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History of Chemistry 
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In fourth century B.C., ancient Greeks proposed that matter consisted of 
fundamental particles called atoms. Over the next two millennia, major 
advances in chemistry were achieved by alchemists. Their major goal was to 
convert certain elements into others by a process called transmutation.

Relation of the four ELEMENTS and the four qualities

air fire

water earth

dry

hot

wet

cold

In 400 B.C. the Greeks tried to understand matter (chemicals) and broke them 
down into earth, wind, fire, and air.
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History of Chemistry 
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Serious experimental efforts to identify the elements began in the eighteenth century with 

the work of Lavoisier, Priestley, and other chemists. By the end of the nineteenth 
century, about 80 of the elements had been correctly identified,

The law of definite proportions was correctly interpreted by the 

English chemist John Dalton as evidence for the existence of 
atoms. Dalton argued that if we assume that carbon and oxygen are 

composed of atoms whose masses are in the ratio 3:4 and if CO is 

the result of an exact pairing of these atoms (one atom of C paired 

with each atom of O),

John Dalton (1766–1844)
Teacher of James Joule

H --

-- -- -- C N O -- --

-- -- -- -- P S Cl --

-- -- -- Ti -- Cr Mn Fe Co Ni Cu Zn -- -- As -- -- --

-- -- -- -- -- Mo -- -- -- -- Ag -- -- Sn Sb Te -- --

-- -- -- -- -- W -- -- -- Pt Au Hg -- Pb Bi -- -- --

-- -- -- -- -- U

ELEMENTS DISCOVERED BEFORE 1800: (Italicized if discovered after 1700)
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Thomson’s Atomic Model
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Proposed about 1900 by Lord Kelvin and strongly 
supported by Sir Joseph John Thomson,
Thomson’s “plum-pudding” model of the atom had the 
positive charges spread uniformly throughout a sphere the 
size of the atom, with electrons embedded in the uniform 
background.

J. J. Thomson (1856 – 1940)
Nobel Prize: 1906

Teacher of Ernest Rutherford 
and 6 other Nobel winners

Father of G. P. Thomson 
(Nobel 1937)

“There is nothing new to be discovered in physics now. All that 
remains is more and more precise measurement.”
--- Lord Kelvin, 1900

⊝⊝⊝⊝ ⊝
⊝⊝⊝⊝

� �� ��
�� ��
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Rutherford’s Atomic Model
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Rutherford Scattering (1909):
The experimental results were not 
consistent with Thomson’s atomic 
model.

Ernest Rutherford(1871 –1937)
New Zealand-born

father of nuclear physics
Nobel Prize in Chemistry (1908)

Rutherford proposed (1911) that an atom 
has a positively charged core (nucleus) 
surrounded by the negative electrons
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Failing of the Planetary Model
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From classical E&M theory, an accelerated electric charge radiates energy 
(electromagnetic radiation) which means total energy must decrease. 
Radius r must decrease!!

Electron crashes into the nucleus!?

Nucleus

Physics had reached a turning point in 1900 
with Planck’s hypothesis of the quantum 
behavior of radiation.
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Am I Classical or Quantum?
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An Electron!

mass, energy, momentum

Wave-Particle Duality

classical quantum

photoelectric effect, diffraction

deBroglie wavelength

� = Planck’s constant = 6.63×10-34 J·s  (measured)� = momentum� = wavelength

� � � �⁄
Is electron like a soccer ball or not?
Who knows!
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Wave-Particle Duality
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How do I look?

vs.

� = 6.6×10-34 m� = 0.5 J	 = E/h = 7.5×1032 /s

� �?
� = 1Kg � = 1 m/s

� ≅ 1Kg � = 1 m/s

� = 100Kg 

� = 6.6×10-4 m� = 5×10-31 J	 = 757/s



1. Intro

2. Birth of QM

3. Schrod. Eq

4. Simple Prob. 

Black Body Radiation
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• Temperature is just average energy in each microscopic degree of motion 
( (1/2)kT, k = Boltzman’s constant)

• Every object radiates light at its intrinsic frequencies of vibration etc.
• A Black Body absorbs all light incident, but must re-radiate light, whose 
intensity and spectrum depends only upon the temperature.

Classical Mechanics, and Classical EM gave prediction for black body radiation that:
1. Disagreed with experiments
2. Was logically inconsistent (Infinite total energy).

