# **Class J Power Amplifiers**



## Overview

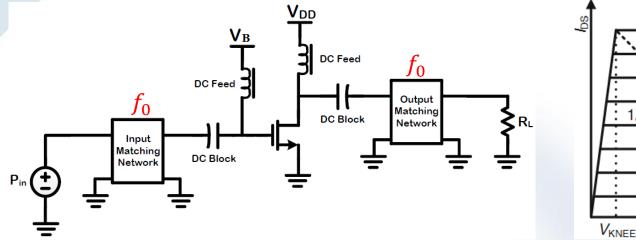


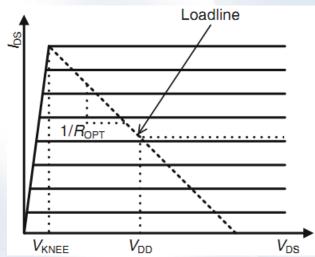
#### Review

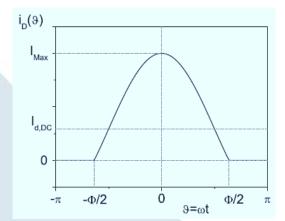
- Tuned Load Power Amplifiers (TLPAs)
- Harmonically Tuned Power Amplifiers (HTPAs)
- □ Second Harmonic Tuning Theory
- □ Class J Family
  - Wide-Band Designs
  - Dual-Band Designs
  - Back-Off Efficiency Improvement

#### **Tuned Load Power Amplifiers (TLPAs)**

TLPAs: Class B, Class AB, …







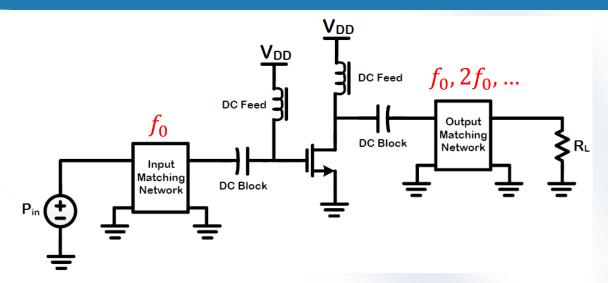
$$i_d(\theta) = \begin{cases} \frac{I_{max}}{1 - \cos\frac{\alpha}{2}} \left(\cos\theta - \cos\frac{\alpha}{2}\right) & -\frac{\alpha}{2} < \theta < \frac{\alpha}{2} \\ 0 & -\pi < \theta < \frac{\alpha}{2} ; \frac{\alpha}{2} < \theta < \pi \end{cases}$$

 $i_D(t) = I_0 + \sum_{n=1}^{\infty} I_n \cos(n\omega t + \xi_n)$ 

 $v_{DS}(t) = V_{DD} - V_{TL} \cos \omega t$ 

 $V_{TL} = \min[V_{DD} - V_{knee}, V_{BR} - V_{DD}]$ 

## Harmonicly Tuned Power Amplifiers-Theory



 $i_D(t) = I_0 + \sum_{n=1}^{\infty} I_n \cos(n\omega t + \xi_n) \longrightarrow$  Same as TL!

 $v_{DS}(t) = V_{DD} - \sum_{n=1}^{\infty} V_n \cos(n\omega t + \psi_n) \longrightarrow V_{knee} \le v_{DS}(t) \le V_{BR}$  $P_{diss} = \frac{1}{\tau} \int_0^T v_{DS}(t) i_D(t) dt = V_{DD} I_0 - \frac{1}{2} \sum_{n=1}^{\infty} V_n I_n \cos(\phi_n)$ 

$$P_{DC} = P_{diss} + P_{out_f} + \sum_{n=2}^{\infty} P_{out_{nf}}$$

 $\eta = \frac{P_{out_f}}{P_{DC}} = \frac{P_{out_f}}{P_{diss} + P_{out_f} + \sum_{n=2}^{\infty} P_{out_{nf}}} \qquad P_{diss} + \sum_{n=2}^{\infty} P_{out_{nf}} = 0 \qquad \longrightarrow 100\% \text{ Efficiency}$  $Y_{L_n} = 0 \text{ or } Z_{L_n} = 0 \qquad \cos(\phi_n) = 0$ 

