

1 BA	Pipe Calificat 2 16		Alla Alla	di misikate dinep qertik	mpyde	in a	alin Ma asul par majipile anar ajato			Sadiel Liquid		19 1114	111 114	18 VAL	10 104	15 Mia	101 101 2 2 He Metum 4.0021002
NUM Hat	2 4 Be Be 1012182		nei Lau	insenteto unter Il hemilieto ene	ale The	i i i i i i i i i i i i i i i i i i i	appe Soote	5	74	esay. Synthole		5 B 80101 10 811	6 Caroon 12/01/07	7 N N000546 14.00674	2 8 O 04955 15 9994	2 9 F Fuome 18.9904002	10 3 Ne Necon 201797
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mg Mg Jappenium 24 3000	e Mb	4 66	6 10	e MB) आफ	8	е - МПБ	w	93 18-	ъ В	13 Al Alaminaria 25.701520	14 Si 70 0005	15 P /hisphines 30 972761	16 5 5.der 32.006	17 • CI 55,453	18 2 Ar 8 Ar 8 Ar 8
iatesian D983	20 Ca Ca 40.078	21 Sc 4 389910	22 Ti Timen 47 967	23 V Varua inna 50:9415	24 Cincentant 51 9961	25 Mn starument stastesta	26 Fe	27 Go , Cristal 56 503230	28 Ni 58.6934	29 19 Cup 19 63.546	30 Zn 58 61.409	31 Ga	32 Ge '	33 As ^{Aranna} 14.92140	34 Se Internation 78.56	35 Br 5354	36 10 Kr 10 2796
b istore	38 Sr Javian 87.02	39 Y	40 Zr 2nsmm 91 23	41 Nb Pricessore 92 90438	42 Mo	43 TC : Tmrmman (H)	44 Ru	45 Rh	46 Pd *aiminar	47 Ag	48 Cd Common 10411	49 In 1 114 818	50 Sn	51 Sb 	52 Te Telurum 127.60	2 53 1 kaine 126.90417	54 38 Xe 38 2012/13
S 1411 1412010	20 56 20 Ba 10 Barun 2	57 to 71	72 Hf Hamini 1/1/79	73 Ta Ta Talanut Talanut	74 W Turgation 102 FC	75 Re 75 75 75 75 75 75 75 75 75 75	76 Os	2 77 2 Ir 1100-01	78 Pt Mainut	79 Au Ciela 116 1968200	80 Hg Mercuty 255 M	12 81 Thatture	82 Pb	Bi Bi John Minary	Po Po ruunun calin	Additione	86 **** Rn ::::::::::::::::::::::::::::::::::::
xaan b	Ra 3	89 to 103	104 R. ² P. Barrowski, 1	105 Db 5.0-0-0	106 Sg	107 102 102 102 102 102 102 102 102 102 102	108 H si 1949 Ann	109 Mit States	110 Das	111 Rg	112 Uuba	Uut Uut (201)	114 Uurq (Secondaria	115 Uup	116 Uuh	117 Uus vaagaa	WR Uuw annaa
				Sada mer	te hposti	1999 1999 1999	e al tie ma	i toñou a	annan britt	6.						_	
			57 La	58 Ce	59 Pr	60 Nd	61 Firm	62 Sm 1	63 Eu	64 Gd	65 Tb	66 Dy Dyserosaus	67 Ho	68 Er	69 Tm 1	70 Yb	71 30 Lu 10 1000
-			89 Ar	90 Th	91 Pa	1 92	93 No	2 94 2 4	95 Am	96 Dra	97 3 k	98 C1	99 E-	100 Frm	101 101	102 No.	103

