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Atoms vibrate with small amplitudes about fixed
equilibrium positions. We assume that atoms are
fixed, unless phonons are considered.

Atoms look like outer valence electrons orbiting
around the core. Core consists of nucleus plus
inner core electrons.

valence electrons

hucleus +
core
electrons

lonic bond: Na*Cl

Covalent bond: sharing e to complete an octet

H need only one atom to complete the octet and
therefore we only have H,. Silicon needs 4 e” and so can
bond to four other Si atoms, forming a crystal.
Metallic bond:

Van derWaals:
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Complete transfer of electrons from one
atom (usually a metal) to another (non
metal ion) (compounds only, not elemental
solids). Bond comes from electrostatic
attraction between ions.

Na + Cl = Na*+ ClI- = NadCl

All ionic compounds have a degree of covalent bonding. The larger the
difference in electronegativity between two atoms, the more ionic the bond is.
e Bond is strong (high melting point, large elastic modulus)

e Not directional (high density, high coordination number)

e Compounds only

e Good insulators (except near melting point)

e Transparent up to UV (strong bonds > electrons need a lot of energy to
become free)

Mathematical form: Energy ~ 1/r , Example: Sodium Chloride
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Coulomb force:
Y.

F =
ATrEyT?

Energy needed to separate charges e and -e
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Partly covalent and partly ionic. The more electronegative element will have
more negative charge.
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Equal sharing of electrons between atoms = both atoms have full shells
(Example: Diamond, Silicon)

Note continuum of behavior, ionic =2 covalent (e.g. llI-V compounds GaAs,
InSb, are partially covalent and partially ionic.)

e Bond is strong (high melting point, large elastic modulus)

e Directional (from orientation of QM orbitals) = low density

e Saturable (limited number of bonds per atom) T

e Good insulators
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V= {O inside cube
oo outside cube

hZ
—— VY =FEVY
2m,
L,
V2 nmx nymy | N,MZ
Y = sin sin Sin
LyLyL, L, L, L,

- h?m? (n2 . ns . n2
mytz o oom \LZ 13 L2



1. Bonding [TTT1111
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. h2m? (n,zc . ns . ng)
NyNyNg 2m Lgc L2

Energy of a particle 3h?
confined to a cube LxLxL E = 3m |2
2
Energy of a particle — oh
confined to a cube LxLx2L 32ml?
Decrease in energy: 3h?
E =
16ml?
For L= 0.2 nm;: AE =14eV
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atoms to form a
covalent bond. This
way an atom can
have a stable
structure with
eight valence band
electrons.

N . O E.

Generation / Recombination

Free electron

When an electron
breaks loose and
becomes a
conduction
electron, a hole is
also created.

Ey i Ey
" O 10
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Positive ions plus gas (sea) of electrons. Think of this as the

limiting case of ionic bonding in which the negative ions are

electrons. (BUT electrons can’t be forced to sit at lattice points
from Uncertainty Principle: ApAx = h/2 as for electrons m is e
small so the zero point energy AE = Ap®/2misvery large; = 57 e
the electrons would e
shake themselves free and are therefore delocalized) NN D
e Bonds are non directional (high coordination number, high = == == (-
density, malleable and ductile)

e Variable strength

* Free electrons =2 high electrical conductivity, shiny (Electric
field associated with incident light makes free electrons at
surface move back and forth, re-radiating the light, as a
reflected beam)

11



1. Bonding [TTT1111

Meta"ic BOnding 2. Energy Bands [TTTTTT]
3. e/h Current I

The electron wave functions spread out over the entire crystal. Bl i
) i . I ez=0l SETom
A three dimensional potential square well is a simple model

for a metal.
- h%m? (n2 N ns N nz ESg O TEN R
NyxNyNg — 2 2 2

Energy mostly determines by Electrostatic force!
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Grepiie situesluse

Even a neutral atom with a full shell, can, at a given instant, have a dipole moment (i.e.
one side of the atom more positive than the other) This instantaneous dipole will
induce a dipole in a neighboring atom, and the resulting dipole-dipole interaction is the
origin of the van der Waals bond. Although the original dipole time-averages to zero,

the interaction does not — it is always attractive. Energy ~ 1/r®

e Bond is weak (= low melting point, large expansion coefficient)
e Non directional so high coordination number BUT

e Long bond lengths (= low density)

Examples: Solid inert gases (Argon, Neon), molecular solids (solid Oxygen)
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Hydrogen loses its electron and becomes positively charged
particularly easily. Therefore the region of a molecule around
a hydrogen atom is often quite positive, and this allows an
electrostatic bond to form between it and negative parts of
neighboring molecules.

Example: ice — the strength of the hydrogen bond explains the
anomalously high melting point of ice
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Bond Energy (GPa) Example of Bond
Covalent 1,000 Diamond
lonic 30-100 Salt and Ceramics
Metallic 30-100 Metals
Hydrogen 8 Ice
Van der Waals 2 Polythene
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Always simplify!
Simplest state: Isolated atom

© c ©
Periodic atoms:

@ @@

Single isolated atom:

Si:

H- /=14

1522522p®3s23p?
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wave-particle duality A = h/p

Q mvur = nh

de Broglie standing wave

Energy Bands:

E,

s —4
s
s —H
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Single atom: 2 atoms:

E, ————————
M
N B
] 2
E, E § E o O
) Eyy g i S w
< E o
& E2212 1forbidden °
/I\ Eln energies
| :
E; [V 512 EElz
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Pauli exclusion principle
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Electrons in Solids

1. Bonding [TTT1111

2. Energy Bands [TITTTT11
3. e/h Current I

In a solid, there are so many electrons with energies very near each other

that ‘bands’ of states develop.

