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Mechanics
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e free electron / particle in box / potential wall / tunneling / Kronig-Penning
problem / Harmonic oscillator
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History of Chemistry

In fourth century B.C., ancient Greeks proposed that matter consisted of
fundamental particles called atoms. Over the next two millennia, major
advances in chemistry were achieved by alchemists. Their major goal was to
convert certain elements into others by a process called transmutation.

In 400 B.C. the Greeks tried to understand matter (chemicals) and broke them
down into earth, wind, fire, and air.

Relation of the four ELEMENTS and the four qualities
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History of Chemistry
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Serious experimental efforts to identify the elements began in the eighteenth century with
the work of Lavoisier, Priestley, and other chemists. By the end of the nineteenth
century, about 80 of the elements had been correctly identified,

The law of definite proportions was correctly interpreted by the

English chemist John Dalton as evidence for the existence of
atoms. Dalton argued that if we assume that carbon and oxygen are

composed of atoms whose masses are in the ratio 3:4 and if CO is
the result of an exact pairing of these atoms (one atom of C paired
with each atom of O),

ELEMENTS DISCOVERED BEFORE 1800: (Italicized if discovered after 1700)
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Proposed about 1900 by Lord Kelvin and strongly
supported by Sir Joseph John Thomson,

Thomson’s “plum-pudding” model of the atom had the
positive charges spread uniformly throughout a sphere the
size of the atom, with electrons embedded in the uniform
background.

“There is nothing new to be discovered in physics now. All that
remains is more and more precise measurement.”
--- Lord Kelvin, 1900
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Rutherford’s Atomic Model
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Rutherford Scattering (1909):

The experimental results were not
consistent with Thomson’s atomic
model.
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Rutherford proposed (1911) that an atom _
has a positively charged core (nucleus) Y
surrounded by the negative electrons
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Failing of the Planetary Model
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From classical E&M theory, an accelerated electric charge radiates energy
(electromagnetic radiation) which means total energy must decrease.
Radius r must decrease!!

Electron crashes into the nucleus!?

A
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Physics had reached a turning point in 1900
with Planck’s hypothesis of the quantum
behavior of radiation.

Nucleus

birth of Quantum mechanics

V 4
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Am | Classical or Quantum? 3. schrod. Eq
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/ An Electron! \
classical guantum
mass, energy, momentum photoelectric effect, diffraction

Wave-Particle Duality

deBroglie wavelength

A=h/p

h = Planck’s constant = 6.63x1034 J-s (measured)
p = momentum
A = wavelength

Is electron like a soccer ball or not?
Who knows!
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Wave-Particle Duality
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How do | look?

VS.
m = 100Kg m = 1Kg m = 1Kg
V=1m/s V=1m/s
A =?
A =6.6x103%*m A =6.6x10%m
E=05) E =5x103!)
f =E/h=7.5x10%2/s f =757/s
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Black Body Radiation
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e Temperature is just average energy in each microscopic degree of motion
( (1/2)KT, k = Boltzman’s constant)

e Every object radiates light at its intrinsic frequencies of vibration etc.

e A Black Body absorbs all light incident, but must re-radiate light, whose

intensity and spectrum depends only upon the temperature.

Classical Mechanics, and Classical EM gave prediction for black body radiation that:

1. Disagreed with experiments
2. Was logically inconsistent (Infinite total energy).

Planck (1900) found that a very simple formula could be
used to calculate the quantum at a particular frequency of

EMR
= hf
E = energy of the radiation (J)

h = Planck’s Constant = 6.63e-34 J-s
f = frequency of the EMR (Hz)

10
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Photo Electric Effect P =22
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e Light shining on a metal will liberate electrons, x\-f::t‘:\\
hf r r than LERTTLEN,, |, R‘;Q::;:‘L%\::J_F N

but the photon energy mL.JSt !oe greater than a TN
threshold energy (equal to binding energy of I } |
electron in metal.) | .ilf,;;"jj::i-i.;;;?._"‘*x ‘ ‘_l
e The threshold effect is independent of light [ —
intensity (energy density of light).
e Na requires 2.5eV = Green A -

In 1905 an unknown physicist p

named Albert Einstein came up
with an idea that built on what
Planck had said.

