Session 5: Solid State Devices Heterostructure Transistors

Outline	1. I 2. 3. 4. 5.	
ΟΔ		
• C		
• D		
• E		
\odot F		
• G		
\odot		
		2

	1. I	
	2.	
Outline	3.	
	4.	
	5.	

Ref: Brennan and Brown

FETs!	1. 2. 3. 4. 5.	
-------	------------------------------	--

Why FET is dominant:

- \odot relative ease of fabrication
- © planar geometry
- ③ Reliability
- ③ Reproducibility
- ☺ miniaturization capability

MOSFET winner:

 \odot easy SiO₂, good Si–SiO₂ interface \rightarrow GSI

⊗ Si inherently low-mobility material.

Solution: compound semiconductors Problem: insulator

MOSFET → MESFET (Schottky barrier)

MESFET Operation	1. I 2. 3. 4. 5.	
-------------------------	------------------------------	--

	Heterostructure FET	1. I 2. 3. 4. 5.	
--	---------------------	------------------------------	--

modulation-doped-field-effect transistor (MODFET) high-electron mobility transistor (HEMT)

enhancement- or depletion-mode devices

transport physics of electrons in a 2D system

velocity overshoot

pinch-off point

(6

Heterostructure FET	1. 2. 3. 4. 5.	
---------------------	------------------------------	--

.

 E_I

 E_F

Long Channel MODFET	1. 2. 3. 4. 5.	
---------------------	------------------------------	--

$$\frac{d^2 V(x)}{dx^2} = -\frac{qN_D}{\epsilon} \qquad -d < x < -d_1$$

$$\mathcal{E}(0^{-}) = \mathcal{E}(-d_1) = -\frac{dV(x)}{dx}\Big|_{x=-d_1} = \mathcal{E}_s \qquad \qquad V(-d_1) = -d_1\mathcal{E}_s$$

$$V(x) = -\mathcal{E}_s x - \frac{qN_D}{2\epsilon}(x+d_1)^2 \qquad \qquad V(-d) = \mathcal{E}_s d - \frac{qN_D}{2\epsilon}(d-d_1)^2$$

$$-V(-d) = \varphi_B - V_G - \left[\frac{\Delta E_C}{q} - \left(\varphi_S - \frac{E_F}{q}\right)\right]$$

$$-V(-d) = \varphi_B - V_G - \frac{\Delta E_C}{q} - \varphi_S + \frac{E_F}{q} = -\mathcal{E}_S d + \frac{qN_D}{2\epsilon}(d-d_1)^2$$

Long Channel MODFET

1. I	
2.	
3.	
4.	
5.	

define the threshold voltage V_T below which there is no charge in the channel as

$$V_T \equiv \varphi_B - \frac{\Delta E_C}{q} - \frac{qN_D}{2\epsilon} (d - d_1)^2$$

$$\mathcal{E}_S x = V_G - V_T + \frac{E_F}{q} - \varphi_S$$

$$\epsilon \mathcal{E}_S x = \epsilon \left(V_G - V_T + \frac{E_F}{q} - \varphi_S \right) = qn(x)d$$

$$\varphi_S(x) = \frac{qn(x)d}{\epsilon} + V_G - V_T + \frac{E_F}{q}$$

$$\varphi_S(0) = \frac{qn_{S0}d}{\epsilon} + V_G - V_T + \frac{E_F}{q}$$

$$V(x) = \varphi_S(x) - \varphi_S(0) = \frac{qd}{\epsilon} (n_{S0} - n(x))$$

$$n(x) = n_{S0} - \frac{\epsilon}{qd} V(x)$$

Long Channel MODFET	1. I 2. 3. 4.	
	5.	

