark current: is arisen from thermally-excited random generation of electronshole pairs

• • • • • • • • • •

Statistical Description of Shot Noise

Mohammad Hadi

Fall 2021 7 / 31

イロト イヨト イヨト

Shot Noise

Figure: The photocurrent induced in a photodetector circuit comprises a superposition of current pulses, each associated with a detected photon. The individual pulses illustrated are exponentially decaying step functions but they can assume an arbitrary shape.

• Photocurrent shot noise process: $i(t) = \sum_{j=1}^{k(0,t)} g_j h(t-z_j)$

• Current pulse:
$$\int_0^\infty h(t) dt = \int_0^\tau h(t) dt = e$$

- Mean count: $m_v = \alpha \int_0^T \int_A I(t, \mathbf{r}) d\mathbf{r} dt = \int_0^T n(t) dt$
- Count intensity: $n(t) = \alpha \int_A I(t, \mathbf{r}) d\mathbf{r}$

< □ > < □ > < □ > < □ > < □ >

Figure: Time axis model for Poisson shot noise with deterministic incident intensity. • Disjoint intervals:

$$\begin{aligned} &P(z_{1} \in (t_{1}, t_{1} + \Delta t), \cdots, z_{k} \in (t_{k}, t_{k} + \Delta t), k) \\ &= P(0, t_{1} - T_{1})P(1, t_{1} + \Delta t - t_{1}) \cdots P(0, t_{k} - (t_{k} + \Delta t))P(1, t_{k} + \Delta t - t_{k})P(1, T_{2} - (t_{k} + \Delta t))) \\ &P(0, t_{1} - T_{1}) = \exp\left(-\int_{T_{1}}^{t_{1}} n(t)dt\right) \\ &P(1, t_{1} + \Delta t - t_{1}) = \exp\left(-\int_{t_{1}}^{t_{1} + \Delta t} n(t)dt\right) \int_{t_{1}}^{t_{1} + \Delta t} n(t)dt \approx \exp\left(-\int_{t_{1}}^{t_{1} + \Delta t} n(t)dt\right)n(t_{1})\Delta t \\ &\vdots \\ &P(z_{1} \in (t_{1}, t_{1} + \Delta t), \cdots, z_{k} \in (t_{k}, t_{k} + \Delta t), k) = \exp\left(-\int_{T_{1}}^{T_{2}} n(t)dt\right)(\Delta t)^{k} \prod_{j=1}^{k} n(t_{j}) \end{aligned}$$

イロト イヨト イヨト イヨト

Figure: Time axis model for Poisson shot noise with deterministic incident intensity.

• Disjoint intervals:

 $P(z_1 \in (t_1, t_1 + \Delta t), \cdots, z_k \in (t_k, t_k + \Delta t), k) = \exp\left(-\int_{T_1}^{T_2} n(t)dt\right) (\Delta t)^k \prod_{j=1}^k n(t_j)$

Probability definition:

 $P(z_1 \in (t_1, t_1 + \Delta t), \cdots, z_k \in (t_k, t_k + \Delta t, k) = k! P(z_1 = t_1, \cdots, z_k = t_k) (\Delta t)^k$

- Joint density of occurrence times: $P(z_1, \dots, z_k, k) = \frac{1}{k!} \exp\left(-\int_{T_1}^{T_2} n(t) dt\right) \prod_{j=1}^k n(z_j)$
- Count probability: $P_k(k) = \frac{1}{k!} \exp\left(-\int_{T_1}^{T_2} n(t)dt\right) (\int_{T_1}^{T_2} n(t)dt)^k$
- Conditional joint density of occurrence times:

$$p(z_1, z_2, \cdots, z_k | k) = rac{\prod_{j=1}^{k} n(z_j)}{(\int_{T_1}^{T_2} n(t)dt)^k} = \prod_{j=1}^k rac{n(z_j)}{m_v}$$

イロン イ団 とく ヨン イヨン

Figure: Occurrence times for Poisson shot noise with deterministic incident intensity.