# High Frequency HT PAs-Theory



- □ HTPAs: Class F, Class  $F^{-1}$ , J, and High Frequency Class E
- □ Only three harmonics could be controlled:
  - Device parasitic capacitance
  - Increased circuit complexity and matching losses

$$v_{DS}(t) = V_{DD} - V_1(\cos \omega t - k_2 \cos 2\omega t - k_3 \cos 3\omega t)$$
  $k_2 \equiv \frac{V_2}{V_1}$  ,  $k_3 = \frac{V_3}{V_1}$ 

$$v_{DS_{nor}}(\tau, k_2, k_3) = \frac{v_{DS}(\tau) - V_{DD}}{V_1} = -\cos\tau - k_2\cos 2\tau - k_3\cos 3\tau \qquad \tau = \omega t$$

$$g(k_2, k_3) = \frac{V_1}{V_{TL}} \longrightarrow \text{HT Gain}$$

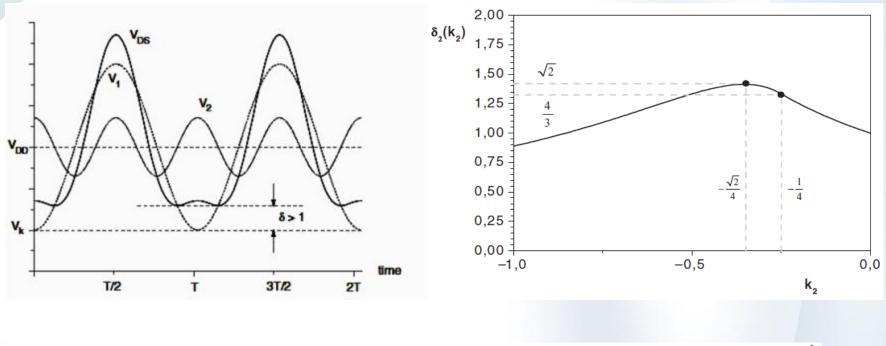
$$p(k_2, k_3) = \frac{\max(v_{DS}(\tau)) - V_{DD}}{V_{DD} - V_{knee}} \longrightarrow \text{HT Peaking}$$

 $\eta_{HT}(k_2,k_3) = g(k_2,k_3)\eta_{TL}$ 

# High Frequency 2<sup>nd</sup> HT PAs-Theory



 $v_{DS_{nor}}(\tau, k_2, k_3) = -\cos\tau - k_2\cos 2\tau$ 



$$\frac{\partial v_{DS_{nor}}(\tau, k_2, k_3)}{\partial \tau} = \sin \tau + 2k_2 \sin 2\tau = 0 \qquad \tau_1 = 0 \quad , \quad \tau_2 = \pi \quad , \quad \tau_3 = \cos^{-1} \frac{-1}{4k_2}$$

$$g_2(k_2) \equiv g(k_2, k_3 = 0) = \begin{cases} \frac{-1}{k_2 + \frac{1}{8k_2}} & k_2 \leq -\frac{1}{4} \\ \frac{1}{1 + k_2} & -\frac{1}{4} \leq k_2 \leq 0 \end{cases} \qquad k_{2g} = -\frac{1}{2\sqrt{2}}$$

 $v_{ds}(\theta) = V_{DC} - (V_{DC} - V_{knee}) \left( \sqrt{2} \cos \theta - 0.5 \cos 2\theta \right)$ 

→ 111% Efficiency <sup>6</sup>

,  $g_{2_{max}} = \sqrt{2}$ 

# High Frequency 2<sup>nd</sup> HT PAs-Peaking



$$v_{DS_{nor}}(\tau, k_2, k_3) = -\cos\tau - k_2\cos 2\tau$$

$$\frac{\partial v_{DS_{nor}}(\tau, k_2, k_3)}{\partial \tau} = \sin \tau + 2k_2 \sin 2\tau = 0$$

$$\tau_1 = 0$$
 ,  $\tau_2 = \pi$  ,  $\tau_3 = \cos^{-1} \frac{-1}{4k_2}$ 

$$p_2(k_2) \equiv p(k_2, k_3 = 0) = \begin{cases} \frac{k_2 - 1}{k_2 + \frac{1}{8k_2}} & k_2 \le -\frac{1}{4} \\ \frac{k_2 - 1}{k_2 + 1} & -\frac{1}{4} \le k_2 \le 0 \end{cases}$$

