Session 1: Trends in VLSI

Solid State Devices

Course Objective

- We will study collection of semiconductor devices. From Transistors to optoelectronic devices.
- There will be project/homework with Silvaco
- There is no single Textbook for the course
- Most of the material (books, papers) needed for this course will be provided
- Lecture Notes: combination of slides and discussions
-- Slides will be posted on the class webpage
-- http://ee.sharif.edu/~sarvari/Teaching.html

Required Text/Reference Material

- Kwok K. Ng, "Complete Guide to Semiconductor Devices", 2nd Ed., 2002
- Brennan and Brown, "Theory of Modern Electronic Semiconductor Devices", 2002
- Sze and Ng," Physics of Semiconductor Devices", 3rd Ed., 2006
- Taur and Ning, "Fundamentals of Modern VLSI Devices", 2009
- Mishra and Singh, "Semiconductor Device Physics and Design", 2008
- Roblin and Rohdin, "High-speed Heterostructure Devices", 2002
- Singh, "Semiconductor Optoelectronics", 1995
- Selected research papers from the literature

(1906) Vacyum Tube : Triode

The 1946 ENIAC computer used 17,468 vacuum tubes and consumed 150 kW of power

Lee De Forest (1873-1961)

Field Effect Transistor

Julius Edgar Lilienfeld (1882-1963)

DEVICES FOR CONTROLLED ELECTRIC CURRENT,

Filed March 28, 1928

Pateoted Mor. 7, 1933
1,900,018
UNITED STATES PATENT OFFICE

J. E. LILIENFELD
J. E. LILIENFELD

Bell Labs, 1948

J. Bardeen, W. Brattain, W. Shockley

1958, Kilby, Texas Instruments

Jack St. Clair Kilby (1923 - 2005)

1960, Noyce, planar integrated circuit

Robert Norton Noyce(1927-1990)

Co-founder of Fairchild Semiconductor and Intel

Early IC - Fairchild

1960, MOSFET, D. Kahng and M. Atalla

Bell Labs

1964 - Op-Amp uA702, Fairchild

1965 - Op-Amp uA709, Fairchild

1970 - SRAM 256 Bit, Fairchild

1970-1024 Bit DRAM, Inte|

1970-CCD 8 Bit, Bell Laps

1971 - Microprocessador 4004, Inte|

2001-256Mbit DRAM , TOSHIBA

Circuits: from 1961 to 2005

The first planar integrated circuit, 1960.

Designed and built by Lionel Kattner and Isy Haas under the direction of Jay Last at Fairchild Semiconductor.

The Intel "Montecito" microprocessor, 2005

Scaling of MOSFET Dimensions

Trends in Semiconductor/CMOS Market

Semiconductors have become increasingly more important part of world economy

CMOS has become the pervasive technology

In 2000: 0.7% of GWP
Today: 5% of GWP

Intriguing ... but Challenging

Challenges:

- The NRE cost of IC manufacturing (about 2Ms for mask)
- Deep-submicron effects
- Complexity (100 million transistors)
- Power and Energy
- Reliability and Robustness
- Beyond Silicon!

Interconnect?!

2 Major problems facing Moore's law:

- Power dissipation
- Interconnects

IBM Cu technology

from IBM
Cross-section of 64-bit highperformance microprocessor

Connectivity and Complexity

Challenge of System Complexity

Noc Network-on-a-Chip

Traditional communication techniques: point-to-point connection, busses

The wires occupy much of the area of the chip, and in nanometer CMOS technology, interconnects dominate both performance and dynamic power dissipation, as signal propagation in wires across the chip requires multiple clock cycles

NoC is similar to a modern telecommunications network, using digital bit-packet switching over multiplexed links. An NoC is constructed from multiple point-to-point data links interconnected by switches (a.k.a. routers).
NoC links can reduce the complexity of designing wires for predictable speed, power, noise, reliability, etc

Moore's Law

Moore's Law, the empirical observation that the transistor density of integrated circuits doubles every 2 years.

Moore: Moore's law has been the name given to everything that changes exponentially. I say, if Gore invented the Internet, I invented the exponential.

Moore's Law in Perspective

The number of transistors shipped in 2003 had reached about 10^{18}. That's about 100 times the number of ants estimated to be in the world.