• Condition joint density of occurrence times: $p(z_1, z_2, \cdots, z_k | k) = \frac{\prod_{j=1}^k \binom{n(z_j)}{(\int_{\tau_1}^{\tau_2} n(t)dt)^k}}{\prod_{j=1}^k \binom{n(z_j)}{m_v}}$

• Independent occurrence time: $p_{z_i}(z) = \frac{n(z)}{m_V}$

イロト イ団ト イヨト イヨト

Occurrence Times

Figure: Occurrence times for conditional Poisson shot noise with stochastic incident intensity.

• Conditional joint density of occurrence times:

$$p(z_1, z_2, \cdots, z_k | k, n(t)) = \frac{\prod_{j=1}^k n(z_j)}{(\int_{T_1}^{T_2} n(t)dt)^k} = \prod_{j=1}^k \frac{n(z_j)}{m_v}$$

• Marginal conditional joint density of occurrence times:

$$p(z_1, z_2, \cdots, z_k | k) = \frac{1}{m_v^k} \int \int \cdots \int n(z_1) \cdots n(z_k) P_z(n(z_1), \cdots, n(z_k)) dn(z_1) \cdots dn(z_k)$$

$$p(z_1, z_2, \cdots, z_k | k) = \frac{\mathcal{E}_n\{\prod_{j=1}^k n(z_j)\}}{m_v^k}$$

イロト イヨト イヨト イ

Analytical Description of Shot Noise

イロト イ団ト イヨト イヨト

Mean of Shot Noise

Figure: The photocurrent for a Poisson shot noise with deterministic incident intensity.

• Mean of shot noise:

$$\mathcal{E}\{i(t)\} = \mathcal{E}_k\{\mathcal{E}\{i(t)|k\}\} = \mathcal{E}_k\{\mathcal{E}\{\sum_{j=1}^{k(0,t)} g_j h(t-z_j)|k\}\} = \mathcal{E}_k\{\sum_{j=1}^{k(0,t)} \mathcal{E}\{g_j h(t-z_j)|k\}\}$$

$$= \mathcal{E}_k \left\{ \sum_{j=1}^{k(0,t)} \mathcal{E}\{g_j|k\} \mathcal{E}\{h(t-z_j)|k\} \right\} = \mathcal{E}_k \left\{ \mathcal{E}\{g_j|k\} \mathcal{E}\{h(t-z_j)|k\} k(0,t) \right\}$$
$$= \mathcal{E}\{g\} \mathcal{E}\{h(t-z)\} \mathcal{E}_k \{k(0,t)\} = m_v \overline{g} \mathcal{E}\{h(t-z)\} = \overline{g} \int_{-\infty}^t h(t-z) n(z) dz$$

イロト イヨト イヨト イヨ

Example (Mean of shot noise)

If $h(t) = \frac{e}{\tau}[u(t) - u(t - \tau)]$, then $\mathcal{E}\{i(t)\} = \bar{g}\frac{e}{\tau}\bar{k}(t - \tau, t)$, where $\bar{k}(t - \tau, t)$ is the average number of carriers in interval $[t - \tau, t]$.

$$\mathcal{E}\{i(t)\} = \bar{g} \int_{-\infty}^{t} h(t-z)n(z)dz = \bar{g} \int_{t-\tau}^{t} \frac{e}{\tau}n(z)dz = \bar{g}\frac{e}{\tau}\bar{k}(t-\tau,t)$$

Example (Mean of shot noise)

For a photo-detector with infinite bandwidth having $h(t) = e\delta(t)$, $\mathcal{E}\{i(t)\} = \overline{g}en(t)$.

$$\mathcal{E}\{i(t)\} = \bar{g} \int_{-\infty}^{t} h(t-z)n(z)dz = \bar{g} \int_{-\infty}^{t} e\delta(t-z)n(z)dz = \bar{g}en(t)$$