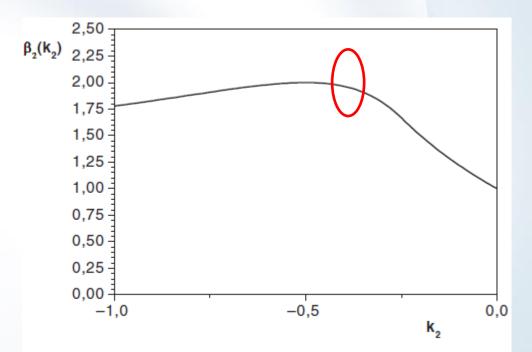


Figure Voltage overshoot function  $\beta_2$  for different  $k_2$  values.

 $k_{2p} = -\frac{1}{2} \quad g \quad p_{2max} = 2$ 

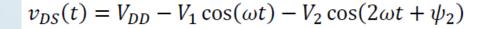
↓

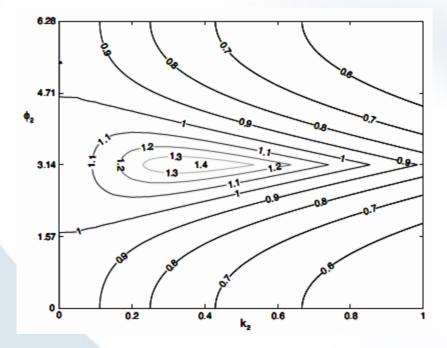
 $V_{DD}$  should be in order of  $\frac{V_{BD}}{3}$ 

Lower Output Power

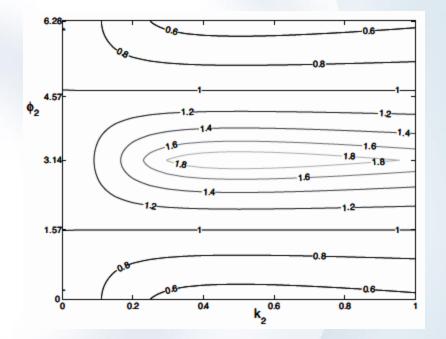
# High Frequency 2<sup>nd</sup> HT PAs-Complex Termination







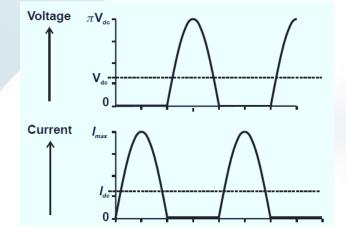
Gain



Peaking

### High Frequency 2<sup>nd</sup> HT PAs-Theory





$$v_{ds}(\theta) = V_{DC} - (V_{DC} - V_{knee}) \left(\sqrt{2}\cos\theta - 0.5\cos2\theta\right)$$

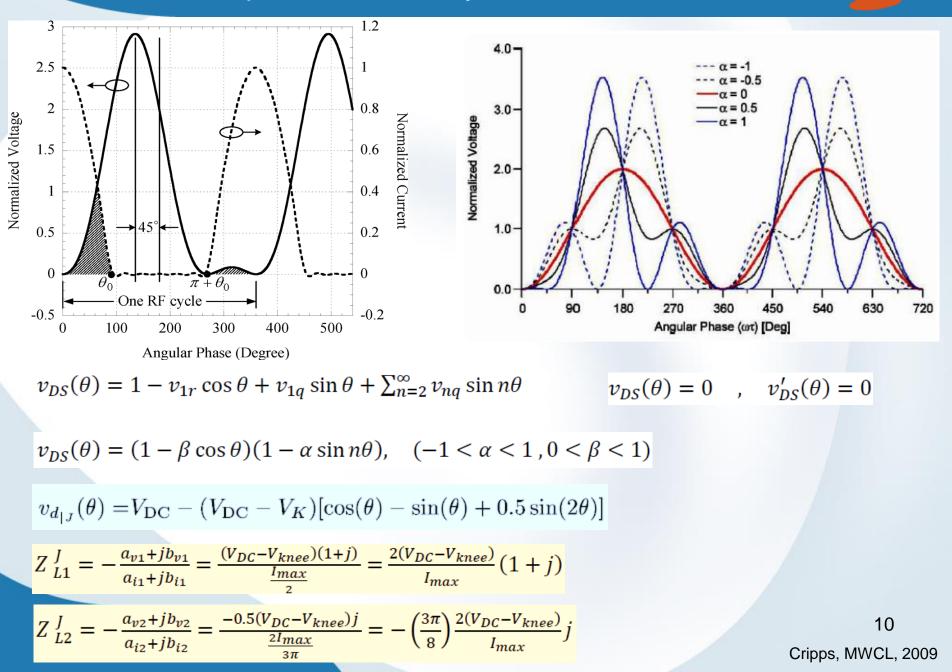
 $v_{DS}(t)=V_{DD}-V_1\cos(\omega t+\psi_1)-V_2\cos(2\omega t+\psi_2)$ 

