Session 8: Solid State Devices Recombination-Generation

Outline	1. I 2. 3. 4. 5.	
Δ		
• G		
$\overline{\mathbf{O}}$		
		2

	1. I	
	2.	
Outline	3.	
	4.	
	5.	

• Ref: ?

Non-Equilibrium Process	1. 2. 3. 4. 5.	
-------------------------	------------------------------	--

Whenever the thermal-equilibrium condition of a semiconductor system is disturbed $pn \neq n_i^2$ processes exist to restore the system to equilibrium

Generation and recombination processes act to change the carrier concentrations, and thereby indirectly affect current flow

Recombination Mechanisms

2.

3.

4.

5.

Direct or Band to Band:

Basis for light emission devices Photon (single particle of light) or multiple phonons (single

quantum of lattice vibration – equivalent to saying thermal energy)

R-G Center:

Also known as Schockley-Read-Hall (SRH) recombination Photon (single particle of light) or multiple phonons (single quantum of lattice vibration – equivalent to saying thermal energy) Note: Trap level, Two steps: 1st Carrier is trapped at a defect/impurity, 2nd Carrier (opposite type) is attracted to the RG center and annihilates the 1st carrier

Auger:

Requires 3 particles, Two steps:

1st carrier and 2nd carrier of the same type collide instantly annihilating the electron hole pair (1st and 3rd carrier). The energy lost in he annihilation process is given o the 2nd carrier. 2nd carrier gives off a series of phonons until it's energy returns to equilibrium energy (E~Ec)

Generation Mechanisms

Direct or Band to Band:

Does not have to be a direct bandgap material Mechanism that results in n_i Basis for light absorption devices such as semiconductor photodetectors, solar cells, etc.

R-G Center:

Two steps:

A bonding electron is trapped at an unintentional defect/impurity generating a hole in the valence band This trapped electron is then promoted to the conduction band resulting ina new electron-hole pair Almost always detrimental to electronic devices

Impact Ionization:

Requires 3 particles and typically high electric fields

1st carrier is accelerated by high electric fields

Collides with a lattice atom

Knocks out a bonding electron

Creates an electron hole pair

What is it called when this process repeats and what device is it useful for?

6

Applications: LEDs, Lasers

Net Rate of Recombination-Generation		1. 2. 3. 4. 5.	
SRH recom-gen:	$R = \frac{np - n_i^2}{\tau_p(n + n_1) + \tau_n(p + p_1)}$	$\tau_n = \frac{1}{\frac{c_p N_T}{1}}$ $\tau_n = \frac{1}{\frac{1}{1}}$	

 $n_1 = n_i g_D e^{\beta(E_T - E_i)}$ $p_1 = n_i g_D^{-1} e^{\beta(E_i - E_T)}$

 $n_1 p_1 = n_i^2$

 $\tau_p = \frac{1}{c_n N_T}$

8

1. I	
2.	
3.	
4.	
5.	

$E_G(Al_xGa_{1-x}As) = 1.24(GaAs) + 1.247x$ $\Delta E_c = \Delta E_G$