A chip-making tool levitated images within a tolerance of $1 / 10,000$ the thickness of a human hair - a feat equivalent to driving a car straight for 1000 km while deviating less than one 3.8 cm .

It would take you about 25,000 years to turn a light switch on and off 1.5 trillion times, but Intel has developed transistors that can switch on and off that many times each second..

Moore's Law in Perspective

In 1978, a flight between New York and Paris cost around $\$ 900$ and took 7 hours. If the principles of Moore's Law had been applied to the airline industry the way they have to the semiconductor industry, that flight would now cost about a penny and take less than 1 sec .

The price of a transistor is now about the same as that of one printed newspaper character.

Intel has developed transistors so small that about 200 million of them could fit on the head of each of these pins.

Intel $\mu \mathrm{P}$ Trends

- Intel 4004: first single-chip microprocessor
- November 15, 1971
- Clock rate 740 kHz
- Bus Width 4 bits (multiplexed address/data due to limited pins)
- PMOS
- 2,300 Transistors at $10 \mu \mathrm{~m}$
- Addressable Memory 640
bytes
- Program Memory 4 KB (4 KB)

- Intel Core i7
- Today
- Clock rate $2.66 \mathrm{GHz}-3.33 \mathrm{GHz}$
- 64 bit processor
- 4 cores
- 731M Transistors at 45 nm
- Oregon 32 nm plant
- Price 273-562 \$
- 263 mm2 die size

Moore's Law \& Die Size

Moore was not always accurate Projected Wafer in 2000, circa 1975
Die size has grown by 14% to satisfy Moor's law, BUT the growth is almost stopped because of manufacturing and cost issues

The die size of the processor refers to its physical surface area size on the wafer, the first generation Pentium used a 0.8 micron circuit size, and required $296 \mathrm{~mm}^{2}$ per chip. The second generation chip had the circuit size reduced to 0.6 microns, and the die size dropped by a full 50% to $148 \mathrm{~mm}^{2}!!!$

Trends in Clock Frequency

Lead microprocessors frequency doubles every 2 year, BUT the growth is slower because of power dissipation issue

MOS in 65 nm

(a)

Distance between Si atoms $=5.43^{\circ} \mathrm{A}$
\# of atoms in channel = $35 \mathrm{~nm} / 0.543 \mathrm{~nm}=64$ Atoms!

Problem: Uncertainty in transistor behavior and difficult to control variation! Randomly placed dopants in channel

Gate Insulator Thickness in 65 nm

Problem: Electrons can easily jump over the 5 atomic layers!
This is known as leakage current

Power Density Problem

Power density too high to keep junction at low temperature.
Power reaching limits of air cooling.

Power Density Problem

$$
\begin{aligned}
& \text { Power }=115 \mathrm{Watts} \\
& \text { Supply Voltage }
\end{aligned}=1.2 \mathrm{~V} \text { (} \begin{aligned}
\text { Supply Current } & =115 \mathrm{~W} / 1.2 \mathrm{~V} \\
& =96 \mathrm{Amps}!
\end{aligned}
$$

Note:
Fuses used for household appliances $=15$ to 40 Amps

Problem:
Current density becomes a serious problem!
This is known as electromigration

Power = 115 Watts
Chip Area $=2.2 \mathrm{~cm}^{2}$
Heat Flux = $115 \mathrm{~W} / 2.2 \mathrm{~cm}^{2}$ $=50 \mathrm{~W} / \mathrm{cm}^{2}$!

Notes:
Heat flux in iron $=0.2 \mathrm{~W} / \mathrm{cm}^{2}$
Heat flux in frying pan $=10 \mathrm{~W} / \mathrm{cm}^{2}$

Problem:
Heat flux is another serious issue!

Transistor Scaling

$$
T_{\text {Delay }}=C_{\text {Gate }} \frac{V_{D D}}{I_{\text {Drive }}}
$$

$$
=\frac{W L}{T_{o x}} \frac{V_{D D}}{I_{\text {Drive }}}
$$

$$
I_{\text {Drive }}=\frac{W}{L T_{o x}} \cdot\left(V_{D D}-V_{T h}\right)^{2}
$$

Scaling Issues:

- Channel length modulation
- Drain induced barrier lowering
- Punch through

$$
T_{\text {Delay }}=L^{2} \frac{V_{D D}}{\left(V_{D D}-V_{T h}\right)^{2}}
$$

- Sub-threshold current
- Field dependent mobility / Velocity saturation
- Avalanche breakdown and parasitic bipolar action
- Oxide Breakdown
- Interconnect capacitance
- Heat production
- Process variations
- Modeling challenges

Limit of "Moore's Law"?

