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states of the matter
? IWhy Solid State?

1. Solid: density ~ 1022 /cm?
1. a: Crystal: long range order (lattice + basis)  {Ex: Epitaxial silicon and diamond}
1. b: Polycrystal: short range order (um ~ 10um) {Ex: Most metals (Al, Cu) Ploy-Si}

1. c: Amorphous: no order  {Example: Glasses like SiO2}
Grain  Grain Boundary

e “"’a 3
.

(8] Crystalline
2. Liquids: no order, takes the shape of the container, weak bounds; density ~ 10 /cm3

3. Gases: no order, no bounds between molecules
4. Liquid crystals: atoms mobile, type of long range order Applications: LCDs
5. Plasma: lonized gas/liquid {Ex: Sun, Aurora, Lightning, (RIE, Sputtering, PECVD)}

3

v Ohm’s law
Vv A
R=— — p=R— resistivity
1 L
\4
cu\"e“ Resistivity is characteristic of

L the material

A: area

Art of VLSI design is:
to put together materials with different resistivity's next to each

other to perform a certain task.

Al,Cu Si0,
Py =107 [Qem] Psio, ® 10% [Qcm]

Conductor
Insulator
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conductivity

Resistivity p (€2 — cm)
1018 1013 "Jll

108

102 100 108 105 100 p? 1 w? 1t 10f
1T T T T T T T T T T 171
Germantum (Ge) Silver
® Glass -_— .
, Nickel oxide Silicon {Si) Copper
(pure)
Disrnond Gallium arsenide (GaAs) Aluminum
® (pure)
Galliurn phosphide (GaP) Platirnun
® Sulfur .
Bismuth
| Fused Cadrmium sulfide (CdS) .lsm
quartz
R PR AP R R N NN RN SR R RN R
10718 16 g o2 o 30 105 104 102 1 102 104 10f  10P
Conductivity o (S/cm)

| Insulator I Semiconductor 4>|<— Conductor —>—|

Typical range of conductivities for insulators, semiconductors, and conductors.

5
Insulators Semiconductors Conductors
>« >l
Si0,
Porcelain
Diry wood Doped Si Fe
Quartz Rubberl  Glass si Ge ~OPFE Ag
| NaCl | | Miea GaAs | \ oS ;
t | | —_— E
Jl\]LII\I\II\I]iiiIIttI\Jiil,_‘-[_1}=
1020 1078 1006 107 Lo o' 1078 10 107 1072 1 001 108 Qom,
Ensulators t Semiconduciors Metals —
Is the “resistivity” the only difference between
. semiconductors and conductor / insulators ?
In semiconductors: conductivity is controllable
In conductors: carriers are “electrons”
In semiconductors: carriers are “electrons” + “holes”
6
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1A VIIA
1A 8A

1 2 13 14 15 16 17 2
H A A IVA VA VIA VIIA He

1.008 2A 3A aA 5A 6A 7A 2.003

3 4 5 6 7 8 9 10

Li Be B 9 N [¢] E | Ne
6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18
11 12 13 14 15 16 17 18
Na Mg Al @ Si P S ¢l Ar
22.99 24.31 26.98 28.09 30.97 32.07 35.45 39,95

9 30 31 32 33 34 35 36

K Zn Ga Ge As  Se | Br  Kr
39,10 65.39 69.72 72.59 74.92 78.96 79.90 83.80
37 48 49 50 51 52 53 54
Rb Cd In Sn  Sb Te | Xe
85.47 112.4 114.8 118.7 121.8 127.6 126.9 131.3

55 80 81 82 83 84 85 86
C Hg T Pb  Bi  Po At Rn

132.9 200.5 204.4 207.2 209.0 (210) (210) (222)
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{0) Amorphous

1. Solid: density ~ 1022 /cm3

1. a: Crystal: long range order (lattice + basis) {Example: Epitaxial silicon and diamond}
1. b: Polycrystal: short range order (um~10um) {Example: Most metals (Al, Cu) Ploy-Si}
1. c: Amorphous: no order {Example: Glasses like SiO,}

A Little History - Crystal Structure

Solids tend to form ordered crystals

Rock Salt Rock Candy
B "
ey
(&N

Mineralogists have been familiar with crystal structures since 18t century.

1912: Diffraction of x-rays by a periodic array.
Today : Condensed matter physics long way to go .....

Properties (mechanical, electrical, optical and thermal properties all affected) of solids

depends on their structure

9/26/2011



0.A40M

N ]
Image of graphene in a
transmission electron microscope.

11
Ideal Crystal: Infinite repetition of identical structural units in space.
o) O X! o)
Lattice: (e) Q- e
a,
Unit vectors 'e) Unit cell
2,
R =na, +n,a,
Bravais lattice: is the set of points defined by R=na, +n,a, asn, isinteger.
Shortest possible a, gives us primitive vectors.
The volume cell enclosed by the primitive vectors is called the primitive unit cell.
Crystal structure = Lattice + Basis
12
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13
Ideal Crystal: Infinite repetition of identical structural units in space.
O O O @) O O
Lattice: (o) (o) (o) O (o) (o)
O O O O O O
O O O O O O
Bravais lattice: is the set of points defined by R=na, +n,a, asn, isinteger.
Shortest possible © gives us primitive vectors.
The volume cell enclosed by the primitive vectors is called the primitive unit cell.
Crystal structure = Lattice + Basis
14
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Lattice, Basis
Ideal Crystal: Infinite repetition of identical structural units in space.

o) o) o) o) o) )
0. 6°.,6%.60° OOOOO
O 0 _O )
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OOoOOoOOoOOoO o)
¢} ¢} ¢} o) ¢}
O O O o) O O

00 o

Basi O Crystal structure = Lattice + Basis
asis

The basis consists of the simplest
arrangement of atoms which is Wig lEI-ISBHZ/

repeated at every point in the
lattice to build up the crystal

structure primitive UV
cells

FON-PAMTEVE m—
unit calls

.

iﬂ;i

15

Crystal Lattices, Graphene

Example: Graphene
Honeycomb structure

16
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Crystal Lattices, Graphene

Example: Graphene -"".I;‘asis
Honeycomb structure

Lattice:

17

o o o o b
o 6 5 s s
o 5 o o 2

o o o o o

Crystal
18
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Crystal Latt

Example: Graphene
Honeycomb structure

19

Cubic Latt

Simple cubic (SC)

Body-centered cubic (BCC)

Face centered cubic (FCC)

Diamond Lattice

20
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Example:
alpha polonium

Coordination Number (# of nearest nbs.) =
# of atoms/cell =

Packing fraction =

v
)

21

Body Centered Cubic

Example:
Sodium, Molybdenum, Tungsten

Coordination Number (# of nearest nbs.) =

Y
)

# of atoms/cell = /C/

Packing fraction =

22
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Example:

Aluminum, Copper,

# of atoms/cell =

Packing fraction =

Coordination Number (# of nearest nbs.) =

Silver,

23

Example:
Silicon, Germanium, Carbon

Coordination Number (# of nearest nbs.) =
# of atoms/cell =

Packing fraction =

b3

[ TEE—

iz ’.[/‘v’ =

9/26/2011

12



Example:
Silicon, Germanium, Carbon

Coordination Number (# of nearest nbs.) =
# of atoms/cell =

Packing fraction =

Cell volume:

(.543 nm)3=1.6 x 1022 cm?