Planck (1900) found that a very simple formula could be 
used to calculate the quantum at a particular frequency of 
EMR �	 � 	�	

E = energy of the radiation (J)
h = Planck’s Constant = 6.63e-34 J·s
f = frequency of the EMR (Hz)

Max Planck (1858 – 1947)
Nobel Prize (1918)
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Photo Electric Effect
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• Light shining on a metal will liberate electrons, 

but the photon energy hf must be greater than a 
threshold energy (equal to binding energy of 
electron in metal.)

• The threshold effect is independent of light 
intensity (energy density of light).
• Na requires 2.5eV = Green

In 1905 an unknown physicist 

named Albert Einstein came up 
with an idea that built on what 
Planck had said.
The light consist of particles named 

photon.
Photon comes from the Greek word for 
light. Einstein originally called photons a 
“light quantum.” The chemist Gilbert N. 
Lewis came up with the name photo.
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Fathers of QM!
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Louis de Broglie (1892 –1987)

Introduced wave-particle duality in his
PhD thesis, 1924
Nobel Prize in Physics, 1929

Erwin Schrödinger (1887 –1961)

the Schrödinger equation, January 1926
Nobel Prize in Physics, 1933Max Born (1882 –1970)

@ University of Göttingen, he came into
contact with: Klein, Hilbert, Minkowski,
Runge, Schwarzschild, and Voigt
Physical interpretation of the Sch ‘s wave function
Matrix mechanics
Nobel Prize in Physics, 1954

Werner Heisenberg (1901 –1976)

Student of Summerfeld/Born
Matrix mechanics / Uncertainty Principle
Nobel Prize in Physics, 1932

Pascual Jordan (1902 – 1980)

Student of Born
Matrix mechanics

Paul Dirac ( 1902 –1984)

Fermi–Dirac statistics
special theory of relativity + quantum
mechanics � ‘quantum field theory’
Nobel Prize in Physics, 1933
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H2Emission & Absorption Spectra
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Sun and stars are made of Hydrogen and Helium,

The galaxies are receding from us (redshift)

Balmer Series [Joseph Balmer, 1885]

� � � 12� � 1�� 				 , � � 3, 4, 5, …
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Photon Emission
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“Continuous” spectrum “Quantized” spectrum
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Bohr Atomic Model
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Introduced by Niels Bohr (1885 –1962) in 1913, a Dane, proposed his 
model of the atom while working at Cambridge University in England

Atom: a small, positively charged nucleus surrounded by electrons that 
travel in circular orbits around the nucleus (similar to the solar system)
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Bohr Atomic Model
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Bohr’s postulate (1913):
(1) An electron in an atom moves in a circular orbit about the nucleus under the 
influence of the Coulomb attraction between the electron and the nucleus, obeying
the laws of classical mechanics.
(2) An electron move in an orbit for which its orbital angular momentum is  � � �� � �� 2 ⁄ 	, � � 1,2,⋯	, � Planck’s constant
(3) An electron with constant acceleration moving in an allowed orbit does not 
radiate electromagnetic energy. Thus, its total energy � remains constant.
(4) Electromagnetic radiation is emitted if an electron, initially moving in an orbit of 
total energy �", discontinuously changes its motion so that it moves in an orbit of 
total energy �#. The frequency of the emitted radiation is $ � %�" � �#& �⁄ .

Louis de Broglie
his 1924 thesis(1892 –1987)

11 years later !

wave-particle duality  � � � �⁄
de Broglie standing wave

��' � ��
�"�# �$ � �" � �#
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Bohr’s  Model
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Kinetic energy:

Potential energy:

(
�

)(

Total energy:

* � 	�+ → 14 -. )(�'� � ���'� � ��' � �� / → '0� 4 -. �����)(�
�0 � ���'0 � 14 -. )(���

1 � �2 )(�4 -.'� 3'
45
6 � � )(�4 -.'