The light consist of particles named
photon.

Photon comes from the Greek word for
light. Einstein originally called photons a

“light quantum.” The chemist Gilbert N.
Lewis came up with the name photo.

Couitznd A

sy (L)
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Fathers of QM!
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Louis de Broglie (1892 —1987)
Introduced wave-particle duality in his E \ﬂ
PhD Erwin Schrodinger (1887 —1961)

Nobe Max Born (1882 —1970)
@ Unlver5|ty of Gottmgen he came mto
contact v
Runge, St

Physical i
ysica Student of €+~~~ £olel /Do

Matrix m Matrix me: Pascual Jordan (1902 — 1980)

el = Nobel Priz

Werner Helsenberg (1901 1976)

Paul Dirac ( 1902 —1984)

Student o

Matrix me . ..
Fermi—Dirac statistics

special theory of relativity + quantum
mechanics 2 ‘quantum field theory’
Nobel Prize in Physics, 1933
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H, Emission & Absorption Spectra

O

Sun and stars are made of Hydrogen and Helium,
The galaxies are receding from us (redshift)

Balmer Series [Joseph Balmer, 1885]

absorption
(white light backg rt

13
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- With AE = hc/A
If A=440 nm, AE =4.5x 107"
~ c
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Bohr Atomic Model
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Introduced by Niels Bohr (1885 —-1962) in 1913, a Dane, proposed his
model of the atom while working at Cambridge University in England

Atom: a small, positively charged nucleus surrounded by electrons that
travel in circular orbits around the nucleus (similar to the solar system)

nucleus

"E” 965 r’a_‘uj 11;;- wdi s P.v 1At ., e
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Bohr Atomic Model
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wave-particle duality A = h/p
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de Broglie standing wave

Bohr’s postulate (1913):

(1) An electron in an atom moves in a circular orbit about the nucleus under the
influence of the Coulomb attraction between the electron and the nucleus, obeying
the laws of classical mechanics.

(2) An electron move in an orbit for which its orbital angular momentum is
L=nh=nh/2r ,n=1,2,---, h Planck’s constant

(3) An electron with constant acceleration moving in an allowed orbit does not
radiate electromagnetic energy. Thus, its total energy E remains constant.

(4) Electromagnetic radiation is emitted if an electron, initially moving in an orbit of
total energy E;, discontinuously changes its motion so that it moves in an orbit of
total energy E¢. The frequency of the emitted radiation is v = (E; — Ef)/h.

16
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Bohr Atomic Model
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I:H:I:I:I-‘-'-'-'-'

wave-particle duality A = h/p

mvr = nh

de Broglie standing wave

Energy Bands:

18
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1 mzZet(1 1
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NS,

lonization above 13.6eV

n=5

n=4

Pashchen Series n=3

AA - n=2
Balmer Series

n=1

for R, =

(4mey)? dmch3 -

Lyman Series
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Quantum Mechanics and Real Life!

hWNR

Why chalk is white, metals are shiny?
Colors «— Absorbing transitions < transition energies <—QM

Blackbody radiation: Quantum statistics of radiation (is using to find temp. of stars)

For us as Elect. Engineers:

+ Solid state technology (Integrated circuits)
- Tunneling through gate oxide

Information age is become available by QM!

QM arguably the greatest achievement of the twentieth century!
QM changed our view of the world/philosophy of life!

QM been attacked by many prominent scientist!

QM is “non-local”!

QM enables quantum computing!

QM is bizarre!

Tunneling

Heisenberg’s uncertainty principle

Particle may exist in a superposition state
Measurement, collapse of the wavefunction

20
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In qguantum world, each particle is described by a wave packet. This wave
behavior of the particle is reason behind uncertainty principle.