- What is behind this fantastic race of development of the IC technologies?
- Is it the "technological" will and motivation of the people involved?
- Or/and is it the economical drive the main force?
- Semiconductor industry sales:
- 1962, > \$1-billion
- 1978, > \$10-billion
- 1994, > \$100-billion

2 prominent technical:
(DRAM), uP

Will physics or economics stop Moore's law ?
a law of human ingenuity, not of nature

Physical limits to computation

The min. energy perform a logic operation in time Δt

$$
E \geq \pi \hbar / 2 \Delta t \quad \hbar=1.0545 \times 10^{-34} \mathrm{~J} . \mathrm{s}
$$

max \# of operations per second $\quad N=2 E / \pi \hbar$

$$
\begin{aligned}
& \text { Entropy } \\
& \\
& \\
& \hline
\end{aligned}=k_{B} \ln W \quad \text { \# of states } \quad k_{B}=1.3805 \times 10^{-23} \mathrm{~J} / \mathrm{K}
$$

\# of bits

$$
m=S / k_{B} \ln 2
$$

$$
\frac{\text { operation }}{\text { bit. sec }}=\frac{N}{m}=\frac{2 E k_{B} \ln 2}{\pi \hbar S} \quad \sim \frac{2 k_{B} T \ln 2}{\pi \hbar}
$$

minimal amount of energy required to 1 bit : $\sim k_{B} T \ln 2$

Min. Transistor Switching Energy

ITRS '97-'03 Gate Energy Trends

Economic trends

Product lifecycles and the products selling prices are decreasing at an increasing rate.
(Based on information from DataQuest and MicroDesign Resources)

ITRS

The International Technology Roadmap for Semiconductors is sponsored by the five leading chip manufacturing regions in the world: Europe, Japan, Korea, Taiwan, and the United States

http://www.itrs.net/reports.html
"Prediction is very difficult, especially if it's about the future" Niels Bohr

Wire Geometry

- Pitch = w + s
- Aspect ratio: AR = t/w

Old processes had AR $\ll 1$
Modern processes have AR ≈ 2
Pack in many skinny wires

TRS Interconnect Technology Requirement

Short Term

Year of Production	2005	2006	2007	2008	2009	2010	2011	2012	2013
DRAM $1 / 2$ Pitch ($n m$) (contacted)	80	70	65	57	50	45	40	36	32
MPU/ASIC Metal 1 1/2 Pitch (nm)(contacted)	90	78	68	59	52	45	40	36	32
MPU Physical Gate Length (nm)	32	28	25	22	20	18	16	14	13
Number of metal levels	11	11	11	12	12	12	12	12	13
Number of optional levels - ground planes/capacitors	4	4	4	4	4	4	4	4	4
Total interconnect length ($\mathrm{m} / \mathrm{cm}^{2}$) - Metal 1 and five intermediate levels, active wiring only [1]	1019	1212	1439	1712	2000	2222	2500	2857	3125
FITs $/ \mathrm{m}$ length $/ \mathrm{cm}^{2} \times 10^{-3}$ excluding global levels [2]	4.9	4.1	3.5	2.9	2.5	2.3	2	1.8	1.6
$\mathrm{J}_{\max }\left(\mathrm{A} / \mathrm{cm}^{2}\right)$ - intermediate wire (at $105^{\circ} \mathrm{C}$)	$8.91 \mathrm{E}+05$	1.37E+06	$2.08 \mathrm{E}+06$	$3.08 \mathrm{E}+06$	$3.88 \mathrm{E}+06$	$5.15 \mathrm{E}+06$	$6.18 \mathrm{E}+06$	$6.46 \mathrm{E}+06$	$8.08 \mathrm{E}+06$
Metal 1 wiring pitch (nm)	180	156	136	118	104	90	80	72	64
Metal $1 \mathrm{~A} / \mathrm{R}$ (for Cu)	1.7	1.7	1.7	1.8	1.8	1.8	1.8	1.8	1.9
Manufacturable solutions exist, and are being optimized Manufacturable solutions are known Interim solutions are known Manufacturable solutions are NOT known									