イロト イ団ト イヨト イヨト

Mean Square of Shot Noise

Figure: The photocurrent for a Poisson shot noise with deterministic incident intensity.Mean square of shot noise:

$$\mathcal{E}\{i^{2}(t)\} = \mathcal{E}_{k}\left\{\mathcal{E}\{i^{2}(t)|k\}\right\} = \mathcal{E}_{k}\left\{\mathcal{E}\left\{\left[\sum_{j=1}^{k(0,t)} g_{j}h(t-z_{j})\right]^{2}|k\}\right\}$$

$$= \mathcal{E}_{k}\left\{\mathcal{E}\left\{\sum_{j=1}^{k(0,t)} g_{j}^{2}h^{2}(t-z_{j}) + \sum_{j,i=1,j\neq i}^{k(0,t)} g_{j}g_{i}h(t-z_{i})h(t-z_{i})|k\}\right\}$$

$$= \mathcal{E}_{k}\left\{k(0,t)\mathcal{E}\{g^{2}\}\mathcal{E}\{h^{2}(t-z)\} + [k^{2}(0,t) - k(0,t)]\mathcal{E}\{g\}\mathcal{E}\{g\}\mathcal{E}\{h(t-z)\}\mathcal{E}\{h(t-z)\}\}$$

$$= \mathcal{E}_{k}\{k(0,t)\}\mathcal{E}\{g^{2}\}\mathcal{E}\{h^{2}(t-z)\} + \mathcal{E}_{k}\{k^{2}(0,t) - k(0,t)\}\mathcal{E}\{g\}\mathcal{E}\{g\}\mathcal{E}\{h(t-z)\}\mathcal{E}\{h(t-z)\}\}$$

$$= \overline{g^{2}}\int_{-\infty}^{t} h^{2}(t-z)n(z)dz + \mathcal{E}\{i(t)\}^{2}$$

Mohammad Hadi

Fall 2021 16 / 31

Variance of Shot Noise

Figure: The photocurrent for a Poisson shot noise with deterministic incident intensity.

• Variance of shot noise: $var{i^2(t)} = \overline{g^2} \int_{-\infty}^t h^2(t-z)n(z)dz$

*ロト *個ト * ヨト * ヨ

Variance of Shot Noise

Example (Variance of shot noise)

If $h(t) = \frac{e}{\tau}[u(t) - u(t - \tau)]$, then $\operatorname{Var}\{i(t)\} = \overline{g^2}(\frac{e}{\tau})^2 \overline{k}(t - \tau, t)$, where $\overline{k}(t - \tau, t)$ is the average number of carriers in interval $[t - \tau, t]$.

$$\operatorname{Var}\{i(t)\} = \bar{g^2} \int_{-\infty}^t h^2(t-z)n(z)dz = \bar{g^2} \int_{t-\tau}^t (\frac{e}{\tau})^2 n(z)dz = \bar{g^2}(\frac{e}{\tau})^2 \bar{k}(t-\tau,t)$$

Example (Fast photodetector)

If the time variations of n(t) is sufficiently slower than τ , or equivalently, if the bandwidth of the photo-detector $1/\tau$ is sufficiently higher than the bandwidth of n(t), $\mathcal{E}\{i(t)\} = \bar{g}en(t)$ and $\mathcal{E}\{i^2(t)\} = \bar{g}^2n(t)\int_0^{\tau}h^2(t)dt$.

$$\mathcal{E}\{i(t)\} = \bar{g} \int_{-\infty}^{t} h(t-z)n(z)dz \bar{g} = \bar{g} \int_{t-\tau}^{t} h(t-z)n(z)dz = \bar{g}n(t) \int_{t-\tau}^{t} h(t-z)dz = \bar{g}en(t)$$
$$\operatorname{Var}\{i(t)\} = \bar{g}^{2} \int_{-\infty}^{t} h^{2}(t-z)n(z)dz = \bar{g}^{2} \int_{t-\tau}^{t} h^{2}(t-z)n(z)dz = \bar{g}^{2}n(t) \int_{0}^{\tau} h^{2}(t)dt$$

イロト イヨト イヨト イヨト

Variance of Shot Noise

Example (Instantaneous power detector)

A fast photo-detector acts like an instantaneous power detector if the incident power is sufficiently high.