Density of silicon atoms
= (8 atoms) / (cell volume) =

5 x 1022 atoms/cm3

25

Zinc Blend Structure

11I-V semiconductors, important
for optoelectronics.

GaAs, InP,
InGaAs,
InGaAsp,........

For GaAs:

Each Ga surrounded
By 4 As, Each As
Surrounded by 4 Ga

26
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“Quasi-periodic”
(Lower-D Projections
of Higher-D periodic
systems)

Islamic art Penrose Tilings

27

A method to label distinct planes and direction within a crystal structure.

steps:

1. Note where the plane to be indexed intercepts the axes (chosen along unit cell
directions). Record result as whole numbers of unit cells in the x, y, and z directions,
eg.,2,1,3.

2. Take the reciprocals of these numbers, e.g., 1/2, 1, 1/3

3. Convert to whole numbers with lowest possible values by multiplying by an
appropriate integer, e.g., x6 gives 3, 6, 2.

4. Enclose number in parentheses to indicate it is a crystal plane categorization, e.g.,
(3,6,2)

28
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Planes parallel to a unit cell coordinate axis are viewed as intercepting the axis at
infinity, so have an associated Miller index in that direction of zero, e.g., (100) plane.
Planes intersecting along the negative axis use a bar over the index rather than a
negative sign, e.g., 1 rather than-1, e.g., (1 Tl) . _ _

Groups of equivalent planes,((100),(010),(001),(100),(010), and (001) all
equivalent because rotation about the 3 fold axes on the cube diagonals maps the
various faces into one another, making the planes equivalent) are notated in curly
brackets, i.e., {100} for the above set of equivalent planes.

47
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Similar procedure can be used to define Miller indices for directions.

1. Set up a vector of arbitrary length in the direction of interest (must be a crystal
direction, i.e., connecting two crystal points)
2. Decompose the vector into its basis vector components in the a, b, and c directions
3. Convert the resulting numbers to the lowest possible set of integers by multiplying by

an appropriate number

Directions are notated using square brackets, e.g.,[1 Tl]
For cubic crystals, directions perpendicular to particular crystal planes can be indexed
using the same index as the plane. Sets of equivalent directions are specified by

triangular brackets, e.g., <100>

[hk,I1 L (h,k,1)

[0TOE™" [1 1]

1

X

[100]  [110]

v

31
Miller Convention Summary
Convention Interpretation

(hkl) Crystal plane

{hkl} Equivalent planes

[hkI] Crystal direction

(hkl) Equivalent directions

32
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<100>view  <110> view ‘ <111> view

Jlquua TQJQT ﬂ @
9._)_. ? @ 1 ?
I > o @ | 9
@ Qe o 9

a=5.431°A

5x1022 atoms/cm3

()
[AkR
Silicon wafers are usually cut
along the (100) plane with a
flat or notch to help orient the
wafer during IC fabrication.

33

The reciprocal lattice of a lattice (usually a Bravais lattice) is the lattice in which
the Fourier transform of the spatial function of the original lattice (or direct
lattice) is represented. This space is also known as momentum space or less
commonly k-space

real space primitive vectors: (al,az,as) sc fec bcc
reciprocal lattice primitive vectors: (bl,bz,b3) sc bcc fcc
a,xa
V=a,e X _ a4, Xa, — 3771 _ a, xa,
a;+(a, xa;) b, =272 7= b, =27 b, =272

All features are periodic with periodicity of the lattice, just like Fourier
transform it can be written as

p(r)=p(r+a,)= Z%eibxr where a, =na, +na, +na,

34
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Atoms vibrate with small amplitudes about fixed
equilibrium positions. We assume that atoms are
fixed, unless phonons are considered.

Atoms look like outer valence electrons orbiting
around the core. Core consists of nucleus plus
inner core electrons

valence electrons

lonic bond: Na*CI-
Covalent bond: sharing e to complete an octet
H need only one atom to complete the octet and therefore we only have H,.
Silicon needs 4 e~ and so can bond to four other Si atoms, forming a crystal.
Metallic bond:
Van der Waals:

35

Complete transfer of electrons from one atom
(usually a metal) to another (non metal ion)
(compounds only, not elemental solids). Bond
comes from electrostatic attraction between ions.

Na + Cl — Na*+ Cl-— NacCl

idpinint ICpHine
R n

All ionic compounds have a degree of covalent bonding. The larger the difference in
electronegativity between two atoms, the more ionic the bond is.

* Bond is strong (high melting point, large elastic modulus)

¢ Not directional (high density, high coordination number)

e Compounds only

* Good insulators (except near melting point)

* Transparent up to UV (strong bonds — electrons need a lot of energy to become free)
Mathematical form: Energy ~ 1/r, Example: Sodium Chloride

36
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Equal sharing of electrons between atoms — both atoms have full shells (Example:
Diamond, Silicon)

Note continuum of behavior, ionic — covalent (e.g. IlI-V compounds GaAs, InSb, are
partially covalent and partially ionic.)

¢ Bond is strong (high melting point, large elastic modulus)

o Directional (from orientation of QM orbitals) — low density

¢ Saturable (limited number of bonds per atom) )

¢ Good insulators

37

2D representation Generation / Recombination

Electron

When an electron breaks
loose and becomes a
conduction electron, a

An electron shared by two hole is also created.

neighboring atoms to form a
covalent bond.

This way an atom can have a
stable structure with eight conduction band conduction band
valence band electrons.