ITRS Interconnegt Technology Requirement

Long Term

Year of Production	2014	2015	2016	2017	2018	2019	2020
DRAM $1 / 2$ Pitch (nm) (contacted)	28	25	22	20	18	16	14
MPU/ASIC Metal 1 1/2 Pitch (nm)(contacted)	28	25	22	20	18	16	14
MPU Physical Gate Length (nm)	11	10	9	8	7	6	6
Number of metal levels	13	13	13	14	14	14	14
Number of optional levels - ground planes/capacitors	4	4	4	4	4	4	4
Total interconnect length $\left(\mathrm{m}^{2} \mathrm{~cm}^{2}\right)$ - Metal 1 and five intermediate levels, active wiring only [1]	3571	4000	4545	5000	5555	6250	7143
FITs/m length/cm ${ }^{2} \times 10^{-3}$ excluding global levels $[2]$	1.4	1.3	1.1	1	0.9	0.8	0.7
$\mathrm{~J}_{\text {max }}\left(\mathrm{A} / \mathrm{cm}^{2}\right.$) - intermediate wire (at $\left.105^{\circ} \mathrm{C}\right)$	$1.06 \mathrm{E}+07$	$1.14 \mathrm{E}+07$	$1.47 \mathrm{E}+07$	$1.54 \mathrm{E}+07$	$1.80 \mathrm{E}+07$	$2.23 \mathrm{E}+07$	$2.74 \mathrm{E}+07$
Metal 1 wiring pitch (nm)	56	50	44	40	36	32	28
Metal 1 A/R (for Cu)	1.9	1.9	2	2	2	2	2

Manufacturable solutions exist, and are being optimized
Manufacturable solutions are known
Interim solutions are known
Manufacturable solutions are NOT known

NTRS Roadmap

Parameter Year	2003	2004	2005	2008	2011	2014
Technology(nm)	120	110	100	70	50	35
\# of Transistors	95.2 M	145 M	190 M	539 M	1523 M	4308 M
Clock Frequency	1724 MHz	1857 MHz	2000 MHz	2500 MHz	3000 MHz	3600 MHz
Chip Area (mm²)	372	372	408	468	536	615
Wiring Levels	8	8	$8-9$	9	$9-10$	10
Pitch(L//G)(nm)	$330 / 420 / 690$	$295 / 375 / 620$	$265 / 340 / 560$	$185 / 240 / 390$	$130 / 165 / 275$	$95 / 115 / 190$
A/R (L//G)	$1.6 / 2.2 / 2.8$	$1.6 / 2.3 / 2.8$	$1.7 / 2.4 / 2.8$	$1.9 / 2.5 / 2.9$	$2.1 / 2.7 / 3.0$	$2.3 / 2.9 / 3.1$
Dielectric Const.	$2.2-2.7$	$2.2-2.7$	$1.6-2.2$	1.5	<1.5	<1.5

MOS Device Scaling

- Decreasing device sizes reduce parasitic loads making for faster transitions
- Increase variations between devices and across the die
- Shrinking supply voltages increase noise sensitivity and reduce margins
- System performance is limited by noise and clock skew

MOS Device Scaling

- Scaling induces increase in magnitude of device to device variations
- Note particularly large increase in
Leff => MOS current

Vdd and Vt changes

Interconnect Architecture

Metal stack over Silicon
Reverse-scaled global interconnects:

- Growing interconnect complexity
- Performance critical global interconnects

Interconnect Architecture (nmellenm)

Intel 6LM 130nm process with vias shown (connecting layers)
L.AYER PITCH. THICKNESS AND ASPECT RATIO

Jayer	Pitch(nm)	Thisk(nm)	Aspect Ratio
Isolation	364	450	
Poly-silicon	336	160	
Metal 1	350	280	1.6
Metal 2. 3	448	360	1.6
Metal 4	756	570	1.5
Metal 5	1120	900	1.6
Metal 6	1204	1200	2.0

Real wiring cross section photograph

Interconnect ys. Gate Delay

Choice of Metal

- Until 180 nm generation, most wires were aluminum
- Modern processes often use copper

Cu atoms diffuse into silicon and damage FETs Must be surrounded by a diffusion barrier

Metal	Bulk resistivity $\left(\mathbf{m} \Omega^{*} \mathbf{c m}\right)$
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Molybdenum (Mo)	5.3

Interconnects vs, Gate Delay

Delay for Metal 1 and global wiring vs feature size

Interconnect Scaling Sceenario

Problem with Interconnects?