Mohammad Hadi

Example (Correlation of shot noise)

Poisson shot noise process is a non-stationary process.

$$\begin{aligned} &R_{i}(t,t+\tau) = \mathcal{E}\left\{i(t)i(t+\tau)\right\} = \mathcal{E}_{k}\left\{\mathcal{E}\left\{\sum_{j=1}^{k(0,t)} g_{j}h(t-z_{j})\sum_{l=1}^{k(0,t+\tau)} g_{l}h(t+\tau-z_{l})|k\right\}\right\} \\ &= \mathcal{E}\left\{\sum_{j=1}^{k(0,t)} g_{j}^{2}h(t-z_{j})h(t+\tau-z_{j}) + \sum_{j=1}^{k(0,t)} \sum_{l=1,j\neq l}^{k(0,t+\tau)} g_{j}g_{l}h(t-z_{j})h(t+\tau-z_{l})\right\} \\ &= \mathcal{E}_{k}\left\{\mathcal{E}\left\{\sum_{j=1}^{k(0,t)} g_{j}^{2}h(t-z_{j})h(t+\tau-z_{j})|k(0,t)\right\}\right\} + \mathcal{E}_{k}\left\{\mathcal{E}\left\{\sum_{j,l=1,j\neq l}^{k(0,t)} g_{j}g_{l}h(t-z_{j})h(t+\tau-z_{l})|k(0,t)\right\}\right\} \\ &+ \mathcal{E}_{k}\left\{\mathcal{E}\left\{\sum_{j=1}^{k(0,t)} \sum_{l=1}^{k(t,t+\tau)} g_{j}g_{l}h(t-z_{j})h(t+\tau-z_{l})|(k(0,t),k(t,t+\tau)))\right\}\right\} \\ &= \mathcal{E}_{k}\left\{k(0,t)\mathcal{E}\left\{g_{j}^{2}\right\}\mathcal{E}\left\{h(t-z_{j})h(t+\tau-z_{l})\right\}\right\} + \mathcal{E}_{k}\left\{[k(0,t)^{2}-k(0,t)]\mathcal{E}\left\{g_{j}\right\}\mathcal{E}\left\{g_{l}\right\}\mathcal{E}\left\{h(t-z_{j})\right\} \\ &= \mathcal{E}_{k}\left\{h(t,t+\tau-z_{l})\right\}\right\} + \mathcal{E}_{k}\left\{k(0,t)k(t,t+\tau)\mathcal{E}\left\{g_{j}\right\}\mathcal{E}\left\{g_{l}\right\}\mathcal{E}\left\{h(t+\tau-z_{l})\right\}\right\} \\ &= m_{v}(0,t)g^{2}\mathcal{E}\left\{h(t-z)h(t+\tau-z)\right\} + m_{v}^{2}(0,t)g^{2}\mathcal{E}\left\{h(t-z)\right\}\mathcal{E}\left\{h(t+\tau-z)\right\} + m_{v}(0,t)m_{v}(t,t+\tau)g^{2} \\ &= \mathcal{E}_{k}\left\{h(t,t+\tau-z)\right\}\mathcal{E}\left\{h(t+\tau-z)\right\} = m_{v}(0,t)g^{2}\mathcal{E}\left\{h(t-z)h(t+\tau-z)\right\} + m_{v}(0,t)g\mathcal{E}\left\{h(t-z)\right\} \\ &= m_{v}(0,t)g^{2}\mathcal{E}\left\{h(t+\tau-z)\right\} = m_{v}(0,t)g^{2}\mathcal{E}\left\{h(t-z)h(t+\tau-z)\right\} + m_{v}(0,t)g\mathcal{E}\left\{h(t-z)\right\} \\ &= m_{v}(0,t)\mathcal{E}\left\{h(t+\tau-z)\right\} = m_{v}(0,t)g^{2}\mathcal{E}\left\{h(t-z)h(t+\tau-z)\right\} + m_{v}(0,t)g\mathcal{E}\left\{h(t-z)\right\} \\ &= m_{v}(0,t)\mathcal{E}\left\{h(t+\tau-z)\right\} = m_{v}(0,t)\mathcal{E}\left\{h(t-\tau)h(t+\tau-z)\right\} + m_{v}(0,t)\mathcal{E}\left\{h(t+\tau)\right\} \\ &= m_{v}(0,t)\mathcal{E}\left\{h(t+\tau-z)\right\} = m_{v}(0,t)\mathcal{E}\left\{h(t-\tau)h(t+\tau-z)\right\} + m_{v}(0,t)\mathcal{E}\left\{h(t+\tau)\right\} \\ &= m_{v}(0,t)\mathcal{E}\left\{h(t+\tau-z)\right\} = m_{v}(0,t)\mathcal{E}\left\{h(t+\tau)\right\} \\ &= m_{v}(0,t)\mathcal{E}\left\{h(t+\tau-z)\right\} = m_{v}(0,t)\mathcal{E}\left\{h(t+\tau-z)h(t+\tau-z)\right\} + m_{v}(0,t)\mathcal{E}\left\{h(t+\tau)\right\} \\ &= m_{v}(0,t)\mathcal{E}\left\{h(t+\tau-z)h(t+\tau-z)\right\} = m_{v}(0,t)\mathcal{E}\left\{h(t+\tau)h(t+\tau-z)h(t+\tau-z)\right\} \\ &= m_{v}(0,t)\mathcal{E}\left\{h(t+\tau-z)h(t+\tau-z)\right\} = m_{v}(0,t)\mathcal{E}\left\{h(t+\tau)h(t+\tau-z)h(t+\tau-z)h(t+\tau-z)h(t+\tau-z)h(t+\tau-z)\right\} \\ &= m_{v}(0,t)\mathcal{E}\left\{h(t+\tau)h(t+\tau-z)h(t+\tau-$$

