Session 6: Solid State Devices Transferred Electron Effects

Outline	1. I 2. 3. 4. 5.	
ΟΔ		
• C		
• D		
• E		
\odot F		
• G		
\odot		
		2

Outline	1. I 2. 3. 4. 5.	
	5.	

Ref: Brennan and Brown Sze and Ng, Chapter10

Transferred Electron Effects	1. 1 2. 3. 4. 5.	
------------------------------	------------------------------	--

k-space transfer	intrinsic property of the semiconductor, and as such cannot be readily engineered

real-space transfer induced artificially within a semiconductor system and as such can be engineered

K-Space Transfe	r				1. 2. 3. 4. 5.	
1-D continuity equation	$\frac{\partial n}{\partial t} - \frac{1}{q}$	$\frac{\partial J}{\partial x} = 0$				
	$\frac{d\mathcal{E}}{dx} = -$	$\frac{q\delta n}{\epsilon}$	$\delta n = n - $	n_0		
$J = q\mu_n n\mathcal{E} + q$	$D_n \nabla_x n$	$\frac{1}{q}\frac{dJ}{dx} =$	$= D_n \frac{\partial^2 n}{\partial x^2} +$	$\frac{1}{q\rho}\frac{d\mathcal{E}}{dx}\mathcal{E}$	ho =	$1/q\mu_n n$
		$\frac{1}{q}\frac{dJ}{dx} =$	$= D_n \frac{\partial^2 n}{\partial x^2} - \frac{n}{\partial x^2}$	$\frac{n-n_0}{ ho\epsilon}$		
		$-rac{dn}{dt}+$	$D_n \frac{d^2 n}{dx^2} - \frac{n}{dx^2}$	$\frac{-n_0}{\rho\epsilon} = 0$		
		$-\frac{d(n-dt)}{dt}$	$\frac{n_0}{d} + D_n \frac{d^2}{d}$	$\frac{d^2(n-n_0)}{dx^2}$	$-\frac{n-n_0}{ ho\epsilon} =$	0
$n - n_0 = u(x)$	T(t)	$\frac{D_n}{u}\frac{d^2u}{dx^2}$	$-\frac{1}{\rho\epsilon} = \frac{1}{T}\frac{dT}{dt}$			

K-Space Transfe	۲.	1. 2. 3. 4. 5.	
$\frac{D_n}{u}\frac{d^2u}{dx^2} - \frac{1}{\rho\epsilon} = \frac{1}{T}\frac{dT}{dt}$	Steady state $\frac{d}{dx} = 0$	$D_n \frac{d^2(n - n_0)}{dx^2} = \frac{n - n_0}{\rho \epsilon}$ $n - n_0 = A_1 e^{x/L_D} + A_2 e^{-1}$	$-x/L_D$
$n - n_0 = \delta n(0) \ e^-$	$-x/L_D$	Debye length $L_D = \sqrt{kT\epsilon/q}$	$n_{0}^{2}n_{0}$
$\frac{1}{T}\frac{dT}{dt} = -\frac{1}{\rho\epsilon}$	$T = A \ e^{-t/\rho\epsilon}$	$\tau = \rho \epsilon = \epsilon / q \mu_n n_0$	
	$n = n_0 + (n - n_0)_{t=0}$	$_0 e^{-t/\tau}$	
	$\tau > ? < 0$		
		$r = \rho \epsilon = RC$	

NDR	1. 2. 3. 4. 5.	
$ \begin{bmatrix} I \\ I \\ V \end{bmatrix} $ $ V = q(I) $	$\mu_{\Gamma}n_{\Gamma}+\mu_{X}n_{Z}$	x)
$\frac{d\sigma}{d\mathcal{E}} = q \left(\mu_{\Gamma} \frac{dn_{\Gamma}}{d\mathcal{E}} + \mu_{X} \frac{dn_{X}}{d\mathcal{E}} \right) + q \left(r \right)$ $\prod_{\Gamma} \sum_{X \to X} \Delta E_{\Gamma X} \qquad n = n_{\Gamma} + n_{X} = cte \qquad \frac{dn_{\Gamma}}{d\mathcal{E}}$ $\mu_{\Gamma} \approx \mathcal{E}^{p} \qquad \mu_{X} \approx \mathcal{E}^{p}$	$n_{\Gamma} \frac{d\mu_{\Gamma}}{d\mathcal{E}} + n_{X}$ $\frac{d\mu_{\Gamma}}{d\mathcal{E}} + n_{X}$	$\left(\frac{d\mu_{\rm X}}{d\mathcal{E}}\right)$
$k \qquad \qquad \frac{d\sigma}{d\mathcal{E}} = q(\mu_{\Gamma} - \mu_{X})\frac{dn_{\Gamma}}{d\mathcal{E}} + q(\mu_{\Gamma} n_{X})\frac{dn_{\Gamma}}{d\mathcal{E}} + q(\mu_{\Gamma} $	$(\mu_{\Gamma} + \mu_{\rm X} n_{\rm X}) \frac{\mu}{\xi}$	7 7