E. ©) E.
E, 5 E,
valance band valance band

38
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Metal

eoee
ceee
ecee

Positive ions plus gas (sea) of electrons. Think of this as the limiting case of ionic
bonding in which the negative ions are electrons. (BUT electrons can’t be forced
to sit at lattice points from Uncertainty Principle: ApAx>h/2 as for electrons m is
small so the zero point energy AE= Ap%/2m is very large; the electrons would
shake themselves free and are therefore delocalized)

® Bonds are non directional (high coordination number, high density, malleable
and ductile)

e Variable strength

e Free electrons — high electrical conductivity, shiny

(Electric field associated with incident light makes free electrons at surface move
back and forth, re-radiating the light, as a reflected beam)

39

Even a neutral atom with a full shell, can, at a given instant, have a dipole
moment (i.e. one side of the atom more positive than the other)

This instantaneous dipole will induce a dipole in a neighboring atom, and the
resulting dipole-dipole interaction is the origin of the van der Waals bond.
Although the original dipole time-averages to zero, the interaction does not —
it is always attractive. Energy ~ 1/r®

® Bond is weak (— low melting point, large expansion coefficient)

® Non directional so high coordination number BUT

e Long bond lengths (— low density)

Examples: Solid inert gases (Argon, Neon), molecular solids (solid Oxygen)

40
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Hydrogen loses its electron and becomes positively charged particularly
easily. Therefore the region of a molecule around a hydrogen atom is often
quite positive, and this allows an electrostatic bond to form between it and

negative parts of neighboring molecules.

Example: ice — the strength of the hydrogen bond explains the anomalously

high melting point of ice

41
Bond Energy (GPa) Example of Bond
Covalent 1,000 Diamond
lonic 30-100 Salt and Ceramics
Metallic 30-150 Metals
Hydrogen Ice
Van der Vaals Polythene
42
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Always simplify!
Simplest state: Isolated atom

(@9, { )
~ - 7

Periodic atoms:

CE RO

Single isolated atom:

Introduced by Niels Bohr (1885 —1962) in 1913, a Dane, proposed his model
of the atom while working at Cambridge University in England

Atom: a small, positively charged nucleus surrounded by electrons that travel in
circular orbits around the nucleus (similar to the solar system)

9/26/2011
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) wave-particle duality AN=—

-0 p
l"“

< mvr = nh

Energy Bands:

E4
Al
v E;
Al
K’ £,
11 E,
v

45

Electrons in Atoms

Electrons in an atom have particular energies (quantized energy states) depending on
which orbital they are in.

Energy

SRR
WL he Ll 1

1s 1s principle 1s

46
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Pauli exclusion principle

2 atoms

2N electrons

N atoms

allowed
energies

forbidden I E,
energies

47

of states develop.

Formation of energy
bands as a diamond
lattice crystal is formed
by bringing isolated
silicon atoms together.

In a solid, there are so many electrons with energies very near each other that ‘bands

Conduction
band

’

All we draw is the Solid

“band diagram”

13 3
A&

Laitdos sacing

Isolated atoms

48
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Material

Conductor Semi-conductor Insulator

v

conduction band

conduction band

m .
e ;
Jlre Es :
QL band gap
N electrons @ 5
valence band N
Zz i
o i ¢
2N electrons [ valence band o
@ zZ
2N electrons %
@
Eg (Si) = 1.1eV
Eg (Ge) =0.7eV :
Es (SiO;) = 9eV
empty seat / filled seat
49

 Metals

50




Partially filled or empty bands are
called ‘conduction bands.’

Any band that is totally filled is
considered to be a “valence band.”

We usually ignore ‘deep’ valence
bands.

‘Energy

Band gap

Empty 4p
(conduction)

partially
filled 4s
(conduction)

Filled 3d (valence)

Deep valence-only an

issue for optical

properties
51

The free-est electron (the electron with [ Energy
the highest energy) defines the
position of the “Fermi level.” Empty 4p

. ducti
Above E;, all available electron (conduction)
states in the energy bands are Band gap
empty
Below E, they are all filled.

If there is no gap between filled and E, partially
empty states, the material is Fermi - filled 4s
conductive. level (conduction)

If there is a gap, the material is a
semiconductor or insulator.

Band gap
|:| —_»Filled (valence)
———
Metal (Cu)
52
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forbidden

>
5|
[J]
o KE
c - conduction band E
E o c
-g ___________________________
© E>° E EG
2 2 s
[%] (V]
o
s| 2
= |
.g EV
¥ o KE (g valance band
> £
Energy band diagram shows the bottom edge of conduction band, E_, and top
edge of valence band, E, .
E. and E, are separated by the band gap energy, E, .
Electrons and holes tend to seek their lowest energy positions, electrons tend
to fall in energy band diagram, holes float up like bubbles in water.
53

Measuring the Band Gap Energy by Light Ahsorption

electron

oy Q
O, E,
L/uf:)@ c

Egy
photon energy: hv > Ey

E,

(e

hole

E, can be determined from the minimum energy (hv) of photons that are
absorbed by the semiconductor.

Bandgap energies of selected semiconductors

Semi- InSb Ge Si GaAs GaP ZnSe iDiamond
conductor
Eg(eV) 0.18 0.67 1.12 1.42 2.25 2.7 6

54
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—& In semiconductor, electrons that are in the conduction
band move by applying the electric field
O - Jcb y applying

Jcb = 2 (_Q)Vi

As number or electrons in conduction band is much less
than that in conductors hence  Pg,micond. = P cond.

More realistic picture could be:

55
—_— Sﬁ For each electron in CB there is a hole in VB (thermal
o excitation), Now applying an electric field will for electrons in
E VB to fill the empty location, hence “hole” is moving in
‘ direction of electric field!
V.
13
ETTome: Ju= 2y =D v D (avi= D gy,
S E Siled empry empry
WAVAVAY;
J Therefore “hole” can be considered as a positively charged
vb particle (or an electron with negative mass!)
56
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Electric field >
é >
E. S
EV
J=0

electron

hole

22 /
/

gravitational field

droplet
bubble

EV
(0]
Jx&
57
Consider a free electron with mass m,
Wave-particle duality:
A=h/lp—>p=hk E=ho
hk?
E = P _nk > Exk’
2m  2m
k
k, k,
Available states: 1022/cm3
- Freely moving electrons
Number of e & h*s: 101%/cm3
58
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Effective Mass

The electron wave function is the solution of the three dimensional Schrodinger wave
equation

2
2h—V21// +V (r)y = Ey

0

The solution is of the form exp(i k-r) ; k = wave vector = 2rt/electron wavelength

For each k, there is a corresponding E.