イロト イヨト イヨト イヨ

Power Spectral Density of Shot Noise

Figure: The photocurrent for a Poisson shot noise with deterministic incident intensity.

- Power spectral density: $S_i(\omega) = \lim_{T \to \infty} \frac{1}{2T} \mathcal{E}\{|X_T(\omega)|^2\}$
- Truncated Fourier transform of a sample shot noise:

$$\begin{aligned} X_{T}(\omega) &= \int_{-T}^{T} i(t) e^{-j\omega t} dt = \sum_{j=1}^{k} g_{j} \int_{-T}^{T} h(t-z_{j}) e^{-j\omega t} dt = \sum_{j=1}^{k} g_{j} e^{-j\omega z_{j}} H_{T}(\omega) \\ |X_{T}(\omega)|^{2} &= X_{T}(\omega) X_{T}^{*}(\omega) = |H_{T}(\omega)|^{2} \sum_{j,l=1}^{k} g_{j} g_{l} e^{-j\omega(z_{j}-z_{l})} = |H_{T}(\omega)|^{2} \left[\sum_{j=1}^{k} g_{j}^{2} + \sum_{j,l=1, j\neq l}^{k} g_{j} g_{l} e^{-j\omega(z_{j}-z_{l})} \right] \end{aligned}$$

• Conditional average:

$$\mathcal{E}\{|X_{T}(\omega)|^{2}|k\} = |H_{T}(\omega)|^{2}[\bar{g^{2}}k(-T,T) + (k^{2}-k)\bar{g}^{2}\int_{-T}^{T}e^{-j\omega z_{j}}p_{z_{j}}(z_{j})dz_{j}\int_{-T}^{T}e^{j\omega z_{l}}p_{z_{l}}(z_{l})dz_{l}]$$