Precisely determined momentum
A sine wave of wavelength A, implies that the
/\/\/\/\/ momentum p is precisely known but the
wavefunction is spread over all space.
Adding several waves of different
wavelength together will produce an
W\/\/\/\/\/\/\/\/ A interference pattern which localizes
the wave. But the process spreads the
WVWV\/ momentum and makes it more
uncertain.
W\/VW Inherently:
ApAx > h/2m

21
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Diffraction & Uncertainty Principle

sinf = A/W

[ —>

Uncertainty
Ay E W/Z D
Apy = psinf = (/DHA/W)  —— o -

Ay Apy — h/Z —>

—>
Heisenberg:

—>

Ay Ap, = h/2m

Uncertainty principle is a consequence
of wave nature of matter

22
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Plain wave: 1 « e KT

assume L > d
Wave on the screen:

—iky(x=d/2)2+12 4 ik (x+d/2)?+L?

¢screen xXe

kdx

Yscreen X € B4 COST

2 2
where X d
=k|L+=+
i 2L 8L electron double slits
ndx 1 2mdx
|1/Jscreen|2 X cOs* T = E 1+ cos 1L »\._

Hence a beam of monoenergetic electrons produces a sinusoidal
interference pattern, or “fringes”, on the screen, with the fringes

separated by a distance A, = AL/d

Young’s double slits

23
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Double Slit & Quantum Mechanics
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some bizarre consequences:
By blocking 1slit — interference fringes disappear
By uncovering 1 slit — parts the screen that were bright now become dark

extremely low electron currents (never 2 electrons at given time)
— same interference pattern

Diffractive effects are strong when the wavelength is
comparable to the size of an object.

e Spacing between the atoms are on the order of A.
e Electron microscope!

Ae~0.1 nm

24
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Electron can behave like plane wave with 1 = h/p wave equation ¥ = Ae!?™/4

Simplest choice: Helmholtz wave equation for monochromatic wave

VY = —k2Y where k=2n/A=p/h
—h2P2Y = p2y

hZ pZ p2

—— P29 =—¢ - —— = K.E.=Total energy(E) - Potential energy(V)
2mg 2m, 2mg
hZ
——VY=(E-V p Y
e ( ()

hZ
- - 2 j—
< : 0\7 +V(r))q1 EY

time-independent Schrodinger equation

Note: we have not “derived” Schrodinger’s equation. Schrodinger’s equation has to be postulated,
just like Newton’s laws of motion were originally postulated. The only justification for making such a

postulate is that it works!
25
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Schrodinger Equation
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E = szc4 + p%c? = myc? (1 + pc” + -
0 0 2méc*
2 21,2
p h*k
E — 2 — V — =V
h2 k>
hy =hw =V +
, — = —iw
_ —i(wt—kx)
Y(x,t) = Ae dt and
d*¥ L2
dx?
h* d2w+v w __hdtp
2mg dx? (¥ =1 dt

time-dependent Schrodinger equation

26
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Schrodinger Equation
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W2 d N Y
(_ 2mg dx? * (r)) - "ar
P(x, 1) = Pp()p(t) = P(x)e /"

h% d*y
2mg dx?

. . —iE .
e—lEt/h + V(X)l/J(X)e_lEt/h — ithp(x)e—lEt/h

K2 d2
(— +Vﬁ» Y = EY

2mg dx?

27
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Physical interpretation of the wavefunction
P(r) = probability of finding a particle at r o [ (r)|?
W(@)|*d*r = 1

ﬂ , Most likely at A, never can be found at C!
P (x) () If we find it at B, what does it mean?

Measurement will change the wave function!
rm The value of Y is not measurable. However, all
i B C measurable quantities of a particle can be
derived from .

It is meaningless to talk about the position of the particle, as a wave function
describes it, but we can find the expected value for the position, (x).