2
acceleration = —Z—f c:;kf = E conduction ban
m
hZ
effective mass = —
d°E /dk —

E}(M

Valence band

59
In 3-D crystals the electron acceleration will not be colinear. Thus, in general we
have an effective mass tensor as )
1 1 &E
my  h* ok ok,
—C](S
electrons a=——
mn
In an electric field, £ an electron or a hole accelerates.
—C](S
holes a=
I
electron and hole effective masses at 300K
for density of states calculations for conductivity calculations
Si Ge GaAs Si Ge GaAs
m_/m, 0.26 0.12 0.067 m_/m, 1.1 0.55 0.067
m/m, = 034 0.21 0.34 m/m, | 0.81 0.37 0.45
60
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Cyclotron Resonance Technique % B

Centripetal force = Lorentzian force @

mnv B
- =qv O Microwave
qBr
V= —m * f..is the Cyclotron resonance frequency.
" e |t is independent of vand r.
v qB e Electrons strongly absorb microwaves of that frequency.

® By measuring f,

crr

= = m, can be found.
“ 2mr 27zm, "

61
Effective Mass
E
hil
l‘lll |:||' Comedhnsition b, A schematic energy-
ll'g ﬁ (it = 0.25 a1y} momentum diagram for a
I\ . . .
o / special semiconductor with

m,=0.25mgand m,=m,.

- i
=/ \WM
J// = img)

62
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Direct/

Direct Materials

GaAs

photon

3

Y

Applications: LEDs, Lasers

Indirect Materials

Conservations of:
1. Energy
2. Momentum

Si, Ge

63

Energy (s¥)

-1

Energy (V)

Valenes

band

@ P
Ednmentun p

Conduction

Vallanioe
band

[111]

0

(100

Memnentum p

Energy band structures of Si and GaAs. Circles (2) indicate holes in the valence

bands and dots () indicate electrons in the conduction bands.

64
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Intrinsic = pure conduction band
_. O EC
electron/hole pair The.;";.a'
H excitation
is generated :
8 o) E,

valance band

n=p=n(T)

n=#ofe /cm3

p=#of h* /cm3

n;= intrinsic carrier concentration

n

0. 3 }
silp_sger =1-9%107cm™ note that totally there are 2 10”cm™ electrons

1 out of 10" bond is broken!

65
Intrinsic Material
e - )
w JVE%,’;’]‘JFE— Intrinsic < oure conduction band
w o o | S O S
w'ﬂ@ AV F;’/ i Thermal
34 2 = "1” excitation
w7V Viass = L,
@ 1| ﬁlv
%’: e _J('JUQF i valance band
|
wol ST T
| I
JIE Tk
L ]
@ P, ) frZ00) [Ta]
e mperttureTin] ke
Energy Band Gap determines the intrinsic
carrier concentration. n; Eyg < Eggi< Eggang
66
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Doping means mixing a pure semiconductor with impurities to increase its electrical
conductivity

Can be done in two ways:

Increasing the number of electrons by Increasing the number of holes by
mixing pentavalent elements such as mixing trivalent elements such as
phosphorous, arsenic, antimony aluminum, boron, gallium (means
(means adding donor impurities) adding acceptor impurities)

Donors and acceptors are known as dopants.
Dopant ionization energy ~50meV (very low).

Possible dopant deactivation & defect formation

N-—-orP —: Npor Ny<10%¢m -3
N-orP~ :10%cm ~* < NporNs<10¥cm 3
NorP :10%cm ~* < Npor Na<10¥cm ~*
N*orP* :10%cm —* < Npor Ny<10®cm 3
N**orpP++: NporNsy>10Pcm 3
67
Ec conduction band i
Donorlevel —  f oo - Donor ionization energy
Acceptor level ¢ m-mm-m--mmmmmmommmmmmmoo Acceptor ionization energy
- valance band
@T =300°K KT =26meV
lonization energy of selected donors and acceptors in silicon
Donors Acceptors
Dopant Sb P As B Al In
lonization Eng Ec-Ed or Ea-Ev (meV) 39 44 54 45 57 | 160
68
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lonization energy of various impurities in Ge, Si, and GaAs at 300K.

69
Density of States
E
S ///Q@)
EC
D
EV j—
= D,(E)
D(E)dE = number of states per cm3 in the energy range between E and E+dE Near
the band edges:
D.(F)= number of states in AE [ 1 3)
AE -volume eV-cm
m,\[2m, (E—EC)
g.(E) =D (E)= =N
m, [2m, (E, —E)
8.(E)=D(E)=——"—7% ——
70
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Thermal Equilibrium and the Fermi Function

An Analogy for Thermal Equilibrium

Sand particles

AR

o
0% o Oo o o0 o
o°ooc° 0,00 o0 °
0% o0 G50 fo o
Dish - o QQQOO 0000000
00’0 900 g0n°

Vibrating Table

There is a certain probability for the electrons in the conduction band to occupy
high-energy states under the agitation of thermal energy.

71
A
eThere are g, states at E;, g, states at E,... B B0 00 -
There are N electrons, which constantly shift 123 4... e
among all the states but the average electron
energy is fixed at 3kT/2. :
eThere are many ways to distribute N among B @ 1 1
ny, Ny, Ny....and satisfy the 3kT/2 condition. B 1254 ... &
B @1
*The equilibrium distribution is the L 2 3;‘} see &2
distribution that maximizes the number of = @@ __ @
I . . . L 234 ... @
combinations of placing n, in g, slots, n, in g,
slots.... :
n, 1
o E—Ep) kT
gl_ 1+e( F)/
E; is a constant determined by the condition zl’li =N
72
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Particles can be classified into 3 categories:

1. Classical particles (ball) Maxwell-Boltzmann dist.
2. Bosons (photons) Bose-Einstein dist.
3. Fermions(undist + Pauli Exclution) (electrons) Fermi-Dirac dist.

Probability that an available state at energy E is occupied:

1
f(E)=W

E;is called the Fermi energy or the Fermi level.
There is only one Fermi level in a system at equilibrium.

Boltzmann constant, k = 8.62x10> eV/K

10 *

-1
e

L R s Ml lt
S0 K
b 300K
H W0 K
1
1
1
o 5 .

05 -04 -03 02 -01
E-E (V)

01 02 03

73

Fermi Function—Prohabhility of Electron Distribution

1 E;is called the Fermi energy or the Fermi level.

f(E)=W

If we are 3kT away from the Fermi energy then
we might use Boltzmann approximation:

P

F(Ey~e BT g p sy

(= Jpr

tr@=e

E +3T

ornt () ~1-e T pop cckr
Ef +kT
Er
E-kT |
£ %7 |

E —3%T

of
—-———=0(E-FE
If (Ey~1—¢ oF ( 2

RE)

05 1
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Derivation of n and p from D(E) and f(E)
Integrate n(E) over all the energies in the conduction band to obtain n

top of conduction band
=], J(E)D,(E)dE

_m, 2m, )k using the Boltzmann approximation , and
e [ JE-Ee AEE kg

of the valence band.