・ロト ・日 ・ ・ ヨト ・

Power Spectral Density of Shot Noise

Figure: The power spectral density for a Poisson shot noise with deterministic incident intensity.Ensemble average:

$$\mathcal{E}\{|X_{T}(\omega)|^{2}\} = |H_{T}(\omega)|^{2} \left[\bar{g^{2}}\bar{k}(-T,T) + \bar{g}^{2} \int_{-T}^{T} e^{-j\omega z_{j}} n(z) dz \int_{-T}^{T} e^{j\omega z} n(z) dz\right]$$

= $|H_{T}(\omega)|^{2} \left[\bar{g^{2}}\bar{k}(-T,T) + \bar{g}^{2} N_{T}(\omega) N_{T}^{*}(\omega)\right] = |H_{T}(\omega)|^{2} \left[\bar{g^{2}}\bar{k}(-T,T) + \bar{g}^{2} |N_{T}(\omega)|^{2}\right]$

• Power spectral density:

$$S_{i}(\omega) = \lim_{T \to \infty} \frac{1}{2T} \mathcal{E}\{|X_{T}(\omega)|^{2}\} = |H_{T}(\omega)|^{2} [\bar{g^{2}}\bar{n} + \bar{g}^{2}F_{n}(\omega)]$$
$$\bar{n} = \lim_{T \to \infty} \frac{\bar{k}(-T, T)}{2T} = \lim_{T \to \infty} \frac{\int_{-T}^{T} n(t)dt}{2T}$$
$$F_{n}(\omega) = \lim_{T \to \infty} \frac{|N_{T}(\omega)|^{2}}{2T} = \lim_{T \to \infty} \frac{|\int_{-T}^{T} n(u)e^{-j\omega u}du|^{2}}{2T}$$

Power Spectral Density of Shot Noise

Figure: The power spectral density for a conditional Poisson shot noise with stochastic incident intensity. For a fast photo-detector, $h(t) = e\delta(t)$ and therefore, $|H(\omega)|^2 = e^2$, $\forall \omega$.

• Power spectral density:

$$S_{i}(\omega) = \lim_{T \to \infty} \frac{1}{2T} \mathcal{E}\{|X_{T}(\omega)|^{2}\} = |H(\omega)|^{2} [\bar{g}^{2} \mathcal{E}_{n}\{\bar{n}\} + \bar{g}^{2} S_{n}(\omega)]$$
$$\mathcal{E}_{n}\{\bar{n}\} = \lim_{T \to \infty} \frac{\mathcal{E}_{n}\{\bar{k}(-T, T)\}}{2T}$$
$$s_{n}(\omega) = \lim_{T \to \infty} \frac{\mathcal{E}_{n}\{|N_{T}(\omega)|^{2}\}}{2T}$$

- Shot noise level: $\bar{g}^2 \mathcal{E}_n \{ \bar{n} \}$
- Shot noise power: $\frac{1}{2\pi} \int_{-\infty}^{\infty} \bar{g^2} \mathcal{E}_n \{\bar{n}\} |H(\omega)|^2 d\omega$

• • • • • • • • • • •

Example (Shot noise power)

For stationary intensities, the power in the shot noise spectrum is the variance of the output current.