(x (D)) = j x| (x, )| 2dx

() = j " (x, O&P(x, )dx
28
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(x(t)) = [ x|Y(x,t)|*dx Show that:

d(x) Lh oY
- m) Vo

Momentum operator:

p = mv—m@=—lhjlp —dx—Jt/J*(—ih:—x>1/de

general operator:

(Q) = f Y*QWdxdydz

29
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3D wave-function: W(x,y,z;t) ,¥Y(Ft) ,P(r)
1D wave-function: W(x; t)
window of QM to the real world W*(x;t) W(x;t)

Classical: Quantum:

Dynamical variables: Operator
position, momentum, energy

We have seen operators before

W
operator \
operand

30
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The state of a system is described by a wave function of the coordinates and the time
Y(r;t), (which is often complex-valued) the complete wavefunction depends on
coordinates r and time t.

W*(x; t) W(x; t)dr is the probability that the system is in the volume

element dt at time t.

Thus W and 0¥ /d(x, y, z) must be:
(1)Single-value; (2) Continuous; (3) Quadratically integrable

Example: The wavefunction of the plane monochromatic light

N Aezm(ﬁ——vt)

wave-particle duality

E—hu b —h//

31
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The motion of a nonrelativistic particle is governed by the Schréodinger equation

HY = n d2+v tp—'hdw
~\ 2mgdx? () BT

time-dependent Schrodinger equation

Y (x, t) = l/)(x)cp(t) = 1 (x)e LB/

d*y
2m0 7oz TV =EY

time-independent Schrodinger equation

If Y4, Y, ..., P, are the possible states of a microscopic system, then the linear combination
of these states is also a possible state of the system

V= zcilpi

In classical systems: we often use linear equations as a first approximation to nonlinear behavior

In quantum mechanics: The linearity of the equations with respect to the quantum mechanical
amplitude is not an approximation of any kind. this linearity allows the full use of linear algebra for
the mathematics of quantum mechanics. 32
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For every classical observable there is a corresponding linear hermitian qguantum mechanical

operator.

Classical operator Quantum operator

Position, x X=x
Momentum(x), py P, = —lhi
dx
f (x) f (Dx)
5 A2
Kinetic Energy, K = zp_m K= g—m
Potential Energy, V V=v
Energy ,E =K+ V -0
(Schrodinger eq.) - lha

(Q) = j‘l’*@‘l’dxdydz

33



Pauli Exclusion Principle
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Every atomic or molecular orbital can only contain a
maximum of two electrons with opposite spins.

34
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Simple Problems
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@)

Free electron (metals)

Particle in a box (quantum well, optoelectronic)
Ideal (infinite) well O
Finite well

Potential wall (transmission, reflection)

Tunneling (Tunneling diode, STM) o0—

Kronig-Penning problem (Solid state, Bandgap)

Harmonic oscillator (acoustic vibration = phonon, ®)
Emag waves = photon)

36
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- O

Simple Prob. :

d?
d 7’20 + V(@)Y = Ey time-independent Schrodinger equation
X

Zmo
Free electron V(x) = 0, with energy E
d*y ZmOE
— = = —k?
dxz l/) llj

l/) — A+e—ikx +A_e+ikx

Y(x,t) = A_I_e—i(kx—wt) + A etitkx—wi)

37



Effective Mass
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- O

Gads

38
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1-D Quantum Well (Box)

- O

Consider a particle with mass m under potential as

Outside the box: V=c0—1=0

Inside the box: d%y 2mE
dx?  h?

sinkx ,coskx as k=+2mE/h
continuity of Y at 0 and L:

Y=0

i\ N w2

l n is the quantum number

n
Y(0) =¢Y(L) =0—->1yp = Asinkx ; szn n=123,

nm  V2mE B nmw?h?
L A o 2ml?

normalization:
+ oo

L
1/)*1/)dx=J Az(sm"”x) dx=1-A=,/2/L
0

2 .
Y, = \/; sin(T-

39



1-D Quantum Well (Box)
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- O

27T2h2

n 2ml2

— |2 <
t,bn—\/;sm("L—”

L 7 o — free electron
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Eigenvalue - Eigenfunction

hWNR

Solutions:

with a specific set of allowed values of a parameter (here
energy), eigenvalues E,, (eigenenergies) and with a
particular function solution associated with each such value,
eigenfunctions Y,

It is possible to have more than one eigenfunction with a
given eigenvalue, a phenomenon known as degeneracy.

even function / odd function

Note:

It is quite possible for solutions of quantum mechanical
problems not to have either odd or even behavior, e.g., if
the potential was not itself symmetric.