bbrevia	ited	ierio	dic 1	table	•			
	1 IA 1A							18 VIIIA 8A
	1	2	13	14	15	16	17	2
	<u>H</u>	11A	IIIA	IVA	VA	VIA	VIIA	<u>He</u>
	1.008	2A	3A	4A	5A	6A	7A	4.003
	3	4	5	6	7	8	9	10
	<u>Li</u>	<u>Be</u>	<u>B</u>	<u>C</u>	<u>N</u>	<u>O</u>	<u>F</u>	<u>Ne</u>
	6.941	9.012	10.81	12.01	14.01	16.00	19.00	20.18
	11	12	13	14	15	16	17	18
	<u>Na</u> 22.99	<u>Mg</u> 24.31 30	<u>AI</u> 26.98	<u>Si</u> 28.09	<u>P</u> 30.97	<u>S</u> 32.07	<u>Cl</u> 35.45	<u>Ar</u> 39.95
	<u>K</u>	<u>Zn</u>	<u>Ga</u>	<u>Ge</u>	<u>As</u>	<u>Se</u>	<u>Br</u>	<u>Kr</u>
	39.10	65.39	69.72	72.59	74.92	78.96	79.90	83.80
	37	48	49	50	51	52	53	54
	<u>Rb</u>	<u>Cd</u>	<u>In</u>	<u>Sn</u>	<u>Sb</u>	<u>Te</u>	<u> </u>	<u>Xe</u>
	85.47	112.4	114.8	118.7	121.8	127.6	126.9	131.3
	55	80	81	82	83	84	85	86
	<u>Cs</u>	<u>Hg</u>	<u>TI</u>	<u>Pb</u>	<u>Bi</u>	<u>Po</u>	<u>At</u>	<u>Rn</u>
	132.9	200.5	204.4	207.2	209.0	(210)	(210)	(222)

Miller Convention Summary								
	Convention	Interpretation						
	(hkl)	Crystal plane						
	{hkl}	Equivalent planes						
	[hkl]	Crystal direction						
	〈hkl〉	Equivalent directions						
			32					

K-space				
The reciprocal lattice of a lattice (us the Fourier transform of the spatial lattice) is represented. This space is commonly k-space	tice in which (or direct ice or less			
real space primitive vectors:	$\left(\mathbf{a}_{1},\mathbf{a}_{2},\mathbf{a}_{3}\right)$	SC	fcc	bcc
reciprocal lattice primitive vectors:	$(\mathbf{b_1},\mathbf{b_2},\mathbf{b_3})$	SC	bcc	fcc
$V = \mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3) \qquad \mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{V}$	$\mathbf{b}_2 = 2\pi$	$\frac{\mathbf{a}_3 \times \mathbf{a}_1}{V}$	b 3 =	$2\pi \frac{\mathbf{a_1} \times \mathbf{a_2}}{V}$
All features are periodic with peri transform it can be written as	odicity of the	lattice, ju	ist like F	ourier
$\varphi(\mathbf{r}) = \varphi(\mathbf{r} + \mathbf{a}_{\mathbf{n}}) = \sum \varphi_b e^{i\mathbf{b} \times_{\mathbf{r}}}$	where	$\mathbf{a}_{\mathbf{n}} = n_1 \mathbf{a}$	$n_1 + n_2 n_2$	$+n_3\mathbf{a}_3$
				34

<text><text><text>

	na Bonds		
marin			
Γ	Bond	Energy (GPa)	Example of Bond
	Covalent	1,000	Diamond
	Ionic	30 - 100	Salt and Ceramics
	Metallic	30 - 150	Metals
	Hydrogen	8	Ice
		2	Polythene
F	Van der Vaals	2	ronythene

CCUN	6 11193 9 11192	2					
n 3-D crys Iave an ef	tals the ele fective ma	ectron acco ss tensor	eleration wi as $\frac{1}{m_{ij}^*} \equiv \frac{1}{n_{ij}^*}$	Il not be coli $\frac{1}{h^2} \frac{\partial^2 E}{\partial k_i \partial k_j}$	near. Thus	, in genera	l we
			-	-	elec	trons <i>G</i>	$a = \frac{-q\varepsilon}{m}$
In an ele	ctric field,	c, all elect				-	_ <i>−q</i> €
In an ele	ctric field,	electron a	ind hole effe	ective masse	ho s at 300K	iles a	$a = \frac{-q\mathbf{\mathcal{E}}}{m_p}$
In an ele	ctric field, -	electron a	nd hole effe	ective masse	ho s at 300K	les a	$a = \frac{-q\mathbf{\mathcal{E}}}{m_p}$
In an ele	nsity of sta	electron a	nd hole effe	ective masse for con	ho s at 300K nductivity (les a	$q = \frac{-q\boldsymbol{\mathcal{E}}}{m_p}$
In an ele	nsity of sta	electron a tes calcula Ge	nd hole effe itions GaAs	ective masse for cor	ho s at 300K nductivity o Si	les a calculation Ge	$a = \frac{-q\mathbf{\mathcal{E}}}{m_p}$
for de m_/m_	nsity of sta Si 0.26	electron a tes calcula Ge 0.12	ind hole effe itions GaAs 0.067	for con	ho s at 300K nductivity o Si 1.1	les a calculation Ge 0.55	$q = \frac{-qE}{m_p}$ s GaAs 0.067