7 � 8���� � )(�4 -.%2'&
� � 7 � 1 � �7 ⟹
�0 � � �)�(:4 -. � 2�� 1�� � �)� 13.6	eV��



1. Intro

2. Birth of QM

3. Schrod. Eq

4. Simple Prob. 

Bohr Atomic Model
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Energy Bands:

wave-particle duality  � � � �⁄
de Broglie standing wave

��' � ��

�8

��
�?�:
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Bohr’s  Model
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for 

$ � �" � �#�� 14 -. ��)�(:4 �? 1�#� � 1�"�
1� � $� � �5)� 1�#� � 1�"�

�5 � 14 -. � �(:4 ��? � �@

Ionization above 13.6eV

Lyman Series

Balmer Series

Pashchen Series

n=1

n=2

n=3

n=4
n=5
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Quantum Mechanics and Real Life!
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Why chalk is white, metals are shiny?

Tunneling
Heisenberg’s uncertainty principle
Particle may exist in a superposition state
Measurement, collapse of the wavefunction

QM arguably the greatest achievement of the twentieth century!
QM changed our view of the world/philosophy of life!
QM been attacked by many prominent scientist!
QM is “non-local”!
QM enables quantum computing!
QM is bizarre!

For us as Elect. Engineers:
+ Solid state technology (Integrated circuits)
- Tunneling through gate oxide
Information age is become available by QM!

Colors ← Absorbing transitions ← transition energies ←QM

Blackbody radiation: Quantum statistics of radiation (is using to find temp. of stars)
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Uncertainty Principle
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In quantum world, each particle is described by a wave packet. This wave 
behavior of the particle is reason behind uncertainty principle.

Adding several waves of different 
wavelength together will produce an 
interference pattern which localizes 
the wave. But the process spreads the 
momentum and makes it more 
uncertain.
Inherently:

Precisely determined momentum
A sine wave of wavelength �, implies that the 
momentum � is precisely known but the 
wavefunction is spread over all space.

Δ�ΔA B � 2 ⁄
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Diffraction & Uncertainty Principle
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Uncertainty

Uncertainty principle is a consequence 
of wave nature of matter

sin F � � G⁄
∆I ≅ G/2∆�J ≅ � sin F � %� �⁄ &%� G⁄ &ΔI	∆�J � � 2⁄

Heisenberg:

ΔI	∆�J � � 2 ⁄

∆I ∆F
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Interference –Double Slit
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Plain wave:

Hence a beam of monoenergetic electrons produces a sinusoidal 
interference pattern, or “fringes”, on the screen, with the fringes 
separated by a distance �K � �� 3⁄

L ∝ (4"N.O
assume �	 ≫ 	3
Wave on the screen:

Q � R � � A�2� � 3�8�

LKT6UU0 ∝ (4"V W4X �⁄ YZ[Y � (4"V WZX �⁄ YZ[Y
LKT6UU0 ∝ (4"\ cos R3A2�

where

LKT6UU0 � ∝ cos�  3A�� � 12 1 � cos 2 3A��

Young’s double slits

electron double slits
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Double Slit & Quantum Mechanics

24

some bizarre consequences:
By blocking 1 slit → interference fringes disappear
By uncovering 1 slit → parts the screen that were bright now become dark

extremely low electron currents (never 2 electrons at given time)
→ same interference pattern

Diffractive effects are strong when the wavelength is 
comparable to the size of an object.
• Spacing between the atoms are on the order of Å.
• Electron microscope!

�_~0.1	nm
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Schrodinger Equation
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Electron can behave like plane wave with  � � � �⁄ wave equation Ψ � d("�eW f⁄
Simplest choice: Helmholtz wave equation for monochromatic wave

time-independent Schrodinger equation

g�Ψ � �R�Ψ where R � 2 �⁄ � � �⁄
���g�Ψ � ��Ψ

� ��2�. g�Ψ � ��2�.Ψ → ��2�. � K.E.=Total energy(�) − Potential energy(1)

� ��2�. g�Ψ � � � 1%'& Ψ
� ��2�. g� � 1%'& Ψ � �Ψ� ��2�. g� � 1%'& Ψ � �Ψ

Note: we have not “derived” Schrödinger’s equation. Schrödinger’s equation has to be postulated, 
just like Newton’s laws of motion were originally postulated. The only justification for making such a 
postulate is that it works!
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Schrodinger Equation
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time-dependent Schrodinger equation

� � �.��: � ���� � �.�� 1 � ����2�.��: �⋯

and

�$ � �h � 1 � ��R�2�. 3Ψ3i � �jhΨΨ%A, i& � d(4"%kl4VW&
� ��2�.