When the potential is symmetric, odd and even behavior is
very common.

Definite parity is useful since it makes certain integrals
vanish exactly.

41
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Only discrete values of that energy possible, with specific
wave functions associated with each such value of energy.
This is the first truly “guantum” behavior we have seen with
“quantum” steps in energy between the different allowed
states.

Differences from the classical case:

1 - only a discrete set of possible values for the energy

2 - a minimum possible energy for the particle,

above the energy of the classical "bottom" of the box,
E, = m%h?/2mlL?

sometimes called a "zero point" energy (ground state).

3 - the particle is not uniformly distributed over the box,

(almost never found very near to the walls of the box)

the probability obeys a standing wave pattern.
In the lowest state (n =1), it is most likely to be found near the L~0.5 nm (atom)
center of the box. In higher states, there are points inside the box,
where the particle will never be found. Note that each successively E; =15eV
higher energy state has one more “zero” in the eigenfunction. this is E,—E, =45¢eV
very common behavior in quantum mechanics.

42
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completeness of sets of eigenfunctions. .
— nrmt
Familiar case: Fourier series ft) = z An Sm(
n=1
(00 (00
Similarly for ever x),0<x<L:
Y VI flx) = z an Sln(nnx = z by (x)
n=1 n=1

as P, = \/%Sin(%x) hence b,, = \/% a,

we can express any function between positions x = 0 and x = L as an expansion in the
eigenfunctions of this qguantum mechanical problem.
Note that there are many other sets of functions that are also complete.

A set of functions such as the 1, that can be used to represent a function such as the
f(x) is referred to as a “basis set of functions” or simply, a “basis”.

The set of coefficients (amplitudes) b,, is then the “representation” of f(x) in the basis
,,. Because of the completeness of the set of basis functions ,, , this representation is
just as good a one as the set of the amplitudes at every point x between 0 and L.
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Sets of Eigen functions

III

In addition to being “complete,” the set of functions 1,,(x) are “orthogona

Definition: Two functions g(x) and h(x) are orthogonal if

L
j g (x)h(x)dx =0
0

Definition: Kronecker delta {O , Mm#*n

mto 1, m=n

L
j Yrn ()Y (x)dx = 8y
0

A set of functions that is both normalized and mutually orthogonal, is said to be
“orthonormal”.

Orthonormal sets are very convenient mathematically, so most basis sets are chosen to be
orthonormal. Note that orthogonality of different eigenfunctions is very common in quantum
mechanics, and is not restricted to this specific example where the eigenfunctions are sine waves.

OO =) @ > on= [BrOF@dx
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Simple Prob.

We first need to find the values of the energy
for which there are solutions to the Schrodinger
equation, then deduce the corresponding
wavefunctions.

Boundary conditions are given by continuity of
the wavefunction and its first derivative.

assume E < U

V(x)

Region | Region|I|and |I1]
d?y 2mE d’y 2m(U —E) J2m(U —E)
_ — _ 1,2 _ — 2 _
P VLA Gl s Rz VEeW as h
_ VZ2mE > =A4Ae* +Be ™, x<Oandx>L
h
- Y; =A4e** , x<0
_ Finite : = _
Y = Fsinkx + G cos kx Yy = Be ™ |, x <L
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f eodx = 1

Simple Prob. HHHH
V(x)
Y, = Ae™* , x <0
Y =Fsinkx+Gcoskx , 0<x<lL
Y = Be ™™ , x <L
(Y, =y @x=0
dy; dyy (A
— = (
dx dx @ x B
< Yy=Yy @x=L =4 F
dy;; _ dyyy _ G
dx dx @ x =L \a — E

for E < U : (1) Quantization of energies. (2) Particle almost bounded In the well.