2h3 extending the integration limit to oo
— (E.~E) kT —~(E-E,)/kT
= 24;13 j JE-E.e d(E-E)
(F— 2mm, kT N. is called the effective density of states
_ (E,~E;)/kT = n c
n=Nce ’ N. 2{ W } of the conduction band.
B 1= f(E)|D,(E)dE
p B bottom of valence band [ B f( )] V( )
p= N‘Ye—(E/—E‘,)/kT N, = 2{2”’"ka ]3/2 N, is called the effective density of states

hZ

Closer Esto E_ the larger n, closer E,to E, the larger p
For Si: N, =2.8x10%° cm™3, N, =1.04x10%° cm™3

75
The Fermi Level and Carrier Concentrations
E.
300K g
200K
Es) DO\"OV‘dOped n=N,e "M
E, -
10% 10 10%° 10% 10Y 108 10% 10°
N, or N, (cm)
76
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—~(E,~E;)IKT ~(E;~E,)/kT

Multiply n=N e and p=Ne

~(E,~E)/AT _ ~E,/kT
np=N,Ne " =N N e

In an intrinsic (undoped) semiconductor, n =p =n,;.

n; is the intrinsic carrier concentration, ~10° cm for Si.

3/2 2 KT 3/2 _
NCEZ{ZHZ?kT:} NVEZ|: ”r]:l; :| nz(T) e
E=Erwhenn=p g = E+E Kk
2 2 N 2

—(E.—E;)/kT Ep—E)/kT
n=Ne " 2 p el )

1

T (N, E+E 3kI' (m,) E +E,
+—1In| =2 |=—¢ Yp—In| L |z
4 m, 2

Law of Mass Action
2
np=n,

-E,12kT
— &
n =,N,_N e

p= Nve’(Ef’Ev)/kT _ nie(El-—EF YT
77
Density of States
D
intrinsic E / D.(E) £
Epo
J2R .
EV
RN
n-type E D/ D.(E) E
EV
N\ 2@
p-type E D/ D_(E) E
Eoo
Ef lllllllllllllll
EV
T\ 2B
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Nivs. Temp

—E,/2kT
— &
n =, NN, e -

3/2
N = 2(27TKTJ (m*m* )3/4e—Eg/2kT o

i hz n'"'p

2.3 % 10" em?

{ i
s 1.3 x 10%
10 -
10°
4
2 x 10¢
104 1| .
79
Dopant lonization
Donor
: 4 sessever 2
[ ———— Sl e P
IT=~0K Incovasing T Roomn espashos &
Acceptor
B,
________ ———g———g  SessSeee 5
ot Q" 00000000
T+ 0K Ineevadeg [y T
80

40



9/26/2011

Carrier Concentration vs. Temperature

T T T 1 |
At room temperature, all the wF
shallow dopants are ionized. ll T
(Extrinsic region) ‘l
. | F
When the temperature is ] I M I, 7]
decreased sufficiently (~100 K), }——— Extrinsic Fregion | ,'
some of the dopants are not N !
ionized. (Freeze out region) ;Lo ! .
Intrinsic | {
When the temperature is Teegion !
increased so high that the L] o / -1
intrinsic carrier conc. approaches g
the active dopant conc. (T—> T, > //
450K for Si), the semiconductor is L 1 { T Sl | 1
said to enter the intrinsic region. 0 10 0 m:m 400 o0 60
n=0 r= Ny reN, anny
i {1 iy 4 E
>t ed - Ll 'L B,
= Negliglbe l-mb \ \ \—nm
b s ' Y X
(13 4 Lom T Modwsts T High T
81
Carrier Concentration vs. Temperature
wT
-
55- U
¢
s 1.
g m
m"n
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Fermi Level vs. Temperature

When the temperature is decreased l;::_ I | - I l o
the Fermi level rises towards the ek CONDuCTION BaND
- . FFrrrr
donor level (N-type) and eventually o SR e
gets above it. - e ]
< 02 | o IE:::T o "--..\ﬁ'=
2 [mTRinsc Leve OHSE 10
When the t ture is i d " ool o]
en the temperature is increased, o 02 y g el
the Fermi level moves towards the -04 p-TYPE ﬁ/’/"b’ -—-‘:"'"
intrinsic level. - Yo o
-0, 2 R R b o \:L\ \}\\‘\Q\\\‘§\T§:}\
ol VALENCE BAND
1 L ]
15— o5 Zo0 300 400 300 800

T iK)
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Carrier Concentrations

Q: What is the hole concentration in an N-type semiconductor with 10'>cm3 of donors?
2 20 3
n- 107 cm
Sol: n = 10> cm?3. =R = 10°cm™
n 107cm
After increasing T by 60°C, n remains the same at 10%°> cm3 while p increases by about a
factor of 2300 because  1? o e M

Q: What is n if p = 107cm3 in a P-type silicon wafer?

Sol: 2 10%em?
n=li s %: 10°cm™
p 107cm

84
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Dopant lonization

Consider a phosphorus-doped Si sample at 300K with
Np = 10 cm What fraction of the donors are not ionized?

Answer: Suppose all of the donor atoms are ionized.

Then  E, =E,—kT'In(N,/n)=E,-150meV

N 1 N, 1
L N, 1+gefr
8p=2 g,=4
1
Probability of non-ionization = 1+Le(ED’EF)/kT
2
= ! =0.034
- 1+Le(150meV—45meV)/26meV -
2

85

Nondegenerately Doped Semiconductor

Recall that the expressions for n and p were derived using the Boltzmann approximation,

i.e. we assumed

E, +3kT <E, <E,—3kT

E¢in this range

o
T E,

The semiconductor is said to be nondegenerately doped in this case.

3kT

86
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If a semiconductor is very heavily doped, the Boltzmann approximation is not valid.
In Si at T=300K: E-E; < 3kT if Np>1.6x10 cm3
E-E, < 3kTif Ny >9.1x10Y7 cm™3

The semiconductor is said to be degenerately doped in this case.

Terminology:
“n+” > degenerately n-type doped. E =E,

“p+” > degenerately p-type doped. E =E,

87
If the dopant concentration is a significant fraction of the silicon atomic density,
the energy-band structure is perturbed = the band gap is reduced by AE;:
s .13 1300
AE,=35x10"°N
250 T T
200F
Y
Elﬁo :
lg“ N =10 cm3: AE; = 35 meV
§m°' N = 10% cm™: AE. = 75 meV
| =
1.1
o N X L 1
107 10° 10" 10"
Donor Density M, (crm” )
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® Three primary types of carrier action occur inside a semiconductor:
e Drift: charged particle motion under the influence of an electric field.

e Diffusion: particle motion due to concentration gradient or temperature
gradient.

e Recombination-generation (R-G)

89

In semiconductor
t .