 $I_C(x) = qWn(x)v(x)$

$$v(\mathcal{E}) = \begin{cases} \frac{\mu|\mathcal{E}|}{1+|\mathcal{E}|/\mathcal{E}_{1}}, & \mathcal{E} \leq \mathcal{E}_{C} \\ v_{sat}, & \mathcal{E} > \mathcal{E}_{C} \end{cases}$$

$$I_C(x) = qWn(x)\frac{\mu(dV/dx)}{1 + (dV/dx)/\mathcal{E}_1}$$

considering gate leakage current

$$I_S = W \int_0^x j_G(x) dx + I_C(x)$$

$$I_{S} - W\langle j_{G} \rangle x = \frac{qWn(x)\mu(dV/dx)}{1 + (dV/dx)/\mathcal{E}_{1}}$$

$$(I_{S} - W\langle j_{G} \rangle x)(1 + (dV/dx)/\mathcal{E}_{1}) = qWn(x)\mu(dV/dx)$$
$$\int_{0}^{L} (I_{S} - W\langle j_{G} \rangle x)\left(1 + \frac{1}{\mathcal{E}_{1}}\frac{dV}{dx}\right)dx = qW\mu \int_{0}^{V_{D}} n(V)dV$$

Long Channel MODFET	1. I 2. 3. 4. 5.	
---------------------	------------------------------	--

$$\int_{0}^{L} (I_{S} - W\langle j_{G} \rangle x) \left(1 + \frac{1}{\varepsilon_{1}} \frac{dV}{dx} \right) dx = qW\mu \int_{0}^{V_{D}} n(V)dV$$
$$L \left[I_{S} - \frac{1}{2}W\langle j_{G} \rangle L + \frac{V_{D}I_{S}}{L\varepsilon_{1}} \right] - \frac{W\langle j_{G} \rangle}{\varepsilon_{1}} \int_{0}^{L} (x \frac{dV}{dx}) dx = LHS$$
$$\underset{I_{G}}{\bigvee} n(V)dV = qW\mu \int_{0}^{V_{D}} (n_{S0} - \frac{\epsilon}{qd}V(x))dV = qW\mu (n_{S0}V_{D} - \frac{\epsilon V_{D}^{2}}{2qd}) = RHS$$

$$\frac{W\langle j_G\rangle}{\mathcal{E}_1} \int_0^L (x \frac{dV}{dx}) dx = \frac{I_G}{\mathcal{E}_1} \left[V_D - \frac{1}{L} \int_0^L V(x) dx \right] \sim \frac{I_G V_D}{2\mathcal{E}_1}$$

$$I_S = I_G + I_D$$

Long Channel MODFET	1. I 2. 3. 4. 5.	

$$L\left[I_{D} - \frac{1}{2}I_{G} + \frac{V_{D}}{L\mathcal{E}_{1}}(I_{D} + I_{G})\right] - \frac{I_{G}V_{D}}{2\mathcal{E}_{1}} = qW\mu(n_{S0}V_{D} - \frac{\epsilon V_{D}^{2}}{2qd})$$
$$I_{D} = \frac{1}{1 + \frac{V_{D}}{L\mathcal{E}_{1}}} \left\{ \left[-\frac{1}{2}I_{G}\left(1 + \frac{V_{D}}{L\mathcal{E}_{1}}\right)\right] + \frac{qW\mu}{L}(n_{S0}V_{D} - \frac{\epsilon V_{D}^{2}}{2qd}) \right\}$$

drain current in the linear region of a MODFET

At saturation:

$$(x) = qWn(x)v_{sat}$$

 I_C

$$I_{Dsat} = qW\left(n_{S0} - \frac{\epsilon V(L)}{qd}\right)v_{sat} = qW(n_{S0} - \frac{\epsilon V_{Dsat}}{qd})v_{sat}$$

$$I_{G} = I_{S1} \left(e^{qV_{G}/\eta_{1}kT} - 1 \right) \qquad \frac{V_{D}}{L\mathcal{E}_{1}} \ll 1 \qquad I_{D} = \frac{qW\mu}{L} \left(n_{S0}V_{D} - \frac{\epsilon V_{D}^{2}}{2qd} \right) \\ I_{G} = I_{S2} e^{qV_{G}/\eta_{2}kT} \qquad I_{G} \sim 0$$

Ex.3.3.1	1. 2. 3. 4. 5.	
----------	------------------------------	--

Find V_T of a GaAs–AlGaAs MODFET:

Al composition is 25%. Assume a conduction band to valence band discontinuity ratio of 60%/40%, that the Schottky barrier height is 1.0 V, and that the AlGaAs layer is 33.0 nm thick with an undoped spacer layer of 3.0 nm

$$Al_x Ga_{1-x} As: E_G = 1.424 - 1.247x = 1.736 \ eV$$

 $\Delta E_C = 0.6 \times (1.736 - 1.424) = 0.187 \ eV$

 $V_T = 1.0 - \frac{0.187}{q} - \frac{(1.6 \times 10^{-19})(10^{18})((33 - 3) \times 10^{-7})}{2 \times 12.4 \times 8.85 \times 10^{-14}}$ = 0.157

1. I 2. 3. 4. 5.	
	1. 2. 3. 4. 5.

$$I_D = \frac{qW\mu}{L} (n_{S0}V_D - \frac{\epsilon V_D^2}{2qd})$$

$$D_{D} = \frac{W\mu}{L} (\mathbf{q}n_{S0}V_{D} - \frac{\epsilon V_{D}^{2}}{2d}) = \frac{W\mu}{L} (\mathbf{Q}_{n}V_{D} - \frac{\epsilon V_{D}^{2}}{2d})$$

$$Q_{n} = C_{ox}(V_{G} - V_{T}) \qquad C_{ox} = \frac{\epsilon}{d}$$

$$I_{D} = \frac{W\mu}{L} (\mathbf{Q}_{n}V_{D} - \frac{\epsilon V_{D}^{2}}{2d})$$

$$I_{D} = \frac{W \mu C_{ox}}{L} ((V_{G} - V_{T}) V_{D} - \frac{V_{D}^{2}}{2})$$

Advanced MODFETs

$$\frac{dP}{dt} = -qn\mathcal{E} - \frac{P}{\tau_m} \qquad \tau_m \text{ momentum relaxation time}$$

$$\bar{P} = q\mathcal{E}\tau_m (e^{-t/\tau_m} - 1)$$

$$\bar{v} = \frac{q\mathcal{E}\tau_m}{m^*} (e^{-t/\tau_m} - 1)$$

$$d = \frac{1}{m^*} \int_0^{\tau_m} q\mathcal{E}\tau_m (e^{-t/\tau_m} - 1) dt = \frac{q\mathcal{E}\tau_m^2}{e m^*}$$

$$\mathcal{E} = 10kV/cm \qquad d_{Si} = 11nm \qquad velocity oversity$$

velocity overshoot

$$\begin{aligned} \frac{d\bar{E}}{dt} &= -q\bar{v}\mathcal{E} - \frac{\bar{E} - \overline{E_0}}{\tau_E} \\ \bar{E} &= (q\bar{v}\mathcal{E}\tau_E - \overline{E_0})(e^{-t/\tau_m} - 1) \end{aligned}$$

 $\overline{d_{GaAs}} = 100 nm$

Energy Overshoot	1. I 2. 3. 4. 5.	
	Э,	

1. I 2. **Small Signal Model** 3. 4. 5. Intrinsic model Drain Gate C_{DG} 0__/\/_ MA_ ---0 $g_m = \frac{\partial I_D}{\partial V_G} \bigg|_{V_D} = \frac{C_G}{t_{tr}}$ R_{G} R_{D} $\pm c_{GS} \pm c_{DC}$ $g_m v_{GS}$ $\begin{cases} g_D^{-I} \neq c_{DS} \end{cases}$ ξ **R**₁ [♀] Gate **O** Drain Source R_S ź, R_G 0 0 $= C_{GS}$ CDG R_{s} R_D R_I CDC ~~ \sim $8D^{-1}$ $f_T = \frac{g_m}{2\pi C_G} = \frac{v}{2\pi L}$

Material Select	1. I 2. 3.	
	4.	
	5.	

