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1. Introduction
The first step in thinking about how a semiconductor device operates usually consists of
drawing its energy band diagram. If you can draw the energy band diagram, you can probably
understand how the device will operate. For devices with uniform material composition you
should know that:

(1) the electrostatic potential, V(x), can be obtained by turning Ec(x), Ey(x), or Ey (x)
upside down (because E¢ (x) = constant - gV(x) etc.)

(2) the electric field is simply 1/q times the slope of E¢, Ey, or Ef(x).

(3) the charge density, p(x) is g/k €, times the second derivative of Ec, Ey, or Ef(x).

(See, for example, R. F. Pierret, Semiconductor Fundamentals, Vol. I of the Modular Series on
Solid State Devices, Addison-Wesley, 1983.) For compositionally nonuniform semiconductors
(so-called heterostructures), NONE of the above statements is true in general. The purpose of
these notes 1s to explain the basic concepts needed to draw energy band diagrams for
heterostructure devices.

Before we turn to heterojunctions, let's begin by re-examining the energy band diagram for

a uniformly doped, compositionally uniform semiconductor as shown below.

Fig. 1.  Energy band diagram for a uniform semiconductor. The location of the conduction
band is measured with respect to a reference energy level, Ey, the field-free vacuum
level.
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The positions of E¢ and Ey are determined by the chemical bonding of the atoms and can

be measured or calculated by solving Schroedinger's equation. These energy levels must be
measured relative to some reference level. The reference I have chosen is Ey, the energy of a free
electron just outside the neutral semiconductor (i.e. the vacuum level). The electron affinity, y, is

the energy needed to remove from the semiconductor of an electron located at E¢ and make it a free
electron. The work function @ is the distance between Ep and the Ferrnj level, Er. For this case

we have
E.=Ey— s (1)
E,=E.~E;=E,—xs—E; . 2)
For homostructures, the electron affinity and bandgap are position-independent, and there is no
need to worry about the reference level, but for heterostructures, a reference level is essential. We
have selected the field-free vacuum level as the reference, but the choice of a reference level is a
subtle point that we shall return to in Sec. 9.

Now let's consider a slightly more complicated case - a semiconductor with an electric
field. Note that electric fields are responsible for the chemical bonding of the atoms, but we have
already accounted for these short range forces by solving Schroedinger's equation to find E¢ and
Ey. The field we are now considering is an additional, slowly varying field as produced, for

example, by an MOS gate or by the nonuniform doping of a PN junction.
We know that the electric field produces a force on electrons

F, =-qE(x) 3)
and an equal but opposite force on holes

F, = +qE(x). 4
The electron changes energy as it moves in the E-field by

AE =— j Fdx=—qV(x) . (5)

The result is that (1) and (2) must be modified to

E.(x)=E,—xs—qV(x) (6)

and
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E,(x)=Ey,—xs—E; —qV(x) (7

and our energy band diagram will acquire a slope.
Figure 2 shows a familiar example. In this case, we begin with a charge neutral n-type
semiconductor and another neutral p-type semiconductor. Before we place them in contact, their

Fermi levels are separated by

E,-E,=E;-8,-6,, (3
where

8y =(E.— Epy) =kTlog(N. / n,) (9)
and )

8, =(Eq —E,)=kTlog(N, / p,) . (10)

Before they are in contact, there are separate Fermi levels for the n- and p-type semiconductors, but
after they are in contact, the energy bands adjust to align the Fermi levels. The only way to move
the bands is for an electrostatic potential, the contact potential, to develop. The contact, or built-

in potential is determined by the separation in the Fermi levels of the separate semiconductors,

qV,, =Ep —Epp = leog[NA—IZVD) . (11)
n

The last expression is ONLY VALID FOR HOMOJUNCTIONS, but the built-in potential is
always given by the difference in the Fermi levels of the isolated semiconductors. If we reference
these Fermi levels to the field-free vacuum level, then we obtain the general expression for the

built-in potential as

qVy =0p - D, (12)
where

Dy =2p +Egp —6p (132)

@y =Xy +0y (13b)
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are the workfunctions of the p- and n-type semiconductors.
From Eqgs. (12) and (13), we can express the built-in potential for a heterojunction as
9V = (2p = An) + Egp = 8, = B, (142)
which can be re-expressed in several ways. For example, we can write

NVPNCN

CP*"VN

qv, = leOg|:NAND:I+(ZP "ZN) + (EGP ;EGN) —%Ilog[

R Mip

}, (14b)

which generalizes (11) to heterojunctions. Note also that Eq. (12) applies to any heterojunction,
not just to pn diodes if we replace the subscripts P and N by 1 and 2 to denote the two materials.