—_—

ik

F=(-¢)&=ma

where m_* is the electron effective mass

90
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We saw that _ —q&
g electrons a4 =—=
In an electric field, £ an electron or a hole accelerates. 3
—q€
electron and hole effective masses holes a=—7
m
Si Ge GaAs 4
m*_/m, 0.26 0.12 0.068
m*p/m0 0.39 0.3 0.5
s_3
. . 3 1 . 5 v —jkT
Average electron kinetic energy = = k7 = —my, ¥
2 g %kT
‘ A
- 3kT _ 3><0.026eV><(1.6><10’19J/6V) E; v
. m, 0.26x9.1x10 kg E,
=23%x10°m/s =2.3x10"cm/s
91

Mobile electrons and atoms in the Si lattice are always in random thermal motion.
Electrons make frequent collisions with the vibrating atoms called “lattice
scattering” or “phonon scattering” (increases with increasing temperature)
Average velocity of thermal motion for electrons: ~107 cm/s @ 300K

1
4 electron

5

Other scattering mechanisms:

deflection by ionized impurity atoms

deflection due to Coulombic force between carriers (carrier-carrier scattering)
only significant at high carrier concentrations

The net current in any direction is zero, if no electric field is applied.

92
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When an electric field (e.g. due to an externally applied voltage) is applied to a
semiconductor, mobile charge carriers will be accelerated by the electrostatic
force. This force superimposes on the random motion of electrons:

2 2
3 f 3 1
4 electron 4 electron
5 5
_—>
£

Electrons drift in the direction opposite to the electric field
-> current flows

Because of scattering, electrons in a semiconductor do not achieve constant
acceleration. However, they can be viewed as quasi-classical particles moving at a
constant average drift velocity vy

93

*
With every collision, the electron loses momentum my,
Between collisions, the electron gains momentum (—q)éf

7 isthe average time between electron scattering events
mean time between collisions

In steady state

myv, =(-q)&r qr
e s M, =— is the electron mobility
[vi| = g€7 /m, =1, € m,
q, . "
Similarly for holes U, =— is the hole mobility
m
P

Electron and hole mobilities of selected intrinsic semiconductors (T=300K)

94
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Mean Free Path

Average distance traveled between collisions is called mean free path

A=v,T

This is an important length, structures at the order or smaller that m.f.p. show
different performance.

95
Dominant scattering mechanisms:

Phonon scattering (lattice scattering) Impurity (dopant) ion scattering
Phonon scattering mobility decreases There is less change in the electron’s
when T increases: direction of travel if the electron zips by

the ion at a higher speed.
/’lphunun o Tphunun o e

Boronlon = @ Oeca—aao -
1 e (S -
phonon density x carrier thermal velocity o------ -~ @ @ ]
l; Arsenic lon /

1 -3/2 ! 4

oL ———— V4 /

TxT" / S

1 - !

V,, € JT vfh 7372

/’limpurity oc N N oc N N
4T HNp 4T Np
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The probability that a carrier will be scattered by mechanism i within a time period dt
is dt/t;, where 7; is the mean time between scattering events due to mechanism i.
Hence,The probability that a carrier will be scattered within a time period dt is Zdt/r.
1 1 1 1 1 1

+ = +

T Tphunun Timpurity H luphunun luimpurity
10
S Fom10%ear®|
Temperature Effect on Mobility N Z o e
-
N [
=~ J*
%lo‘ AN
W07 N
d S
10¥ AN
N
o N
o =
B ] . 200 rE 500 B 1000 97

T 5 1 1 1
z s 1oL,
E 7 ,U luphunun luimpurity
E 1 = L
z B
= o i P
102014 ’ 0% 10 107 e i i.EJI?
Impurity concentration {om )}
gt =i
7 ; Pt
% Gas L=
= I
]
Hy
:” = il
1P -
101 1a18 1l 1n? 1048 107

Impurity concentration {cm=)

Total Doping Concentration N, + Ny (cm™)
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108
GaAs
';\ L™ h'""'--.
EIW /| [, .
z === '
% f‘ I”J ~ §
a; 4 A Hi-Tiaas
:'E ’/’r g/ b 1 a4 (
g 105 = T=30E
E - %leltétmns:
a i - - = -Holes 1
// .\ T
A . 5i
arK
1 o
0;02 10° 104 10% 108

Eleotric field  (V/em)

Carrier velocity vs. electric field

99

volume from which all holes cross plane in time t = leA
# of holes crossing plane in time t = pvdlA
charge crossing plane in time t = qudIA

charge crossing plane per unit time = hole current = qudA

> Hole current per unitarea= J, = I/A=qpv,

']n,drift = _an = qn,un8
J s = qNV = qn,up(‘l

aip =S narp +J parp =0 E = (‘]”'ﬂn tqnu, )8

Conductivity of a semiconductor is o=qgni, + gpi,
Resistivity p=1/c (Unit: ohm-cm)

100
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Resistivity Dependence on Doping

For n-type material:

1
qn,

For p-type material:

aru,

Note: This plot does
not apply for
compensated
materiall

101
Electrical Resistance
| 4
< + m - Resistance (Ohms)
B — G L _J_ 1wt VL
w2 T, o € VL 7 Pw
homogeneously doped sample 1
|

| L I Q: Consider the same Si sample, doped
additionally with 10'7/cm3 Arsenic. What

Q: Consider a Si sample doped with 10%/cm?® s its resistivity?

Boron. What is its resistivity?

A: N, =10%/cm3, Ny = 10Y7/cm3 (N, >> N,
A: N, =10%/cm3, N, =0 (N, >> N, hence p-type) hence n-type)
-2 p=10%/cm3 and n=10%cm3

1 1

-2 n=9x10%/cm3® and p =1.1x103/cm3

1 1
- p -
qniL, +qpp,  qpu,

qnu,+ap,  api,
_ 19 16 -1
=[(1.6x10™)(10*)(450) | =1.4 Qcm

=[(1.6x10™)(9x 1016)(600)T =0.12 Qcm

102
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lectrical Resistance

Q: Consider a Si sample doped with 107cm-3 As.
How will its resistivity change when the temperature is
increased from T=300K to T=400K?