for E > U : all energies are possible. (plane wave)
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1. Intro I 1
2 2. BirthofQM [ [ 11
Potential Well 5 sehrod 5 T
4. Simple Prob. H
Region —h? d*y, V(x)
2m dx? Evr
d*y;
7x2 + k%, =0 where k=+vV2ZmE/h
<"
' —h? dzl/’u
Region |11 o + Voyy; = EYyy ; 0 7 p
Y 2y =0 where a=2m(E—V,)/h
dx? a“yYy = 0 5 2 Y =y
Y; = Aetkx 4 Betkx (x <0) A Vo
Y, = Ce™ +De ™ (x> 0) §= 2F — Vo — ZVL\/(VO —E)E
0

B.C.> A,B,D
E=1eV,V,=2eV

1
W, (x,t) = Ael(kx—Et/h) 4 poilkx+Et/h) — —=0.2nm

Y, (x,t) = De~®*iEt/h penetration depth
I1\* —
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Energy = 0.15 eV

z (nm)

Energy = 0.15 eV

z (nm)
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B
2m dx? v==Ey

Y, = etkX 4 yo—ikx (x <0)
Y, =Ae +Be ™™ (0<x <L)
Wy = tet™™ (x>1L)

k=v2mE/h  a=.2m(U—E)/h

( Y=y, @x=0

d d A
1/)1: Yy @ x =0 ( .
< dx dx Ny ,
Yy =Y @x =1L t —T = |t
dyy Ay _ \r — R = |r|*
\dx  dx @x=1L

ul o0 L [

e Transmission coefficient (T): The
probability that the particle
penetrates the barrier.

e Reflection coefficient (R): The
probability that the particle is
reflected by the barrier.

eT+R=1
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T
classical Y
1 v PR AR A
VN ’:'%
o VARY
quantum
0 L g
— E
U
U2 -
T:[1+4E(E_U)sin2aL] a'=\/2m(U—E)/h
EmL2 ]
ForU=E T=114+——no
15

2L
ForU > E  T~exp[— 7\/2m(U — E)]
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Alpha decay:
In order for the alpha particle to escape from the nucleus, it must penetrate a

barrier whose energy is several times greater than the energy of the nucleus-alpha
particle system.

Nuclear fusion:

Protons can tunnel through the barrier caused by their mutual electrostatic
repulsion.

Scanning tunneling microscope:

e The empty space between the tip and the sample surface forms the “barrier”.
e The STM allows highly detailed images of surfaces with resolutions comparable
to the size of a single atom: 0.2 nm lateral, 0.001nm vertical.
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Inter-nuclear separation

|
I -

Molecular potential energy
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1. Intro [CTT1T 7]
. . 2. BirthofQM [ 1]
Harmonic Oscillator 3. schrod. (g T
4. Simple Prob. | } H | H H
A particle subject to a restoring force: F = —kx = —mw?x V(x) = %kx2
The potential energy . .
U(x) = 7kx?* = Skw*x?
: : X
The Schrodinger equation
—h*d*) 17,,.2..2
oy o2 + skw x“yY = EY

Easy guess
maw

W(x) = Be=¢¥* - (= — E= 1hw
This is actually the ground state!

Jmow/h maw mw
Ynlx) = Jm2in) P (_ﬁxz) Hn( Tx>

E,=(n+3)ho n=0,12,..

f

The actual solution: <
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E, = (n+%)ha) ,n=20,1,2,..

1

Ground state £y =-hAw , AE = hw

2

\ / = "hw
\ A
AE $\ / 2

The blue curves represents probability densities for
the first three states

The orange curves represents the classical probability
densities corresponding to the same energies

As n increases the agreement between the classical
and the quantum mechanical results improves.
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Oxide 2D channel
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Q
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= / E
® f
(an)] 61 ‘
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Quantum confinement
>
X

57