3�Ψ3A� � 1%'&Ψ	 � j� 3Ψ3i� ��2�.
3�Ψ3A� � 1%'&Ψ	 � j� 3Ψ3i

� � �.�� � 1 � ��2�. � 1 � ��R�2�.

3�Ψ3A� � �R�Ψ
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Schrodinger Equation

27

� ��2�.
3�3A� � 1%'& Ψ � j� 3Ψ3i

Ψ A, i � L%A&Q%i& � L%A&(4"ml �⁄

� ��2�.
3�L3A� (4"ml �⁄ � 1%A&L%A&(4"ml �⁄ 	� j��j�� L%A&(4"ml �⁄� ��2�.
3�L3A� (4"ml �⁄ � 1%A&L%A&(4"ml �⁄ 	� j��j�� L%A&(4"ml �⁄

� ��2�.
3�3A� � 1%'& Ψ � �Ψ� ��2�.
3�3A� � 1%'& Ψ � �Ψ
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Probability Density
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Physical interpretation of the wavefunctionn%'& 	�	probability of finding a particle at ' ∝ L ' �
Most likely at A, never can be found at C!
If we find it at B, what does it mean?

2 L ' �3?' � 1

A%i& � 2A L A, i �3A

A B C

L%A& L∗%A&
Measurement will change the wave function! 
The value of L is not measurable. However, all 
measurable quantities of a particle can be 
derived from L.

It is meaningless to talk about the position of the particle, as a wave function 
describes it, but we can find the expected value for the position, 〈A〉.

r%i& � 2L∗ A, i rsL A, i 3A
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Operator
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A%i& � t A L A, i �3A	 Show that:3 A3i � � j��2L∗ uLuA 3A
Momentum operator:

general operator:

v � 2Ψ∗vwΨ3A3I3x

� � �� � �3 A3i � �j�2L∗ uLuA 3A � 2L∗ �j� uuA L 3A
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Postulates of Quantum Mechanics
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3D wave-function: Ψ%A, I, x; i& , Ψ%Oz; i& , L%Oz&
1D wave-function: Ψ%A; i&
window of QM to the real world    Ψ∗%A; i& Ψ%A; i&
Dynamical variables:
position, momentum, energy

33AΨ%A, i&

Classical: Quantum:

Operator

We have seen operators before

operator

operand
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Postulate 1:
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The state of a system is described by a wave function of the coordinates and the timeΨ%Oz; i& , (which is often complex-valued) the complete wavefunction depends on 
coordinates O and time i.Ψ∗%A; i& Ψ A; i 3{ is the probability that the system is in the volume
element 3{ at time i.

Example: The wavefunction of the plane monochromatic light

Thus Ψ and uΨ/u%A, I, x&	must be:

wave-particle duality

(1)Single-value; (2) Continuous;     (3) Quadratically integrable

L � d(�e"%Wf4|l&
� � ��		, � � � �⁄

L � d(�ef "%W}~4ml&



1. Intro

2. Birth of QM

3. Schrod. Eq

4. Simple Prob. 

Postulate 2:
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The motion of a nonrelativistic particle is governed by the Schrödinger equation��Ψ � � ��2�.
3�3A� � 1%'& Ψ � j� 3Ψ3i

Ψ A, i � L%A&Q%i& � L%A&(4"ml �⁄
time-dependent Schrodinger equation

� ��2�.
3�L3A� � 1%'&L � �L� ��2�.
3�L3A� � 1%'&L � �L

time-independent Schrodinger equation

If L8, L�, … , L0	are the possible states of a microscopic system, then the linear combination 
of these states is also a possible state of the system

Ψ ���"L""Ψ ���"L""
In classical systems: we often use linear equations as a first approximation to nonlinear behavior
In quantum mechanics: The linearity of the equations with respect to the quantum mechanical 
amplitude is not an approximation of any kind. this linearity allows the full use of linear algebra for 
the mathematics of quantum mechanics.
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Postulate 3:
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For every classical observable there is a corresponding linear hermitian quantum mechanical 
operator.