Egree e o Egr— [ e o
] )
(@) e * EEFC,:\j By
Ea Eg
E
v —J———L1 o ey —L

aV(x) AV
_—— &
(b) Fe 7
\X
EF A
Fig. 2., Illustration of the formation of a pn junction. (a) the isolated semiconductors are

characterized by separate Fermi levels, and (b) after placing them in contact, electrons
flow from the region with the higher Fermi level to the region with the lower Fermi
level. As a result of this flow, a space-charge layer builds up and a built-in potential
results. In equilibrium, the final structure is characterized by a single Fermi level.
Note that Ey is lowered to Ej (x), the local vacuum level.
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To summarize, Eqgs. (6) and (7) show that the energy of an electron at E¢ (or Ey) is
comprised of two different kinds of contributions: 1) chemical bonding as determined by yx (or %,
+ Eg) and 2) -gV(x) which results from the macroscopic electric field. It is easy to see that
conditions (1), (2), and (3) on page 2 are satisfied by (6) and (7). So far, however, we have
assumed y, and Eg to be constant. They won't be constant in a heterostructure, and Egs. (1) - (3)

will lose validity.

2. Energy Bands in Abrupt Heterojunctions

To draw energy band diagrams for devices with a position-dependent alloy composition
(so-called heterostructure devices), it is essential to know more than simply how the band gap
varies with position - we must also know how the bands line up at compositional junctions.
Figure 3 shows the observed band alignments for Alg3Gag7As/GaAs. For AlxGaj_xAs, the
offset in valence bands is observed to be about 40% of the difference in band gaps. For this
material pair, the conduction and valence bands of the smaller bandgap semiconductor lie
completely within the bandgap of the wider bandgap semiconductor. Heterojunction pairs which
line up as illustrated in Fig. 3 are known as type I heterojunctions. Heterojunction pairs of III-V
compounds in which either the group III or the group IV element differs, form type I
heterojunctions. Examples include AlAs/GaAs and GaP/GaAs heterojunctions.

1 ,
Eo | AEG=0.23eV 2
i r !
Eg=180eV Eta=1.42 eV
e !
AEy =0.15 eV
A|0_3Ga0_7AS GaAS

Fig. 3 Observed band alignments for AlxGaj-xAs for x = 0.3 and x = 0.0. Heterojunction
pairs that line up like this are known as type I heterojunctions.
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From Fig. 3, we observe that
AE. =X, — X (15)

where the subscript 2 refers to GaAs and subscript 1 to Alp 3Gag 7As. Equation (15) is known as
the Electron Affinity Rule; we shall have more to say about it in Sec. 9. For these kinds of
heterojunctions, it is also apparent that

AE, = AE, +AE, . | (16)

Figure 4 shows another possibility, known as a type III heterojunction (some authors,
however, refer to this as a type II misaligned heterojunction). III-V heterojunction pairs in which
both the group I1I and group V elements differ (e.g. GaSb/InAs) form type III heterojunctions. In
this case, the conduction band of one semiconductor lies below the valence band of the other.
Transport is complicated by the fact that the electron wavefunction changes from electron-like to
hole-like as the electrons moves across the heterojunction. If the electron affinity difference is less,
so that the conduction and valence bands of the smaller bandgap semiconductor straddle the
valence band of the larger bandgap semiconductor, the interface is known as type II (some authors
refer to this as a type II staggered heterojunction). Examples of type II heterojunctions include the
InyGaj xAs / GaySby_xAs and AlxIni_xAs / InP systems.