$$\begin{split} \alpha &= \varphi = \frac{\pi}{2}: \\ i_D(\theta) &= \frac{I_{Max}}{\pi} + \frac{I_{Max}}{2} \sin \theta - \frac{2I_{Max}}{3\pi} \cos 2\theta + \cdots \\ v_D(\theta) &= V_{DC} - \frac{\pi V_{DC}}{2} \sin(\theta + \delta) - \frac{2V_{DC}}{3} \cos 2(\theta + \delta) + \cdots \\ Z_1 &= \frac{\pi V_{DC}}{I_{Max}} \measuredangle \delta \qquad , \qquad Z_2 = \frac{\pi V_{DC}}{I_{Max}} \measuredangle (2\delta - \pi) \quad \rightarrow \quad \frac{\pi}{4} < \delta < \frac{3\pi}{4} \end{split}$$

 $\delta = \frac{\pi}{4} , \ \delta = \frac{3\pi}{4}$  $\downarrow^{4}$  $Class J , \ Class J^{-1}$ 

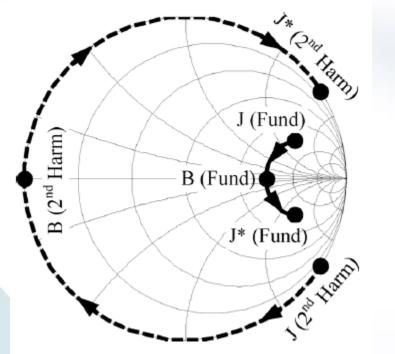
 $\eta_J = \sqrt{2}\eta_{TL} \cos\left(\frac{\pi}{4}\right) = \eta_{TL}$ 

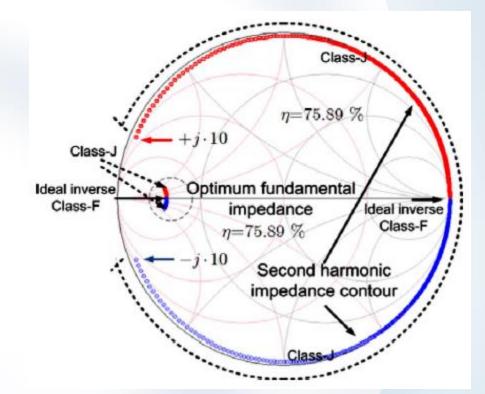
#### **Class J Operation - Theory**



# Class J Operation - Theory







-1-

Simple Matching

□ Wide-Band Designs

Multi-Band/Multi-Standard Designs

□ High Frequency Potential

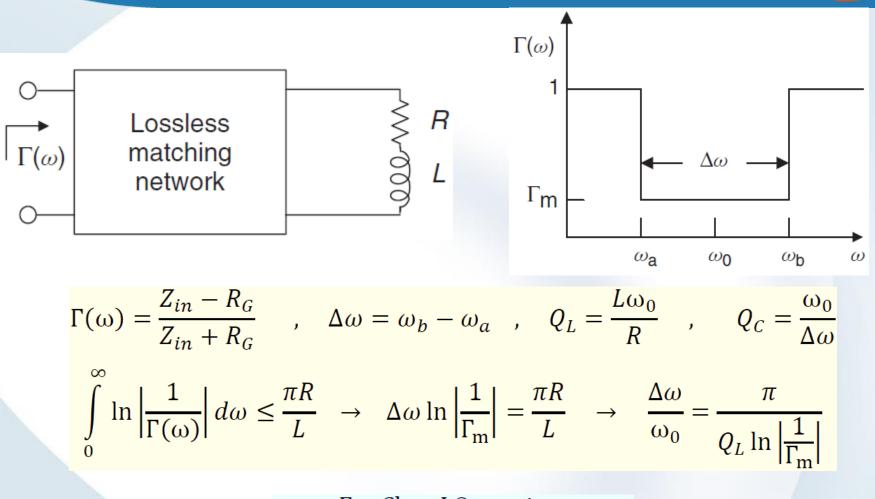
Lower Losses

Peaking

Lower Output Power

Lower Efficiency Compared to Class F

#### Wide-Band Class J power Amplifier-Theory



For Class J Operation:

 $Z_{1_{opt}} = R_{opt} + jR_{opt} \rightarrow Q_L = 1$ 

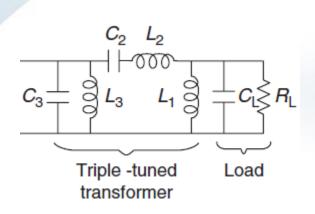
For 
$$\Gamma_{\rm m} = 10 \, \mathrm{dB} \rightarrow \frac{\Delta \omega}{\omega_0} = 136 \, \%$$

### Wide-Band Class J power Amplifier-Theory



Lopez, IEEE APM, 2004, 2005, and 2007

Coefficients  $a_n$  and  $b_n$  for Various Values of n



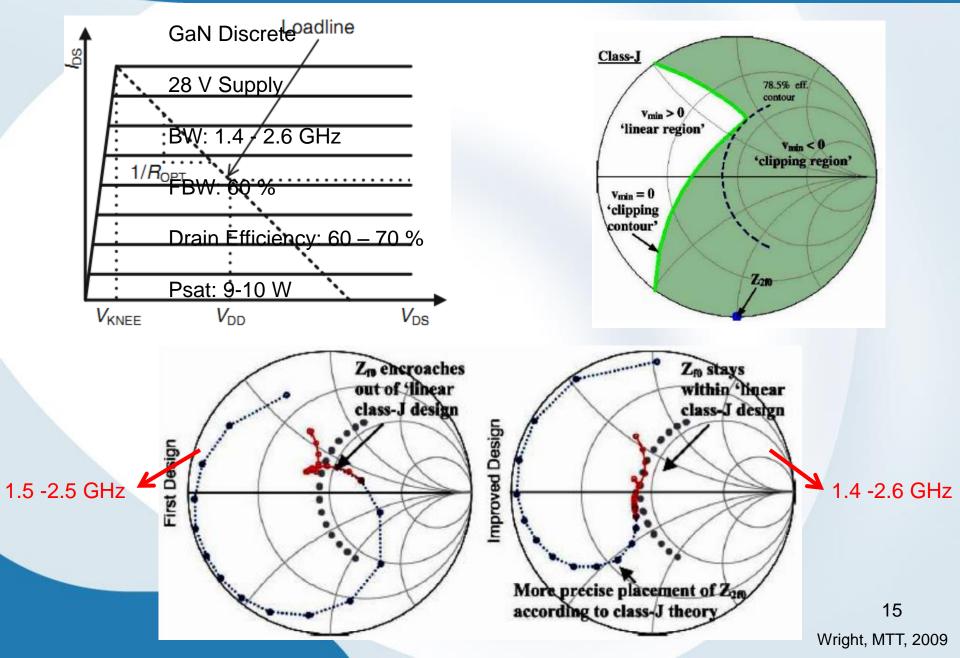
| n        | $a_n$ | $b_n$ |
|----------|-------|-------|
| 1        | 1     | 1     |
| 2        | 2     | 1     |
| 3        | 2.413 | 0.678 |
| 4        | 2.628 | 0.474 |
| 5        | 2.755 | 0.347 |
| 6        | 2.838 | 0.264 |
| 7        | 2.896 | 0.209 |
| 8        | 2.937 | 0.160 |
| $\infty$ | π     | 0     |

$$Q_{\rm L}BW = \frac{1}{b_n \sinh\left[\frac{1}{a_n}\ln\left(\frac{1}{\Gamma}\right)\right] + \frac{1-b_n}{a_n}\ln\left(\frac{1}{\Gamma}\right)}$$

$$n = 1: BW = \frac{1}{Q_L} \frac{2\Gamma_m}{1 - \Gamma_m^2} \to BW \cong 20\%$$
$$n = 2: BW = \frac{1}{Q_L} \frac{2\sqrt{\Gamma_m}}{1 - \Gamma_m} \to BW \cong 70\%$$
$$n = 3: \to BW \cong 95\%$$