NDR		1. 2. 3. 4. 5.	

$$\frac{d\sigma}{d\varepsilon} = q(\mu_{\Gamma} - \mu_{X})\frac{dn_{\Gamma}}{d\varepsilon} + q(\mu_{\Gamma}n_{\Gamma} + \mu_{X}n_{X})\frac{p}{\varepsilon}$$

$$J = \sigma\varepsilon \qquad \frac{dJ}{d\varepsilon} = \sigma + \varepsilon\frac{d\sigma}{d\varepsilon} \qquad \frac{dJ}{d\varepsilon} < 0 \qquad -\frac{d\sigma/d\varepsilon}{\sigma/\varepsilon} > 1$$

$$\frac{\mu_{\Gamma} - \mu_{X}}{\mu_{\Gamma} + (n_{X}/n_{\Gamma})\mu_{X}} \left(-\frac{\mathcal{E}}{n_{\Gamma}}\frac{dn_{\Gamma}}{d\mathcal{E}}\right) - p \right] > 1$$

$$\frac{n_{\Gamma}}{n_{\rm X}} = \frac{N_{\Gamma}}{N_{\rm X}} e^{-\Delta E_{\Gamma \rm X}/kT}$$

$$= \left(\frac{m_{\Gamma}}{m_{\rm X}}\right)^{3/2} e^{-\Delta E_{\Gamma \rm X}/kT}$$

Real-Space Transfer	1. I 2. 3. 4. 5.	
AlGaAs GaAs AlGaAs 2 Lectric Field	$\bar{v} = \frac{v_1 n_1 + v_2 n_2}{n_1 + n_2}$ $n = \int D(E) f(E) dE$ $\frac{n_2}{n_1} = \left(\frac{m_2}{m_1}\right)^{3/2} e^{-\Delta E_C/kT_e}$	
10^{-1} 10^{-	Al _{0.15} Ga _{0.85} As-In _{0.15} Ga O [] In _{0.15} Ga _{0.85} A I] Al _{0.15} Ga _{0.85} A I] Al _{0.15} Ga _{0.85} A I] Al _{0.15} Ga _{0.85} A II] Al _{0.15} Ga _{0.85} A	0.85 ^{AS} s s 6 10

Consequences of NDR	
Gunn (1963) observed experimentally microwave oscillations in hulk GaAs unde	r

 $J = qn\mu \mathcal{E}$

observed experim the application of a bias $\frac{\partial n}{\partial t} - \frac{1}{q} \frac{\partial J}{\partial x} = 0$

assume that diffusion can be neglected

 $\frac{dr}{dt}$

$$\frac{d}{dt} = \frac{d}{dx}(n\mu\mathcal{E}) = \mathcal{E}\frac{d}{dx}(n\mu) + n\mu\frac{d\mathcal{E}}{dx}$$
$$= \mathcal{E}\frac{d}{dx}(n\mu) - qn\mu\frac{n-n_0}{\epsilon}$$
$$= \mathcal{E}\frac{d}{dx}(n\mu) - \frac{n-n_0}{\tau}$$
$$n = 0$$
negative τ $n = 0$

 $u_0 = u(x)T(t)$ $(n - n_0)e^{-t/\tau} + n_0$ $n = (n - n_0)e^{t/\tau} + n_0$

Cump Diada	1. I	
Gunn Diode	2.	
	3.	
I ransterred Electron-Effect Oscillators	4.	
	5.	

 $\rightarrow \leftarrow$

(a)

Fig. 18 (a) A TED with nonuniform cross-section and (b) its current waveform. Labels in (b) correspond to the location of domain at the specific time. (After Ref. 47.)

(b)

limited space-charge accumulation (LSA) mode

IMPATT Diode	1. I 2. 3. 4.	
	5.	

IMPATT diode is not generally a transferred electron device

Within the IMPATT NDR is induced by driving the current and voltage out of phase with one another

HBT	1. I 2. 3. 4. 5.	