10*
—_— t
SN A oMo
A: The temperature dependent factorin ¢ AN §
(and therefore p) is W,. \ : Lk
From the mobility vs. temperature curve for \.,IE: e
10¥cm3, we find that p, decreases from 770 at % 10 m“’\\
300K to 400 at 400K. As a result, p increases by 4 S
770
—=1.93 ¥ ‘\
400 J
[l = e =S ——
. =
| B0 L
) Wy 1000
103
> A . .
&0 ?electron kinetic energy
2 E &
o Cc b
c c
S 3]
3 S
o] <
%) ©
S hole kinetic energy £
- v
E. represents the electron potential energy:
P E E Ereference
104
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The potential energy of a particle with
______________ N l_ charge -q is related to the electrostatic
potential V(x):

1
PE.=—qV V=

el AV _ 1L
dx q dx

Variation of Ec with position is called
“band bending.”

- (Ereference - E )
q

c

105

Particles diffuse from regions of higher concentration to regions of lower
concentration region, due to random thermal motion

Higher particle

Lower particle
concentration

concentration
o.©°
o o (o) (o]
%o 9 © Yo
°o° o o ©
OOO o fo) o
OOO o © o
o % 00 °
o o oo % ©o o

S

Direction of Diffusion
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1-D Diffusion Examp

1024
Thermal motion causes particles to t
move into an adjacent compartment | l 1 r=0
every t seconds.
J1z 512
Each particle has an equal probability + *
of jumping to the left and to the right. | 1 ! t=r
512
256 236
| ST Y
384 384
128 128
’ 1 ’ [ B | =3
320
Lot
1 L L t=&y
107
J —aD @ D is the diffusion ——aD d_P
Nait = 9Py dx constant, or diffusivity. P.diff Ky dx
| / p /
x x
QEITEET
o corant
J=Jy+J,
dn dp
Iy = Ixaie T Inae = anp,E+4D, e Jp=Tpir +Jpas =M, E+4D, e

108
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Non-Uniformly-Doped Semiconductor

The position of E; relative to the band edges is determined by the carrier concentrations,

which is determined by the dopant concentrations.

In equilibrium, E; is constant; therefore,

E the band energies vary with position:
EC _—/_ f

_/—' In equilibrium, there is no net flow of
EV electrons or holes

Jy=0 and Jp,=0

The drift and diffusion current components must balance each other exactly.
(A built-in electric field exists, such that the drift current exactly cancels out
the diffusion current due to the concentration gradient.)

Jy =qnu,€+4D, dn
dx

109
Consider a piece of a non-uniformly doped semiconductor:
| n-type semiconductor | n= Nce_(E”_EF VKT
Decreasing donor concentration
dn _ N, @-gyr dE,
dx kT dx
kT dx kT
EV __/—_
Under equilibrium conditions, Jy=0 and Jp=0 a
2
dn n kT g
Jy=qnu,E+qD,—=0 =qnu€—qD,—q€ —>D,=—pn, £
dx kT q K
£
Similarly: —->D Zk—T;t 2
p q p =

Note: The Einstein relationship is valid for a non-degenerate semiconductor,
even under non-equilibrium conditions

110
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Potential Difference due to nixJ, p0a

Consider a piece of a non-uniformly doped semiconductor:

| n-type semiconductor n(x) | n=NE. -E = len(ﬂJ
Decreasing donor concentration &
n, >E, =E, —len(ﬁJ
n ”i
E, (M
= 'Ef
- n
E(X)em oo e ===~ Similarly: B = E¢ _len(n_zJ
Ev (x)__/—_ i
Therefore:  E;, —E, =kT {ln[n_zj - ln[ﬁﬂ =kT hl[n_zj
n n n
V,-" :l(Eil _Eil) :k_Tln(n ]
q q n
111
Fermi Energy
10 11
p-type n-type p-type n-type
E, e
E— | e E;
Density of state: D,(E) D,(E) D,(E)f,(E) -[D2 (E)a —fz(E))]
Fermi dist.: HE) L(E)

D,(E)f,(E)-[ Dy(EX1- £,(E))]

D\(E)/,(E)-[D,(E)1~ f,(E))]= D,(E) f;(E)-[ D(E)1~ £,(E))]
- fi(E) = fz(E) —>E, =Eg,
112
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Whenever the thermal-equilibrium condition of a semiconductor system
is disturbed pn#n?2 processes exist to restore the system to equilibrium

Generation and recombination processes act to change the carrier
concentrations, and thereby indirectly affect current flow

Recombination mechanisms np>n;? Generation mechanisms np<n;?
Dirvast Band-to-Band Impact |onlzatlon
. — &
5 =
w
g W
Fhonm L]
W g
—F, -
B
Recombination in Si is primarily via R-G centers
113

ation Mechanism
& Direct or Band to Band
Basis for light emission devices
Photon (single particle of light) or multiple phonons (single
g  duantum of lattice vibration — equivalent to saying thermal energy)

R-G Center

Also known as Schockley-Read-Hall (SRH) recombination

Photon (single particle of light) or multiple phonons (single
quantum of lattice vibration — equivalent to saying thermal energy)
Note: Trap level, Two steps: 1st Carrier is trapped at a

Energy loss can result in a Photon defect/impurity, 2nd Carrier (opposite type) is attracted to the RG
but more often multiple Phonons Center and annihilates the 1st carrier

Auger
Requires 3 particles, Two steps:
1st carrier and 2nd carrier of the same type collide instantly
B, annihilating the electron hole pair (1st and 3rd carrier).
The energy lost in he annihilation process is given o the 2nd carrier.
2nd carrier gives off a series of phonons until it’s energy returns to
g,  equilibrium energy (E~Ec)

114

9/26/2011

57



B, Direct of Band to Band

M—-. - Does not have to be a direct bandgap material
? Mechanism that results in ni
Lighs W' Basis for light absorption devices such as semiconductor
& photodetectors, solar cells, etc.
R-G Center
Two steps:

A bonding electron is trapped at an unintentional defect/impurity
generating a hole in the valence band

This trapped electron is then promoted to the conduction band
resulting ina new electron-hole pair

Almost always detrimental to electronic devices

Impact lonization
Requires 3 particles and typically high electric fields
1st carrier is accelerated by high electric fields
Collides with a lattice atom
2, Knocks out a bonding electron
Creates an electron hole pair
What is it called when this process repeats and what device is it

& useful for?
115

equilibrium values

Excess Carrier Concentrations:
An=n-n,
Ap=p-p,

Charge neutrality condition: An=Ap

Low-Level Injection: Often the disturbance from equilibrium is small, such that the
majority-carrier concentration is not affected significantly:

For an n-type material |An|= Ap |<<n, so n=n,

For an p-type material | An = Ap |<< P, SO p=p,

However, the minority carrier concentration can be significantly affected

116
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Indirect Recombination Rate

Suppose excess carriers are introduced into an n-type Si sample (e.g. by temporarily
shining light onto it) at time t=0. How does p vary with time t > 0?