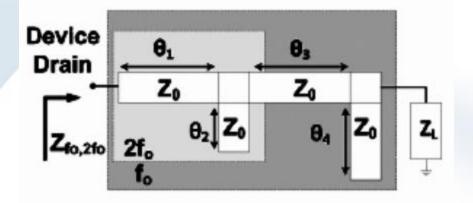
### Class J Bandwidth- Clipping Contours





#### Class J Bandwidth- Matching Pool





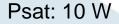
GaN Discrete

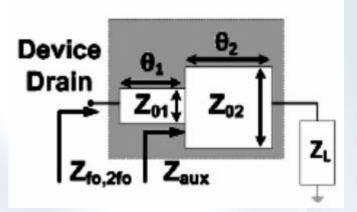
28 V Supply

BW: 1.6 - 2.2 GHz

FBW: 32 %

Drain Efficiency: 55 - 68 %





GaN Discrete 28 V Supply

BW: 0.5 – 1.8 GHz

FBW: 113%

Drain Efficiency: 50 – 69 %

Psat: 10 W

16 Mimis, MTT, 2012

#### **Class J- Dual-Band Design**

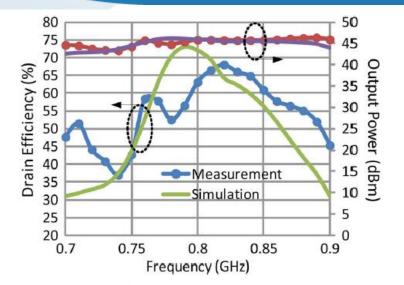


Fig. 19. Measurement and simulation results of output power and drain efficiency for the lower band.

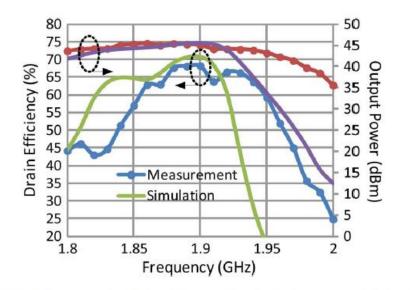
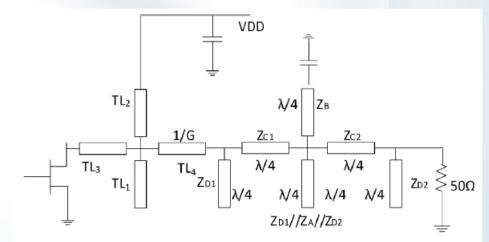
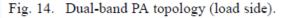


Fig. 20. Measurement and simulation results of output power and drain efficiency for the upper band.

TABLE I TARGET FUNDAMENTAL IMPEDANCES

| Impedance   | 0.8GHz     | 1.9GHz            |
|-------------|------------|-------------------|
| Load side   | 9.85+j4.8  | 4+j2.4            |
| Source side | 4.68+j3.66 | 2.1 <b>-j</b> 2.7 |