	Technology generation		
	1 um	100 nm	35 nm
MOSFET switching delay (ps)	~ 20	~ 5	~ 2.5
Interconnect $R C$ response time, L=1mm (ps)	~ 1	~ 30	$\sim \mathbf{2 5 0}$
MOSFET switching energy (fJ)	~ 30	~ 2	~ 0.1
Interconnect switching energy (fJ)	~ 40	~ 10	~ 3

Calculations made by considering bulk resistivity of Cu

Copper Resistivity

Resistivity of Cu increases with scaling

Interconnect Resistance

TiN

Barrier/Liner is usually another metal preventing Copper to diffuse into Si or SiO_{2}

- Diffusion barrier reduces wire's cross-section
- Cu over polish (dishing) reduces it's thickness

Mire ca@g Cita

- Wire has capacitance per unit length

To neighbors
To layers above and below

- $\mathrm{C}_{\text {total }}=\mathrm{C}_{\text {top }}+\mathrm{C}_{\text {bot }}+2 \mathrm{C}_{\text {adj }}$
- Parallel plate equation: C=eA/d

Wires are not parallel plates, but obey trends Increasing area (W, t) increases capacitance Increasing distance (s, h) decreases capacitance plus a fringe term

- Dielectric constant

$$
\mathrm{e}=\mathrm{ke} \mathrm{e}_{0}
$$

$$
\mathrm{e}_{0}=8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}
$$

$$
\mathrm{k}=3.9 \text { for } \mathrm{SiO}_{2}
$$

Processes are starting to use low-k dielectrics
$\mathrm{k} \approx 3$ (or less) as dielectrics use air pockets

Capacitance Extraction

- Extraction of interconnect capacitance in modern VLSI technology is complicated because of

Non-homogenous dielectric (etch stop, barrier liner, etc.)
Complex pattern of neighboring interconnects (need 3D modeling)

- Sometimes, the overhead layers increases the effective K value

Overhead layers are hard to scale but needs to be controlled

Technology node

Inductance Figure of Merit

- Should we model wires as full transmission line? (no)
Unless we intentionally make inductance important: very wide wires
Or we are designing the clock grid
- Transmission line effects can be ignored if the wire is:
Very short, when signal transition is slower than the roundtrip delay

$$
t_{r}>2 L \sqrt{l c}
$$

Very long, when it becomes too lossy (resistance is more than 2Zo)

$$
r L>2 \sqrt{l / c}
$$

Problems of Inductance Modeling

\square Extraction of on-chip inductance is very challenging

- Hard to define return path (unless we use partial inductance technique)
- Require a huge amount of netlist data (10x more than RC netlist data size)
\square Simulation of on-chip inductance is also challenging
- Requires a lot more computation for delay calculation
- Available techniques have limited accuracy for large circuit structures
\square Fortunately, it is not required to include inductance for whole chip analysis

Wire Distribution

Number of wires

Rent's Rule

Rent's Rule: Underlying assumption for system-level modeling

$T=k N p$

k and p are empirical constants such that:
k = average \# of pins
$\mathrm{p}=$ connectivity factor

Rent's Rule

No internal connection (T=kN)

$$
p=0
$$

Full internal connection
($\mathrm{T}=\mathrm{k}$)

Delay Estimation Techniques

\square
SPICE Simulation

- Very slow - not practical for chip level analysis
- Good for specific nets such as clocks or critical path
$\square \quad$ Asymptotic Waveform Evaluation (AWE)
- Is an industry standard for delay estimation
- uses moment matching to determine a set of low frequency dominant poles that approximate the transient response
\square Elmore Delay Analysis
- Uses only the first moment (dominant pole)
- Can be used for first order approximation in a complicated RC tree