AEG =0.87 eV

|

| Xo
Eg=072eV I /

|

Ec

4 Eg=0.36eV

GaSb InAs

Fig. 4 Observed band alignments for GaSb and InAs. Heterojunction pairs that line up like
this are known as Type III heterojunctions, or as Type II misaligned heterojunctions.
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The band diagrams of Figs. 3 and 4 ignore electrostatic potentials due to re-arrangement of
mobile carriers which occur near the compositional junction after the semiconductors are placed in
contact. Energy band diagrams for N-p, P-n, and N-n Alp 3 Gag 7As : GaAs heterojunctions are
shown in Figs. 5 - 7. (By convention, the capital letter identifies the semiconductor with the larger
bandgap.) The band diagram for the heterojunction is deduced conceptually just as it was for
homojunctions, by bringing into contact two isolated, bulk semiconductors. When placed in
contact, electrons move from the semiconductor with the higher Fermi-level to the other, and an
electric field is produced to balance this transfer. The built-in potential is simply the difference in
workfunctions of the isolated, bulk semiconductors as expressed by Eqgs. (12) or (14).

Eg Eo
7(1 XQ
Ec L AEG=0.23 &V
EFn d J
@)
Eg=180eV JG= 1.42 eV

l Erp

Ey
AN AEy =0.15 &V

AEg
Ec
Ep
(b) ' AEy
Bv
Fig. 5. Alp3Gag7As : GaAs/ N-p heterojunction. (a) before contact. (b) after contact.
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11 X2
Ec AEG =0.23 eV
[ /
A
(a) Eg= 1.80eV Ern Eg=1426V
J' Erp ‘
EV T

A AEy =0.15 eV

Ec

.

Fig. 6. Alp.3Gag 7As : GaAs/ P-n heterojunction. (a) before contact. (b) after contact.
Eo Eo
xl o
Ec AE; =0.23eV
Ern » |
a
(@) Eg=180eV - Ern

Eg=142eV

X AEy=0.15eV

(b)
oy \

AEy

Fig. 7. Alp3Gag 7As : GaAs/ N-n heterojunction. (a) before contact. (b) after contact.
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Fig. 8.

GaSb : InAs/ P-n heterojunction. (a) before contact. (b) after contact.

The examples in Figs. 5, 6, and 7 were for type I heterojunctions. Figure 8 illustrates an

example for a type III heterojunction. The same principles apply, electrons flow from the

semiconductor with the higher Fermi level to the one with the lower Fermi level until a potential

barrier to stop the flow is established. For the example shown in Fig. 8, we have an accumulation

of electrons on the n-InAs side and an accumulation holes on the P-GaSb side. Because the

conduction band on the InAs side of the interface lies lower than the valence band on the GaSb

side, this interface is sometimes referred to as “semimetalic.”
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One of the first things taught in an introductory semiconductor course is the depletion

approximation. The depletion approximation can also be applied to pn heterojunctions and often

provides an adequate estimate for the electrostatic potential. Assume a pn heterojunction with the

geometry illustrate in Fig. 9. (As far as the electrostatics are concerned, it doesn’t really matter

whether the n-type or p-type side has the larger bandgap.)

P-type

n-type

Fig. 9 Geometry of the example pn heterojunction.

You should be able to sketch the charge density, p, the electric field E, and the potential V versus

position for this diode using the same ideas employed for homojunctions. The results are

displayed in Fig. 10. Our goal now is to calculate these quantities using the depletion

approximation. We will simply extend the analysis for homojunctions to heterojunctions. (A

good, basic reference for homojunctions is The PN Junction Diode by G. W. Neudeck (Vol. III

of the Modular Series on Solid State Devices, Addison-Wesley, 1983).