Classical operator Quantum operator

Position, A A� � A
Momentum(x), �W �̂W � �j� uuA	%�W& 	%�̂W&

Kinetic Energy, 7 � }Y�� 7� � �̂�2�
Potential Energy, 1 1w � 1

Energy , � � 7 � 1	
(Schrödinger eq.) �� � j� uui

v � 2Ψ∗vwΨ3A3I3x
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Pauli Exclusion Principle

34

Every atomic or molecular orbital can only contain a 
maximum of two electrons with opposite spins.
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Solvay

35
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Simple Problems

36

Free electron (metals)

Harmonic oscillator (acoustic vibration � phonon,
Emag waves � photon)

Particle in a box (quantum well, optoelectronic)
Ideal (infinite) well
Finite well

Potential wall (transmission, reflection)

Tunneling (Tunneling diode, STM)

Kronig-Penning problem (Solid state, Bandgap)
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Free Electron
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Free electron 1 A � 0	, with energy �
� ��2�.

3�L3A� � 1%'&L � �L� ��2�.
3�L3A� � 1%'&L � �L time-independent Schrodinger equation

3�L3A� � �2�.��� L � �R�L3�L3A� � �2�.��� L � �R�L
L � dZ(4"VW � d4(Z"VWL � dZ(4"VW � d4(Z"VW R � 2�.��R � 2�.�� � � ��R�2�.� � ��R�2�.
Ψ%A, i& � dZ(4"%VW4kl& � d4(Z"%VW4kl&Ψ%A, i& � dZ(4"%VW4kl& � d4(Z"%VW4kl& �

R
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Effective  Mass

38

� � ��R�2�. 			→ 			�∗ � ��3�� 3R�⁄� � ��R�2�. 			→ 			�∗ � ��3�� 3R�⁄�

R

� �

RR

�( �j �+d�
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1-D Quantum Well (Box)

39

Outside the box:

Consider a particle with mass m under potential as:

3�L3A� � 2���� L � 03�L3A� � 2���� L � 0

2 L∗L3AZ5
45 � 2 d� sin 0eW[ �3A[

. � 1 → d � 2 �⁄2 L∗L3AZ5
45 � 2 d� sin 0eW[ �3A[

. � 1 → d � 2 �⁄

R � 2�� �⁄R � 2�� �⁄

� � � 2��� → �0 � �� ���2���� � � 2��� → �0 � �� ���2���
L 0 � L � � 0 → L � d sin RA 			 ; 		R � � � 		 , � � 1,2,3,⋯	L 0 � L � � 0 → L � d sin RA 			 ; 		R � � � 		 , � � 1,2,3,⋯	

1%A&1%A&
1 � ∞1 � ∞ 1 � ∞1 � ∞1 � 01 � 01 � ∞ → L � 01 � ∞ → L � 0

Inside the box:

assin RA 	, cos RAsin RA 	, cos RA
continuity of L at 0 and �: � is the quantum number

normalization:

L0 � �[ sin%0e[ W&

L8L8
L�L�L?L?

00 ��
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1-D Quantum Well (Box)
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�8�8

1 � ∞1 � ∞ 1 � ∞1 � ∞1 � 01 � 0

L0 � �[ sin%0e[ W&

L�L�

L?L?

L8L8�� � 4�8�� � 4�8
�� � 9�8�� � 9�8

 ��� 2���⁄00 ��

�0 � �� ���2���

� ↗ ∞		 →		free electron
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Eigenvalue -Eigenfunction

41

Solutions:
with a specific set of allowed values of a parameter (here 
energy), eigenvalues �0 (eigenenergies) and with a 
particular function solution associated with each such value, 
eigenfunctions L0
It is possible to have more than one eigenfunction with a 
given eigenvalue, a phenomenon known as degeneracy.

even function / odd function 

Note:
It is quite possible for solutions of quantum mechanical 
problems not to have either odd or even behavior, e.g., if 
the potential was not itself symmetric.
When the potential is symmetric, odd and even behavior is 
very common.
Definite parity is useful since it makes certain integrals 
vanish exactly.

�8�8

1 � ∞1 � ∞ 1 � ∞1 � ∞1 � 01 � 0

L�L�

L?L?

L8L8 �� � 4�8�� � 4�8
�� � 9�8�� � 9�8

 ��� 2���⁄00 ��
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Quantum Behavior 

42

Only discrete values of that energy possible, with specific 
wave functions associated with each such value of energy. 
This is the first truly “quantum” behavior we have seen with 
“quantum” steps in energy between the different allowed 
states.