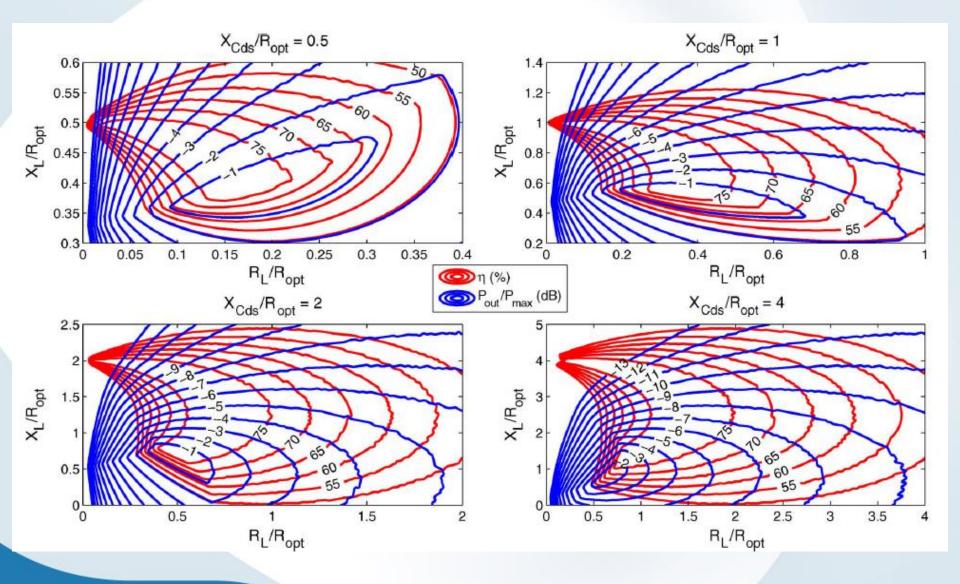


17 Fu, TCASI, 2014



# Class J- High Back-Off Efficiency





18 Andersson, MTT, 2012

#### Class J- High Back-Off Efficiency



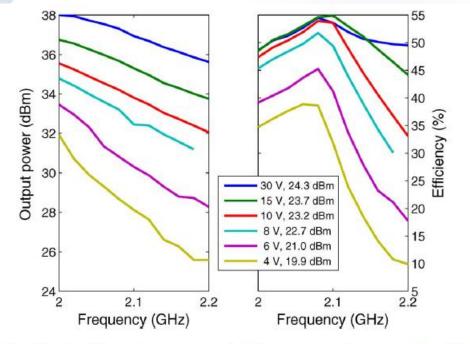
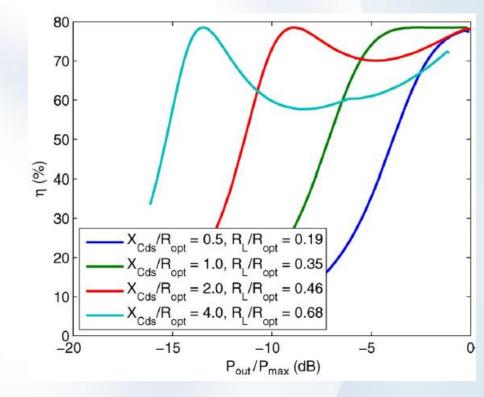
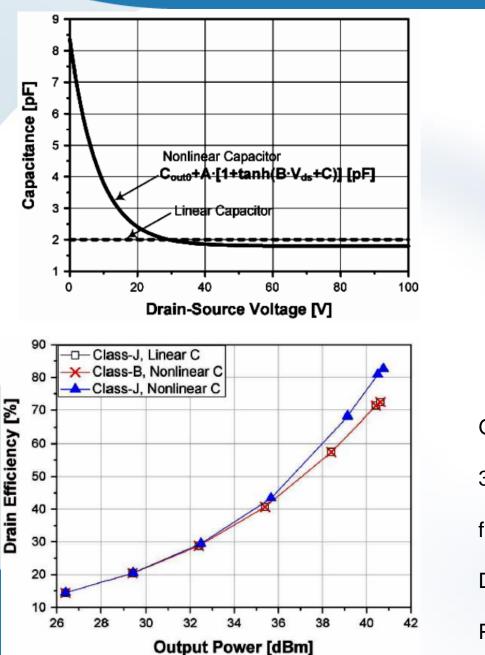
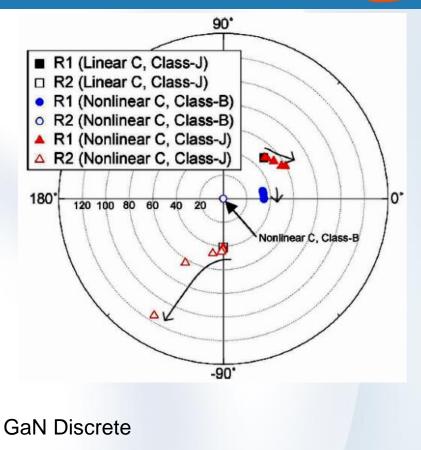


Fig. 11. Amplifier output power and efficiency versus frequency when following the optimum control function at 2.08 GHz, but backing off the input power by 2 dB.



#### **Class J Efficiency- Negative Resistance**





30 V Supply

f: 2.14 GHz

Drain Efficiency: 77%

Psat: 11.5 W

20 Moon, MTT, 2010

### **Class J Efficiency- Transistor Sizing**