AE

Electron energy

Formation of
energy bands
as a diamond

Conduction band

lattice crystalis  E,

2N electrons
6N states

3s

formed by I E.
bringing E,
isolated silicon Valance band

2N electrons
2N states

AN electrons
4N staté

atoms together

>
X

All we draw is the
“band diagram”

Lattice spacing
>

5A

solid Isolated atoms
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Conductor 1072 Semi-conductor 105 Insulator
: : >
p[Qcm]
Conduction band
.'> I Eg
N electrons H— "
g
Valance band 8
(V)]
2
N %
Valance band

E. (Si) = 1.1eV
E; (Ge) =0.7eV

empty seat / filled seat

E. (SiO,) = 9eV
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A
AE =
(-
GCJ K.E Conduction band
o EC A
© > Ed """"""""""""
Q 20 E
) ]
oY) ‘G:J f EG
C
= o
©
0! 2 E. —-mmmmmmmmmmmm e
S a E, v
< c V
7 K.E Valance band
©
Q
(@)
C
X R 4
—

Energy band diagram shows the bottom edge of conduction band, Ec,
and top edge of valence band, Ev .

Ec and Ev are separated by the band gap energy, Eg ..

Electrons and holes tend to seek their lowest energy positions, electrons
tend to fall in energy band diagram, holes float up like bubbles in water.

21



1. Bonding [TTT1111

Measuring Eg by Light Absorption e o

2 Conduction band
EC A

E; can be determined %, \
N %
from the minimum %
energy (hv) of photons E.
that are absorbed by photon energy:
the semiconductor. hv > E,
y

\
; Valance band EV

Bandgap energies of selected semiconductors

Semi InSh : GaP ZnSe Diamond

conductor
EG(eV) 0.18 0.67 1.12 1.42 2.25 2.7 6
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«— & . -
In semiconductor, electrons that are in the

-~ Jeb
(= conduction band move by applying the electric field

Jer = ) (9w,
cb

As number or electrons in conduction band is much
less than that in conductors hence Psemicond = Pcond

Ec

Ey

More realistic picture
could be:
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meeaete £ For each electron in CB there is a hole in VB
(thermal excitation), Now applying an electric field
will for electrons in VB to fill the empty location,

E
¢ hence “hole” is moving in direction of electric field!
Ey
Eanesians Jeb =Z(—q)vi = Z (—q)v; — z (—q)v; = Z qu;
Vieooooooo vb filled empty empty
YN —>

Therefore “hole” can be considered as a positively
charged particle (or an electron with negative mass!)
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Electric field > gravitational field

— )
Y=o y ) Q

electron - droplet
hole - bubble

—

o .= [
AT @D O

J =o€




E-K Diagram
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Consider a free electron with mass m,

Wave-particle duality:

A=h/p - p=hk E=hv

E

p2 thZ
E:—:
2m 2m

> E o« k>

Available states: 10%22/cm3

- Freely moving electrons
Number of e & h*s: 1019/cm3
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The electron wave function is the solution of the three dimensional Schrodinger
wave equation

_hzvz Vi = E
. Y+V(r)yYy =EyY

The solution is of the form etk

Where k = wave vector = 2nt/electron wavelength

For each k, there is a corresponding E.

. —q€ d*E F vt
acceleration = _ — conduction band
h2 dk?2 m
h2
effective mass =
d?E /dk? I E;

TE
, K valence band
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Effective Mass

In 3-D crystals the electron acceleration will not be colinear. Thus, in general
we have an effective mass tensor as

1 1 0%E

m*,.~ h2 0k;0k;

o electrons g =
In an electric field, €, an electron or a hole accelerates. my
holes qé
a=—
mpy

electron and hole effective masses at 300K

for density of states calculations

m,/ m,

0.26

0.12

0.067

m,/ mg

0.34

0.21

0.34

for conductivity calculations

m, / m,

1.1

0.55

0.067

m,/ mg

0.81

37

0.45
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Cyclotron Resonance Technique

m,, 12

= quB
r v
qBr
V=—
mn
v qB
for = —

Mg
| 5]
Centripetal force = Lorentzian force C:'D CD /
n

e f. is the Cyclotron resonance frequency.

e |tisindependent of v and r.

e Electrons strongly absorb microwaves of that
frequency.

e By measuring f.-, m,, can be found.
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Example: Effective Mass
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A schematic energy-
momentum diagram for
a special semiconductor
with m,, = 0.25 m, and
m, = my.
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Direct Materials Indirect Materials
GaAs Si, Ge
. E
E Conservations of:
1. Energy

2. Momentum

photon

NN~

I k

E = hv

A

Applications: LEDs, Lasers
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Si
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