11
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A
(a) p(X)
gqNp
-Xp
X, "X
(b) o
4
E(x)
| -
-Xp Xn X
A
(c) V(9
/ Vi
.
X[ A "

Fig. 10 Qualitative sketch of expected electrostatics for a pn heterojunction. (a) space-charge
density vs. position, (b) electric field vs. position, and (c) electrostatic potential vs.
position. Note the discontinuity in the electric field because the relative dielectric
constant of the two sides may differ.
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We begin with Poisson's Equation:
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dx KE,
where
p = glp(x)—n(x)+Np(x)- N, (x)] (18)
is the charge density. If we assume the depletion approximation for p, then
plx) = 0 X <-Xxp
p(x) = —gN, Xp <x<0
p(x) = +gN, 0<x<xp
px) = 0, Xp <X
and Poisson's equation. becomes
£ _ Ny —x, < x <0 (19)
dx KpE,
dE _ +qNp 0<x<x (20)
dx KyE,
and
E = 0. x <—x, and x>x,
To obtain E (x) we integrate,
E(x) X
[aE = N, [ax
0 KPEO —X,
t +gN, F
[aE = =2 [
E(x) KNgO X

and find

By = 24 (xix)
o>

o

E(x) = ZaNp (x,—x) .

N%o

13

-x, <x <0 (21a)

0 < x < x, (21b)
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If there is no sheet charge at x = 0, Gauss' law states that

D7) = x,E(07) = k,E0") = D(0")
SO

N 4X, = Npx, , (22)
which is simply a statement of charge conservation. To solve for V(x) recall that

dl;ix) - B

defines V(x) to within an arbitrary constant. Setting V( -xp) = 0, we obtain from (21a)

V(x) x
[av = L4 [(x+x,)dx
0 PZ0 —x,
or
V) = e eixy —x, < x <0 (23)

We also know that V(x,) = Vj; - V4. Integrating (21b) we find

gNp
2K\€

Vix) = (V,-V,) - (x,—x) 0 <x<x, (24

o

Now to evaluate the depletion region widths, we invoke another boundary condition. We

assume that no electrostatic dipoles exist at x = 0, so

V(07) = V(0%),
which from (23) and (24) gives
N, x2
W% _ oy _yy- N 2 25)
2K,€E, 2KyE,

When (25) and (22) are solved, we find the depletion region widths as

172

2K, K, EN,(V, .-V

xpzli P*N%p D( bi A)} (26)
gN (N, Kp + NpKy)
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1/2
. = 2KPK,,£0NA(V1,;"—VA) (27)
" | gNp(N,kp + Npky,)
1/2
2K,KyE,(N,+ N, (V,, -V
o [T -
q(N,kp + Npk,)N,N,

It is also of interest to evaluate Vjp and Vjy, the potential drops on the P and N sides of the

junction. These quantities are readily evaluated as

and

Using (22) we find

Since, by definition

We also have

and

gN, 2
Vp=V(0)=——"-x
»=V(0) 2K,€, "

gN
Vin=(V,-V,)-V(0)= El;ﬁ“xz

o

Vi =Va=Vyp+Vy,

KN ND }

V.=V, -V
w =Wy A)[KNND+KPNA

KPNA :| .

V.,=(V,. -V
w =V A)[KNND+KPNA

from (23)

from (24)

(29)

(30)

(1)

Using (30) and (31), we can express the depletion regions widths in terms of the potential drops

on each side of the junction as

15
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5 v 1/2
X, :,: Kp€, JP}
gN,

and

1/2
xn — I:ZKNSOVJNj,
gNp

which are easier to remember than (26) and (27).

The key results derived above are collected and repeated below.

By =P (x4 x)

P%o

E(x) :L]ZD("" ~ %)

N%o

gN, 2
V(x)=—"—2-(x+
(x) e (x+x,)

P%o0

N%o

F

V0= (V= V) = 522, = 2 O<x<x,

KyN
Vi Z(Vbi -V, — L
_KNND+KPNA_
I kK,N
V.=V, -V)—&F4
w =V A)_KNND+KPNA_
Vie _ NpKy
VJN NAKP
1/2
x = 2KP80VJP
7 gN,
N,x,=Npx, ,

—xp<x<0

O<x<x,

—xp<x<0

1/2
% = [ZKNEOVJN}
gN,

W=x +x

16
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4. The Poisson-Boltzmann Equation

For device studies, a solution to Poisson's equation alone is often very useful. In
equilibrium, it gives the equilibrium energy band diagram, and if we assume piece-wise constant
quasi-Fermi levels (zero current), we can estimate the band diagram under bias. Often, however,
we find that the depletion approximation cannot be assumed, so we need a general form of
Poisson's equation which includes the mobile charge. Our purpose in this section is to formulate
this equation, known as the Poisson-Boltzmann equation. The references in Sec. 10 discuss the
solution of the Poisson-Boltzmann equation by analytical techniques under simple conditions or by

numerical techniques under more general conditions.