1. Consider the rate of hole recombination via traps:

¢, = capture coeficient
P

o, = _CpNTp N, =#of traps
2. Under low-level injection conditions, the hole generation rate is not significantly
affected: »| @ _ @ e N
alg — o G—equilibrium ot R—equilibrium pTTO
3. The net rate of change in p is therefore
op _o | _
ap_g O alg cpNTp+cpNTp0
P - _ _p)y=_%N =_1
1 ¢,N.(p—p,)= - where T,= N,

17

Relaxation to Equilibrium State

Consider a semiconductor with no current flow in which thermal equilibrium is disturbed
by the sudden creation of excess holes and electrons. The system will relax back to the
equilibrium state via the R-G mechanism:

On An , ~Op Ap
for electrons in p-type material: — = ——— for holes in n-type material: — =———
t T, ot 7,
— 1 |
Tp = ¢, Np 2-n = ¢, Ny

The minority carrier lifetime T is the average time an excess minority carrier “survives”
in a sea of majority carriers.

T ranges from 1 ns to 1 ms in Si and depends on the density of metallic impurities
(contaminants) such as Au and Pt, and the density of crystalline defects. These deep
traps capture electrons or holes to facilitate recombination and are called
recombination-generation centers.

118
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Example: Photoconductor

Consider a sample of Si doped with 10% cm boron, with recombination lifetime 1us. Itis
exposed continuously to light, such that electron-hole pairs are generated throughout the

sample at the rate of 10%° per cm3 per second, i.e. the generation rate G, = 10%°/cm3/s

1. What are p, and n,? Py =10%cm™ ny =10*em™

2. What are An and Ap?
G, =Anfr, =10%

An=Ap=G,r=10"x10° =10"cm™
3. What are p and n?

p=p,+Ap=10°+10" 210" cm

n=n,+An= 10* +10" ~ 10" cem™

4. What is the np product?

np=10"cm™> >>n’

119
Net Recombination Rate (General Casel
For arbitrary injection levels and both carrier types in a non-degenerate
semiconductor, the net rate of carrier recombination is:
OAn  OAp pn—n’
ot o r,(n+m)+zr,(p+p)
where n, =ne"™ " and p =nes T
For low level injection:
) ) on An
for electrons in p-type material: — = ——
ot T,
for holes in n-type material: 6_p = _A_p
ot 7,
120
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Derivation of Continuity Equation

Consider carrier-flux into/out-of an infinitesimal volume:

Area A, volume Adx 3
Adx[ ”j [J ()4~ J,, (x+dx)4] A
Tﬂ
I(X) In(x+dx) oJ
X X+aX
N N JN(x+dx):JN(x)+¥dx
X
ok ax _, on_1d,y® An

a q o T,

Continuity Equation
on 10J,(x) An
g o 7,
1,0 M

81 q Ox T

+G

L

121

Minority Carrier Diffusion Equation

The minority carrier diffusion equations are derived from the general continuity
equations, and are applicable only for minority carriers.

Simplifying assumptions

1. The electric field is small, such that

on 0

Jy =qun€ +qD, —=qD, x in p-type material
Ox Ox
0 0

Jp =qu,p& +qD, P - A @ in n-type material
Ox ox

2.ng and p, are independent of x (uniform doping)
3. low-level injection conditions prevail

Starting with the continuity equation for electrons

0(ny, +A 0(ny, +A
on 1@ Moo O(mrAn) 104, dmran)| An o
ot ¢q Ox T ot q Ox

n

O0An 0°An  An
— =D, ——-"—+G
ot Yot ¢ g

n
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Minority Carrier Diffusion Equation

The subscrlpt “n” or “p” is used to explicitly denote n-type or p-type material, e.g.
is the hole (minority-carrier) concentration in n-type material

n, is the electron (minority-carrier) concentration in p-type material

Thus the minority carrier diffusion equations are

OAn, *An, An,
B =D, e . +G, in p-type material
2
oAp, _ D, o Afn _M | G, in n-type material
ot Ox 7,

Simplifications (Special Cases):
No diffusion current:

O,
V?t%\\‘ Silicon bar o*Ap, _Ap, _Ap,
ox’ Dyz, L}

The general solution to the equation is
Ap,(x)= Ae ™" + Be

Aoy

/L
e by boundary conditions:

BC Ap(0)=0 = B=0

Ap,(0)=4p,, = A=A7p,
A ()

Hence solution is:

Ap, (x) = Ap,gde ™"

Steady state:
dAn b 0*An A
e_o, P Dy—2=0, D, "2 -0
ot ot ox*
No R-G: No light:
An A
—2-0,2-p G, =0
T, 7,
123
Consider the special case:
1. constant minority-carrier (hole) injection at x=0
2. steady state; no light absorption for x>0 Ap,(0) =Ap,,
’Ap, _Ap,
4 Light absorbed at x=0 0=D, o -
X T,

(0 X L, is the hole diffusion length: L, =

Dyr,

where A, B are constants determined
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Physically, L, and Ly represent the average distance that minority carriers can diffuse
into a sea of majority carriers before being annihilated.

Q: Find L, if N;=10% cm3; t,=10® s

L,=,/D,r,
kT
D, :;ﬂp
, =400cnt Vs
_ 2
D, =10cm /s
L,=30um

125
Whenever Dn = Dp # 0, np # n?. However, we would like to preserve and use
the relations:
Ep—E)IkT — 3 o E—Ep)KT
These equations imply np = n?, however. The solution is to introduce two quasi-
Fermi levels F\ and F, such that
Fy—E)/kT E.—Fp)/kT
n:ne( N z) p:ne( i P)
1 1
n
F,=E +kT'n| 2~ F,=E,—kTln| £
n, n;
126
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Example: Quasi-Fermi Levels

Consider a Si sample with Ny =107 cm and Dn = Dp = 10*cm3.
Whatarepandn? _ _
P n,=N,=10"cm 3,[9(,:}11.2/}10:1030m3
n=n,+An=10"+10" ~10"cm
p=p,+Ap=10"+10" ~ 10" cm™

What is the np product ?
np=10"cm™

Find Fy and Fp:

Fy=E,+kT'In(n/n)— F, —E,=kT'n(107) = 0.42eV Ee
F, = E—kI'n(p/n,) > E,~F, =kT'n(10*) = 0.24eV > I 0.42eV
— E ---------------------
Sl E e Q.24eV......
EV
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