$$\begin{aligned} \operatorname{Var}\{i(t)\} &= \bar{g^2} \int_{-\infty}^t h^2(t-z)n(z)dz, \quad n(t) \text{ is deterministic} \\ \operatorname{Var}\{i(t)\} &= \bar{g^2} \int_{-\infty}^t h^2(t-z)\mathcal{E}_n\{n(z)\}dz = \bar{g^2} \int_{-\infty}^t h^2(t-z)\bar{n}(z)dz, \quad n(t) \text{ is stochastic} \\ \mathcal{E}_n\{\bar{n}\} &= \lim_{T \to \infty} \frac{\mathcal{E}_n\{\bar{k}(-T,T)\}}{2T} = \lim_{T \to \infty} \frac{\mathcal{E}_n\{\int_{-T}^T n(t)dt\}}{2T} = \lim_{T \to \infty} \frac{\int_{-T}^T \mathcal{E}_n\{n(t)\}dt}{2T} = \bar{n}, \quad n(t) \text{ is stationary} \\ \operatorname{Var}\{i(t)\} &= \bar{g^2} \int_{-\infty}^t h^2(t-z)\mathcal{E}_n\{n(z)\}dz = \bar{g^2}\bar{n} \int_0^\infty h^2(t)dt, \quad n(t) \text{ is stationary stochastic} \\ \operatorname{Var}\{i(t)\} &= \bar{g^2}\bar{n} \int_{-\infty}^\infty h^2(t)dt = \frac{1}{2\pi} \int_{-\infty}^\infty \bar{g^2}\bar{n}|H(\omega)|^2d\omega, \quad n(t) \text{ is stationary stochastic} \end{aligned}$$

Image: A matching of the second se

Example (Shot noise power)

If the fixed count intensity of the dark current is $n_{dc} = \frac{l_{dc}}{e}$, then $S_{dc}(\omega) = |H(\omega)|^2 \left[\bar{g^2} \frac{l_{dc}}{e} + 2\pi \bar{g}^2 (\frac{l_{dc}}{e})^2 \delta(\omega) \right]$. The dark current inserts a DC current into the output currents and increases the shot noise level.

$$S_{dc}(\omega) = |H_T(\omega)|^2 \left[\bar{g^2} n_{dc} + \bar{g}^2 2\pi n_{dc}^2 \delta(\omega)\right] = |H(\omega)|^2 \left[\bar{g^2} \frac{I_{dc}}{e} + 2\pi \bar{g}^2 (\frac{I_{dc}}{e})^2 \delta(\omega)\right]$$

イロト イヨト イヨト イヨト

Filtered Shot Noise

Figure: The power spectral density for a filtered conditional Poisson shot noise with stochastic incident intensity. For a fast photo-detector, $h(t) = e\delta(t)$ and therefore, $|H(\omega)|^2 = e^2$, $\forall \omega$.

- Filtered power spectral density: $S_y(\omega) = |U(\omega)|^2 S_i(\omega)$
- Filtering condition: Count intensity bandwidth < Filter bandwidth < Photo-detector bandwidth
- Shot noise power: $\frac{1}{2\pi} \int_{-\infty}^{\infty} \bar{g}^2 \mathcal{E}_n \{\bar{n}\} |U(\omega)|^2 d\omega$

イロト イ団ト イヨト イヨト

Complex Examples

メロト メタト メヨト メヨト

Example (Characteristic function of Poisson shot noise)

Characteristic function of the Poisson shot noise can be expressed in terms of the characteristic function of h(t - z).

$$\begin{split} \Psi_{i}(\omega,t) &= \mathcal{E}\left\{e^{j\omega i(t)}\right\} = \mathcal{E}\left\{\exp\left(j\omega\sum_{j=1}^{k}h(t-z_{j})\right)\right\} = \mathcal{E}_{k}\left\{\mathcal{E}\left\{\exp\left(j\omega\sum_{j=1}^{k}h(t-z_{j})\right)|k\right\}\right\} \\ &= \mathcal{E}_{k}\left\{\prod_{j=1}^{k}\mathcal{E}\left\{\exp(j\omega h(t-z_{j}))\right\}\right\} = \mathcal{E}_{k}\left\{\left[\mathcal{E}\left\{\exp(j\omega h(t-z_{j}))\right\}\right]^{k}\right\} = \mathcal{E}_{k}\left\{\left[\Psi_{n}(\omega,t)\right]^{k}\right\} \\ \Psi_{n}(\omega,t) &= \int_{-\infty}^{t}\exp(j\omega h(t-\rho))\frac{n(\rho)}{m_{v}}d\rho \\ \Psi_{i}(\omega,t) &= \mathcal{E}_{k}\left\{\left[\Psi_{n}(\omega,t)\right]^{k}\right\} = \sum_{k=0}^{\infty}e^{-m_{v}}\frac{m_{v}^{k}}{k!}\left[\Psi_{n}(\omega,t)\right]^{k} = e^{-m_{v}}\sum_{k=0}^{\infty}\frac{\left[m_{v}\Psi_{n}(\omega,t)\right]^{k}}{k!} \\ &= \exp(m_{v}(\Psi_{n}(\omega,t)-1)) = \exp\left(\int_{-\infty}^{t}\left[\exp(j\omega h(t-\rho))-1\right]n(\rho)d\rho\right) \end{split}$$