Emore Delay in RC Ladder

$$
\begin{aligned}
& \xrightarrow[\sim]{\sim_{V}^{R_{N}}} C_{N} \\
& \tau_{D i}=\sum_{k=1}^{N} R_{k i} C_{k} \\
& =R_{1} C_{1}+\left(R_{1}+R_{2}\right) C_{2}+\cdots+\left(R_{1}+\cdots+R_{N}\right) C_{N}
\end{aligned}
$$

Delay of Long Interconnect

- Delay of gate driving a long wire governed by RC time constants

- Elmore delay: $D=R_{\text {aate }}\left(C_{\text {wire }}+C_{\text {par }}+C_{\text {load }}\right)+R_{\text {wire }}\left(0.5 C_{\text {wire }}+C_{\text {load }}\right)$
- Quadratic in total wire length
- For long wires, this delay quickly becomes untenable In a 65nm process, wire delay looks like 2-3*(gate delay)/mm2

Delay Reduction in Long Wires

- For slow long wires we use repeaters

Gain stages that break up the wire and "refresh" the signal Inverters are the simplest gain stage

- Delay of a repeated line is linear in total length, not quadratic Delay is the geometric mean of the wire delay and the gate delay D = constant * sqrt(gate_delay * RwCw)

Noise: Power Supply

Resistive Voltage Drop and Simultaneous Switching Noise
Common Mode Supply Noise and Differential-Mode Supply Noise $\Delta \mathrm{V}_{\mathrm{L}}=\mathrm{L}(\mathrm{di} / \mathrm{dt}) \rightarrow$ Switching Noise (Dominant at Package Level)
$\mathrm{V}=\mathrm{IR} \rightarrow$ Very Dominant Noise for on chip power networks
Ground Bounce \rightarrow Ground noise
Power Bounce \rightarrow Noise Glitch on Power Line
When Ground Bounce and Power Bounce are in Phase (Common Mode Noise) they will not effect the local logical cells but will degrade the signaling between distant Tx and Rx.
When Ground Bounce and Power Bounce are out of phase (Differential Mode Noise), they adversely effect the local logical cells causing jitter in timing circuits.

Noise: Cross-Talk

Noise Caused by one signal, A, being coupled into another signal, B, is called Crosstalk.

Crosstalk may occur over many paths,
a) Inductive Crosstalk and Capacitive crosstalk

When the interconnects are routed close to each other, signals on the line crosstalk to each other via near field electromagnetic coupling.
b) Substrate Crosstalk

Common substrate will serve as a channel for signal coupling when Interconnects are placed far a apart. Such a noise source is called Substrate Crosstalk.
c) Power/Ground Crosstalk

Signals can effect one another via a shared power supply and ground
d) Return Signal Crosstalk

When a pair of signals share a return path that has a finite impedance, a transition on one signal induces a voltage across the shared return impedance that appears as a noise on the other signal.

Interconnect Noise

$\square \quad$ Wires are skinny and tall and have lots of sidewall capacitance
Aspect ratios at 2.2 now and are projected to scale up to 3-3.5 We will have to live with some coupled noise
$\square \quad$ Traditional estimates use a simple capacitive
 divider

$$
V_{\text {noise }}=\frac{C_{a d j}}{C_{a d j}+C_{t o p}+C_{b o t}}
$$

But this is pessimistic, because the "victim" is usually driven, too
$\square \quad$ In reality, you must account for both victim and attacker drivers

Solution?

To avoid cross talk noise
Prevent parallel lines
Shielding

Electromigration

Electromigration: Electrons smack into lattice, displacing atoms Caused by unidirectional current flow Wires with bidirectional current is "selfhealing" Copper's MTTF is $5 x$ better than Aluminum's
\square Highest at vias, where the current crowds from the vias
Calculate max DC current, which depends on total capacitance Rule is "max current per wire cross section" (e.g., $1 \mathrm{~mA} / \mu^{2}$)

Replacing Wires?