Low-Level Injection	n					
Excess Carrier Concentrations:	equilibrium values $\Delta n \equiv n - n_0$ $\Delta p \equiv p - p_0$					
Charge neutrality condition:	$\Delta n = \Delta p$					
Low-Level Injection: Often th majority-carrier concentration	ne disturbance from equilibrium is small, such that the on is not affected significantly:					
For an n-type mater	rial $ \Delta n = \Delta p << n_0$ so $n \cong n_0$					
For an p-type mater	rial $ \Delta n = \Delta p << p_0$ so $p \cong p_0$					
However, the minority carrier concentration can be significantly affected						
	116					

Relaxation to Equilibrium State

Consider a semiconductor with no current flow in which thermal equilibrium is disturbed by the sudden creation of excess holes and electrons. The system will relax back to the equilibrium state via the R-G mechanism:

for electrons in p-type material: $\frac{\partial n}{\partial t} = -\frac{\Delta n}{\tau_n}$ for holes in n-type material: $\frac{\partial p}{\partial t} = -\frac{\Delta p}{\tau_p}$ $\tau_p \equiv \frac{1}{c_n N_r}$ $\tau_n \equiv \frac{1}{c_n N_r}$

The minority carrier lifetime τ is the average time an excess minority carrier "survives" in a sea of majority carriers.

 τ ranges from 1 ns to 1 ms in Si and depends on the density of metallic impurities (contaminants) such as Au and Pt, and the density of crystalline defects. These deep traps capture electrons or holes to facilitate recombination and are called recombination-generation centers.

Example: Photoconductor Consider a sample of Si doped with 10¹⁶ cm⁻³ boron, with recombination lifetime 1µs. It is exposed continuously to light, such that electron-hole pairs are generated throughout the sample at the rate of 10²⁰ per cm³ per second, *i.e.* the **generation rate** $G_L = 10^{20}/\text{cm}^3/\text{s}$ 1. What are p_0 and n_0 ? $p_0 = 10^{16} \text{ cm}^{-3}$ $n_0 = 10^4 \text{ cm}^{-3}$ 2. What are Δn and Δp ? $G_L = \Delta n/\tau_n = 10^{20}$ $\Delta n = \Delta p = G_L \tau = 10^{20} \times 10^{-6} = 10^{14} \text{ cm}^{-3}$ 3. What are p and n? $p = p_0 + \Delta p = 10^{16} + 10^{14} \approx 10^{16} \text{ cm}^{-3}$ A. What is the np product? $np = 10^{30} \text{ cm}^{-3} >> n_l^2$

Example - Minority Carrier Diffusion Length

Physically, L_P and L_N represent the average distance that minority carriers can diffuse into a sea of majority carriers before being annihilated.

Q: Find L_P if $N_D = 10^{16}$ cm⁻³; $t_p = 10^{-6}$ s

$$L_p \equiv \sqrt{D_p \tau_p}$$
$$D_p = \frac{kT}{q} \mu_p$$
$$\mu_p = 400 \, cm^2 / Vs$$
$$D_p = 10 \, cm^2 / s$$

$$L_n = 30 \mu m$$

Quasi-Fermi LevelsWhenever $Dn = Dp \neq 0$, $np \neq n_i^2$. However, we would like to preserve and use the relations: $n = n_i e^{(E_F - E_I)/kT}$ $p = n_i e^{(E_i - E_F)/kT}$ These equations imply $np = n_i^2$, however. The solution is to introduce two quasi-Fermi levels F_N and F_P such that $n = n_i e^{(F_N - E_i)/kT}$ $p = n_i e^{(E_i - F_P)/kT}$ $F_N = E_i + kT \ln\left(\frac{n}{n_i}\right)$ $F_P = E_i - kT \ln\left(\frac{p}{n_i}\right)$

126