イロト イ団ト イヨト イヨト

Poisson Shot Noise

~

Example (PDF of Poisson shot noise)

For a rectangular current pulse, the PDF of the shot noise is Poisson-like.

$$\begin{split} h(t) &= \frac{e}{\tau} [u(t) - u(t - \tau)] \\ \Psi_i(\omega, t) &= \exp(m_v(\Psi_n(\omega, t) - 1)) = \exp\left(\int_{-\infty}^t \left[\exp(j\omega h(t - \rho)) - 1\right] n(\rho) d\rho\right) \\ &= \exp\left(\left[\exp\left(j\omega\frac{e}{\tau}\right) - 1\right] \int_{t-\tau}^t n(\rho) d\rho\right) = \exp\left(m_v \left[e^{j\omega\frac{e}{\tau}} - 1\right]\right), \quad m_v = \int_{t-\tau}^t n(\rho) d\rho = \bar{k}(t - \tau, t) \\ p(i, t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-j\omega i} \Psi_i(\omega, t) d\omega = \frac{e^{-m_v}}{2\pi} \int_{-\infty}^{\infty} e^{-j\omega i} e^{m_v e^{j\omega e/\tau}} d\omega \\ &= \frac{e^{-m_v}}{2\pi} \int_{-\infty}^{\infty} e^{-j\omega i} \sum_{q=0}^{\infty} \frac{(m_v e^{j\omega e/\tau})^q}{q!} d\omega = e^{-m_v} \sum_{q=0}^{\infty} \frac{m_v^q}{q!} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-j\omega(i-qe/\tau)} d\omega\right] \\ &= \sum_{q=0}^{\infty} e^{-m_v} \frac{m_v^q}{q!} \delta(i - \frac{qe}{\tau}) \end{split}$$

< □ > < □ > < □ > < □ > < □ >

Example (Moments of Poisson shot noise)

The moments can be given in terms of the Poisson shot noise semi-invariants χ_q .

$$\begin{split} \Psi_i(\omega,t) &= \exp(m_v(\Psi_n(\omega,t)-1)) = \exp\left(\int_{-\infty}^t \left[\exp(j\omega h(t-\rho))-1\right]n(\rho)d\rho\right) \\ &\ln(\Psi_i(\omega,t)) = \int_{-\infty}^t \left[\exp(j\omega h(t-\rho))-1\right]n(\rho)d\rho = \int_{-\infty}^t \left[\sum_{q=0}^\infty \frac{(j\omega h(t-\rho))^q}{q!}-1\right]n(\rho)d\rho \\ &= \sum_{q=1}^\infty \frac{(j\omega)^q}{q!} \int_{-\infty}^t h(t-\rho)^q n(\rho)d\rho = \sum_{q=1}^\infty \frac{(j\omega)^q}{q!}\chi_q, \quad \chi_q = \int_{-\infty}^t h(t-\rho)^q n(\rho)d\rho \end{split}$$

 $\begin{aligned} \mathcal{E}\{i(t)\} &= \chi_1 \\ \mathcal{E}\{i^2(t)\} &= \chi_2 + \chi_1^2 \\ \mathcal{E}\{i^3(t)\} &= \chi_3 + 3\chi_2\chi_1 + \chi_1^3 \\ \text{Var}\{i(t)\} &= \chi_2 \end{aligned}$

イロト イ団ト イヨト イヨト

The End

メロト メタト メヨト メヨト