TABLE 3.6.2Representative Charge Concentrations and Mobilities in
Modulation-Doped Structures

Heterojunction	Two-Dimensional Charge (cm ⁻²)	Mobility (cm ² =V \cdot s)
Al _{0:3} Ga _{0:7} As-GaAs	$1 imes 10^{12}$	7,000
$Al_{0:3}Ga_{0:7}As-In_{0:2}Ga_{0:8}As$	$2:5 imes10^{12}$	7,000
$Al_{0:48}In_{0:53}As-Ga_{0:47}In_{0:53}As$	$3:0 imes10^{12}$	10,000
AlGaSb–InAs	$2 imes 10^{12}$	20,000
Al _{0:3} Ga _{0:7} N-GaN	$1 imes 10^{13}$	1,500
Si _{0:2} Ge _{0:8}	p-type: 2×10^{12}	1,000
Si (strained)	n-type: 1×10^{12}	2,000

HBT	1. I 2. 3. 4. 5.	
UPT dovides can be made using either an abrupt or graded	atoroiupotion	to form

HBT devices can be made using either an abrupt or graded heterojunction to form the emitter-base junction. \uparrow

$$J_{N} = N_{DE} v_{n} e^{-V_{n}/\varphi_{T}}$$

$$J_{P} = N_{AB} v_{p} e^{-V_{p}/\varphi_{T}}$$

$$\beta_{DC} = \frac{J_{N}}{J_{P}}$$

$$q_{V_{n}}$$
Ex. 4.2.1 $\frac{\beta_{DC_{graded}}}{\beta_{DC_{abrupt}}} = 103$

Base Transient Time	1. 2. 3. 4. 5.	
active	2.4	

$$I_{C} = -qAD_{B} \frac{\partial \Delta p_{B}}{\partial x} \Big|_{x=W}$$
$$= qAD_{B} \frac{\Delta p_{B}(0,t)}{W}$$
$$= qAD_{B} \frac{2Q_{B}}{qAW^{2}}$$
$$I_{C} = \frac{Q_{B}}{(W^{2}/2D_{B})} = \frac{Q_{B}}{\tau_{t}}$$

$$\tau_t = \frac{W^2}{2D_B}$$

Base Transit Time	1. I	
	2.	
	3.	
	4.	
	5.	

$$\tau'_{t} = \frac{qW^{2}}{2\mu_{B}\Delta E_{C}}$$
$$\frac{\tau'_{t}}{\tau_{t}} = \frac{2kT}{\Delta E_{C}}$$
$$\tau_{t} = \frac{W^{2}}{2D_{B}}$$

HBT	1. I 2. 3. 4. 5.	
	5.	

Layer	Material	Thickness (nm)	Doping (cm ⁻³)
Сар	InGaAs	45	$N^{+}=2\times 10^{19}$
Emitter	InP (or AlInAs)	200	$N = 5 imes 10^{17}$
Base	InGaAs	80	$\mathrm{P^{+}}=2 imes10^{19}$
Collector	InP (or AlInAs)	1000	$N = 1 imes 10^{16}$
Subcollector	InP (or AlInAs)	500	$N^{+}=3\times 10^{18}$
Substrate	InP		

TABLE 4.6.1 Representative HBT Layer Structure (InP-Based)

HBT	1. I 2. 3. 4. 5.	
-----	------------------------------	--

AlGaAs HBT for integrated circuit made by planar process

- forward-bias emitter injection efficiency is very high since wider bandgap AlGaAs emitter injects electrons into GaAs p-base at lower energy level, but holes are prevented from flowing into emitter by high energy barrier, thus resulting in possibility to decrease base length, basewidth modulation and increase frequency response

- heavily p-doped base to reduce base resistance
- lightly n-doped emitter to minimize emitter capacitance
 - lightly n-doped collector region allows collector-base junction to sustain relatively high voltages without breaking down

HBT	1. I 2. 3. 4. 5.	
-----	------------------------------	--

Simplified structures of n-p-n heterojunction bipolar transistor (HBT)

HBT

- lower 1/f noise since surface states of GaAs no longer contribute significant noise to emitter current

- using wide bandgap InGaP layer instead of AlGaAs results in improvement of device performance over temperature

HBT	1. I 2. 3. 4. 5.	

HBT	1. I 2. 3. 4. 5.	

HBT	1. I 2. 3. 4. 5.	