PROCEDDNGSHIDEE
 (4). THE INSTIUTE OF ELECTRCAL AND ELECTRONCS ENGINEERS, INC

Special Issue
OPTICAL INTERGONNEETIONS FOR DIGITAL SYSTEMS

Papers on: Interconnecting Chip Challenges *Sstems Interconnects * High-Performance Compusting - marr-Pwel Array Technolozy * Phastic Micro-Optical Modules * Embedded Guided Wat Interconnects * Polymer Fiber Image Guides * Chip/ Board Cralienges \& Solutions -AST-Net Smart Prombype * Parallel \& Distributed Compuang * Neural \& VLS Architectures * Scalable Parallel Comprting Oftical Fihe

Careers \& Education Special: Skills for Engineering Entreprenee
Scanning Our Past from Londo Crompton-A Different English Engineer

Optical interconnect

- Bandwidth
- Power
- Delay

Replacing Wire?

- Sumio Ijima of NEC in 1991

$(7,10)$ nanotube \qquad lormbor

CNT properties

Electrical:

- Ballistic conduction over distances of order 1 micron ($\sim 10^{-4} \Omega \cdot \mathrm{~cm}$).
'Metals' with low resistivity, Semiconductors with high mobility
- Conductivity a strong function of adsorbents or reactants.

Mechanical:

- High elastic modulus (high stiffness) (~ 1 to 5 TPa vs. ~ 0.2 for steel).
- Very high tensile strength (~ 10 to 100 GPa vs. ~ 1 for steel).

Thermal:

- High room temperature thermal conductivity ($\sim 2000 \mathrm{~W} / \mathrm{mK}$ vs.
$\sim 400 \mathrm{~W} / \mathrm{mK}$ for copper).
Electrical Stability:
- Maximum current density ($10^{9} \mathrm{~A} / \mathrm{cm}^{2}$ vs. $<10^{7} \mathrm{~A} / \mathrm{cm}^{2}$ for Cu).

Chemical Stability:

- C binding energy in graphene $\sim 12 \mathrm{eV}$ vs. Cu at a Cu surface $\sim 4 \mathrm{eV}$

SemiCond for Telecom.

rapid growth of the telecommunications \rightarrow compound semiconductors

- fiber-optic networks
- optoelectronic devices
- lasers
- detectors

performance metrics

Si BJT, HBT, and HEMT as a function of performance metrics

Hetro - Integration

Integration of dissimilar device types: HEMTs and HBTs

Silicon on Insulator

Advantages of SOI:
Reduced Source and Drain to Substrate Capacitance.
Absence of Latchup
Lower Passive current.
Denser Layout \rightarrow Low cost
Undopped Bulk!

SOI History!
1987: IBIS's commercial SIMOX (3"-6") wafer
1989: Tl's 64k SRAM
March 2004: Apple's Xserve G5 End 2004: AMD 90nm uP

Memory

Non-volatile: ROM:

Mask ROM, PROM, EPROM, EEPROM
NVRAM:
Flash memory, ferroelectric RAM, Magnetoresistive RAM
Mechanical:
Magnetic tape, Hard drive, floppy disks, Optical drive

Volatile:
DRAM
SRAM

pnpn devices

SCR—silicon silicon-controlled rectifier controlled rectifier
SCS - silicon silicon-controlled switch controlled switch
GTO - gate turn gate turn-off switch off switch
LASCR - light-aActivated SCR
Shockley diode
Diac
Triac

Negative Resistance Devices

Negative Resistance Concept Tunnel Diodes
IMPATT Diodes
Gunn Effect Devices
Power-Frequency Limitations
BARITT and TRAPATT diodes

LED

nature of optical transitions
Recombination / Emission materials considerations
internal and external quantum efficiencies modulation
White Light Emitters
Organic LEDs

Semiconductor lasers

- spontaneous and stimulated emission
- optical modes
- criterion for lasing
- heterostructures
- device structures and geometries
- single-frequency lasers and applications to fiber-optic communications
- modulation
- Side vs Vertical Emission
- Laser diode

Photodetectors and solar cells;

- Light Absorption
- photoconductive and photovoltaic detectors
- noise considerations
- device structures and quantum efficiency
- avalanche photodiodes
- solar cell efficiency
- surface recombination effects
- tandem structures
- materials systems
- Avalanche Photodiodes

Nanoelectronic Devices

performance metrics

Si BJT, HBT, and HEMT as a function of performance metrics
performance metrics