Differences from the classical case:
1 - only a discrete set of possible values for the energy
2 - a minimum possible energy for the particle,
above the energy of the classical "bottom" of the box,E8 �  ��� 2���⁄
sometimes called a "zero point" energy (ground state).
3 - the particle is not uniformly distributed over the box, 
(almost never found very near to the walls of the box)
the probability obeys a standing wave pattern.
In the lowest state (n =1), it is most likely to be found near the 
center of the box. In higher states, there are points inside the box, 
where the particle will never be found. Note that each successively 
higher energy state has one more “zero” in the eigenfunction. this is 
very common behavior in quantum mechanics. 

�8�8

1 � ∞1 � ∞ 1 � ∞1 � ∞1 � 01 � 0

L�L�

L?L?

L8L8 �� � 4�8�� � 4�8
�� � 9�8�� � 9�8
 ��� 2���⁄00 ���~0.5	��		%atom&�8 � 1.5	(1�� � �8 � 4.5	(1
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completeness of sets of eigenfunctions.

Familiar case: Fourier series

Similarly for every 	 A , 0 � A � �	:

we can express any function between positions A � 0	and A � �	as an expansion in the 
eigenfunctions of this quantum mechanical problem.
Note that there are many other sets of functions that are also complete.

A set of functions such as the L0 that can be used to represent a function such as the 	%A& is referred to as a “basis set of functions” or simply, a “basis”.
The set of coefficients (amplitudes) �0 is then the “representation” of 	%A&	in the basis L0. Because of the completeness of the set of basis functions L0 , this representation is 
just as good a one as the set of the amplitudes at every point A between 0 and �.

	 i � �+0 sin%0el� &5
0�8	 A � � +0 sin%0eW[ &5

0�8 � ��0L0%A&5
0�8

as L0 � Y� sin%��� W&	 hence �0 � �Y	+0
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In addition to being “complete,” the set of functions L0%A& are “orthogonal”.

Definition: Two functions �%A& and �%A& are orthogonal if

Definition: Kronecker delta

A set of functions that is both normalized and mutually orthogonal, is said to be
“orthonormal”.

Orthonormal sets are very convenient mathematically, so most basis sets are chosen to be 
orthonormal. Note that orthogonality of different eigenfunctions is very common in quantum 
mechanics, and is not restricted to this specific example where the eigenfunctions are sine waves.

2 �∗ A � A 3A[
. � 0

��0 � �0			, 	� � �1				, � � �2 L0∗ A L� A 3A[
. � ��0

	 A �� �0L0 A0 					→ 					 �� � 2L0∗ A 	 A 3A
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We first need to find the values of the energy 
for which there are solutions to the Schrödinger 
equation, then deduce the corresponding 
wavefunctions.
Boundary conditions are given by continuity of 
the wavefunction and its first derivative.

3�L3A� � �2���� L � �R�L3�L3A� � �2���� L � �R�L

1%A&1%A&
1 � �1 � � 1 � �1 � �1 � 01 � 0

assume � � �

Finite L:L�� � * sin RA � � cos RA	

00 ���� ���� ������

Region	 ��Region	 ��

R � 2���R � 2���

Region � and 	 ���Region � and 	 ���
3�L3A� � 2�%� � �&�� L � ��L3�L3A� � 2�%� � �&�� L � ��L � � 2�%� � �&�� � 2�%� � �&�⇒ L � d(�W � �(4�W		, A � 0	and	A ¡ �

⇒ ¢L� � d(�W							, 		A � 0	L��� � �(4�W				, 	A � �
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for � � � : (1) Quantization of energies. (2) Particle almost bounded In the well.
for � ¡ � : all energies are possible. (plane wave)

1%A&1%A&
1 � �1 � � 1 � �1 � �1 � 01 � 0

00 ���� ���� ������
	£L� � d(�W																			, 		A � 0L�� � * sin RA � � cos RA 			 ,	L��� � �(4�W														, 			A � � 		0 � A � �

L� � L�� 			@		A � 0		3L�3A � 3L��3A 		@		A � 0L�� � L��� 			@		A � �3L��3A � 3L���3A 		@		A � �
2 L A �3A5
45 � 1

⟹
d�*�� → �

L L �
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0.39	��0.39	��n=1

n=2

n=3

n=4

n=5

n=6

2.47 eV

9.87 eV

22.2 eV

39.5 eV

61.7 eV

88.8 eV

0.39	��0.39	��n=1

n=2

n=3

n=4

n=5

n=6

1.95 eV

7.76 eV

17.4 eV

30.5 eV

63.6 eV

46.7 eV

64 eV
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1%A&1%A&1 � 1.1 � 1.
00 AA�� ����

���2� 3�L�3A� � �L����2� 3�L�3A� � �L�

B.C. � d, �, ¥	

Region	 ��Region	 ��

Region �Region �

L� � d("VW � �(4"VW 								%A � 0&

3�L�3A� � R�L� � 03�L�3A� � R�L� � 0 wherewhere R � 2�� �⁄R � 2�� �⁄
���2� 3�L��3A� � 1.L�� � �L�����2� 3�L��3A� � 1.L�� � �L��3�L��3A� � ��L�� � 03�L��3A� � ��L�� � 0 wherewhere � � 2�%� � 1.& �⁄� � 2�%� � 1.& �⁄

L�� � ¦(�W � ¥(4�W								%A ¡ 0&
Ψ� A, i � d(" VW4ml �⁄ � �(" VWZml �⁄
Ψ�� A, i � ¥(4�W4"ml �⁄

¥d � 2� � j 1. � � �1.�d � 2� � 1. � 2j 1. � � �1.� � 1(1	, 1. � 2	(1	→ 	 8��..�0�
penetration depth
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1%A&1%A& ��

00 AA�� ����
���2� 3�L3A� � �L � �L���2� 3�L3A� � �L � �L

� � 2�%� � �& �⁄� � 2�%� � �& �⁄
• Transmission coefficient (T): The 
probability that the particle 
penetrates the barrier.

• Reflection coefficient (R): The 
probability that the particle is 
reflected by the barrier.

• T + R = 1

��������
£ L� � ("VW � '(4"VW 								%A � 0& L�� � d(�W � �(4�W 								%0 � A � �& L��� � i("VW 								%A ¡ �&
R � 2�� �⁄R � 2�� �⁄

L� � L�� 	@	A � 0 3L�3A � 3L��3A 		@		A � 0L�� � L��� 	@	A � �3L��3A � 3L���3A 		@		A � �
⇒ § d�i ⟶ © � i �	' ⟶ � � ' �
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1%A&1%A& ��

00 AA�� ����

L�� � * sin RA � � cos RA	

��������

© � 1 � ��4� � � � sin� �� 48
��

©
1 classical

quantum

� � 2�%� � �& �⁄� � 2�%� � �& �⁄
For � � �For � � � © � 1 � �2 ����� 	 48
For � ≫ �For � ≫ � ©~exp¬�2�� 2�%� � �&­
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Alpha decay:
In order for the alpha particle to escape from the nucleus, it must penetrate a 
barrier whose energy is several times greater than the energy of the nucleus-alpha 
particle system.

Nuclear fusion:
Protons can tunnel through the barrier caused by their mutual electrostatic 
repulsion.

Scanning tunneling microscope:
• The empty space between the tip and the sample surface forms the “barrier”.
• The STM allows highly detailed images of surfaces with resolutions comparable 
to the size of a single atom: 0.2 nm lateral, 0.001nm vertical.
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1 A � 8�RA�

A

A particle subject to a restoring force: * � �RA � ��h�A
The potential energy � A � 8�RA� � 8�Rh�A�

The Schrodinger equation ���2� 3�L3A� � 8�Rh�A�L � �L���2� 3�L3A� � 8�Rh�A�L � �L
Easy guessL A � �(4®WY → 	¦ � �h2� 		 , � � 8��h

This is actually the ground state!

The actual solution:
L0 A � �h �⁄ 20�! 	exp ��h2� A� 	�0 �h� A 		 

�0 � � � 8� �h								, 		� � 0, 1, 2, …		
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A

�0 � � � 8� �h			, � � 0, 1, 2, …	

�. � 8��h	�8 � ?��h	�� � °��h	�? � ±��h	Ground state  �. � ²Y�h	 , ∆� � �h	 ∆�	
The blue curves represents probability densities for 
the first three states

� � 0
� � 1

� � 2

The orange curves represents the classical probability 
densities corresponding to the same energies

As n increases the agreement between the classical 
and the quantum mechanical results improves.
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