For homostructures, x; is constant, and Poisson's equation is

&V(x)  —q )
& e PO+ DOP@) . (34)

which relates the electrostatic potential to the mobile and fixed charge, DOP(x) = N, (x) — N, (x).
By relating p(x) and n(x) to V(x), we find

d’V_ —q [

= ne 109 kT _ n, 10T | DOP( x)] , (35)
Ks€o

4

which is the Poisson-Boltzmann equation - a nonlinear equation for V(x). In (35), ¢, and ¢, are

the quasi-Fermi potentials,

9, =(E.~F,)/q

36
¢n=(Ep_Fn)/q’ ( )

which are zero in equilibrium and can often be assumed to be piece wise constant under bias. We
now seek an equation analogous to (35) but valid for heterostructures.

In a non-degenerate heterostructure,

n(x) = n,(x)e BN ET (37)

where

1n,(x) = \[N.(x)N, (x)e B 2k" (38)
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and
E.(x) kT N, (x)
E(x)=E_, — x(x)——4—= + -5 log| —¥ —qV(x 39
[ (x)=E,; — x(x) ) ) gl:Nc(x):l qV(x) (39
is the intrinsic level. By writing (37) as
n(x):nir e(Fn_EI+kBT log(n; /n; )YkgT (40)

(where n, is n,(x) evaluated at a reference location) using (36), (38), and (39), we find

n(x) =n, eq(V+Vn—¢,,)/keT (41)

where

qV, = x(x) = X, + kT log(Nc(x)/ N,,,) (42)

is the so-called band parameter. (To eliminate some constants in (41), we've made a specific choice
for the reference potential for V.) A similar development for holes leads to
p(x)=n, & VTV okT 43)

where
qV, = (X(x) = %) = (Eg(x) — Eg, 0 ) + kg T 1og(Ny, (x) / Ny, 0). (44)

Equations (41) and (43) are just like the corresponding expressions for homostructures except
that n; is evaluated at the reference location and band parameters which measure the change in

material composition are introduced. Using (41) and (43), we find the Poisson-Boltzmann

equation for heterostructures as

% (-Kseo %) = gln,e " TN L DOPG)) (45)

We've made several simplifying assumptions to derive (45), but they are readily removed.

For example, (45) can be extended to treat multiple-valley, non-parabolic bands with Fermi-Dirac
statistics (Lundstrom, 1982 and Gray, 1985).
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The Poisson-Boltzmann equation for heterostructures can easily be solved by conventional
numerical techniques. For one example, consult (Gray, 1985), which describes FISHID, a

computer program to solve Poisson's equation for one-dimensional heterostructures.

5. Energy Bands in Graded Heterojunctions

Modern crystal growth technology makes it possible to grow heterojunctions that are nearly
abrupt on an atomic scale, but for some devices it is preferable to intentionally grade the
composition. The next step, then, is to learn how to sketch energy band diagrams when the
material composition varies smoothly. We could do this by solving the Poisson-Boltzmann
equation for V(x) given an arbitrary material composition as specified by the band parameters,
Vn(x) and Vp(x). From the resulting V(x) and Eqgs. (6) and (7), we could find the energy band
diagram. Our objective here, however, is to sketch energy band diagrams for graded
heterostructures without resorting to computers.

To begin, let’s re-draw our energy band diagram for the N-p junction using a different
procedure, as outlined in Fig. 11. First, note that we can easily sketch the expected electrostatic
potential for the junction shown in Fig. 11a; the result is displayed in Fig. 11b. Next, let’s sketch
an assumed electron affinity profile, y(x) as also shown in Fig. 11b. According to Egs. (6) and
(7), the energy band diagram is simply a constant minus the electrostatic potential and minus the
electron affinity. By turning the electrostatic potential and electron affinity profiles upside down
and adding the two, we get the conduction band profile shown in Fig. 11c. We then find the
valence band profile by subtracting the position dependent bandgap from Ec(x). The final result
shown in Fig. 11c is just the energy band diagram we sketched in Fig. 5, but the procedure
followed here is readily generalized for compositionally graded heterojunctions.

The procedure consists of separating the problem into two parts: 1) we first sketch the
electrostatic potential profile, which we can often estimate, then 2) add the compositional profile,
which is determined from the growth process. The procedure becomes useful when the
compositional profile is graded rather than abrupt. Figure 12 shows how we construct the energy
band diagram for an N-p heterojunction in which the compositional transition is graded rather than
abrupt. (We assume that the compositional grading is contained within the depletion region and
does not extend into the quasi-neutral semiconductor.) The compositional grading does not change
the electrostatics, which are determined by the depletion approximation, so the only difference is
the electron affinity profile that we add to V(x). As shown in Fig. 12, the compositional grading
smoothes out the conduction band spike, and the energy band diagram appears much like the one
expected for an abrupt N-p heterojunction with AE¢ = 0. We say that the compositional grading
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has “removed” the band spike and, indeed, compositional grading is often used to remove band
spikes that are detrimental to devices.

(a)

N-AlGaAs p-GaAs
—H -
(b) v A 2 A
';\ I X —M - X
VoiVa “no %

AEg

(c)

AEy

Ev

Fig. 11.  The energy band diagram for an N-p abrupt heterojunction. In this case, we begin with
the junction structure in (a) from which we can deduce how the charge will separate.
From the charge profile, we can sketch the potential profile as shown in (b). Given an
assumed electron affinity profile as shown also in (b), we can deduce the conduction
band profile by flipping the potential and affinity profiles upside down and adding
them. The final result shown in (c) is the result we obtained in Fig. 5.
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Fig. 12.  The energy band diagram for an N-p graded heterojunction. The problem is identical to

the one sketched in Fig. 11, except that the composition is graded about x = 0.
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Design Example: Optimal Grading Profile for an Npn HBT

Let’s consider a problem, specifying a compositional profile to remove the conduction band
spike in an AlGaAs/GaAs/GaAs Npn heterojunction bipolar transistor. For this device, the base
doping density greatly exceeds the emitter doping density, Nop >> Npg, so the electrostatic
potential drops mostly across the N-AlGaAs emitter. For Ny >> Np, Eq. (24) reduces to

V@) =(V, - V,)[1-(1+x/x,)] dp<x<0 (46)
where
%
. z[zxnso(v,ﬁ—vf,)} ' @)
gN,

The compositional profile is given by
X(X) = Xgaas — AX(X) (48)
where the maximum value of Ay is limited to AE.
The key idea is to recall that the electrostatic potential will decrease Ec(x), as we move into

the N-AlGaAs region, but y(x) decreases, which tends to increase E¢(x) in opposition to the

potential. To prevent a spike from occurring, we should balance the two effects,
Ax(x)=q(V, — VA)[I —(1+x/ x,,)""] (49)

Since the maximum value of Ay is limited to AE¢, we can find the extent of the graded region by

solving

AE = q(Vy =V, |1~ (1+3, /%) | (50)

for the grading distance, xg, to find

x, = x,[1-1=AE;[q(V,, - V,)]. (51)

Finally, dividing (49) by (50), we find
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Ax(x) _ 1-(l+x/x,)

AE,. 1—(1+xg /xn)2 ' 62

So, given a AE¢ that must be removed by grading, we first evaluate the grading distance from
(51), then grade the composition quadratically over this distance according to (52). Using typical
numbers for an N-Alg 3Gag,7As / -p-GaAs heterojunction (Vpi = 1.25 V and AEc = 0.25 V), we
find from Eq. (51) that x; =~ 0.1 x, so conduction band spikes are readily removed by

compositional grading over a short distance.

Compositional Grading in Quasi-neutral Regions

The procedure sketched in Fig. 12 for constructing band diagrams of graded
heterojunctions relies on a key assumption, that compositional grading does not influence the
electrostatic potential. As a result, we can first deduce the electrostatic potential from the depletion
approximation, then add the compositional profile. This assumption works well for pn
heterojunctions because the potential is determined by charge in a depletion region which is set by
the doping density. For other situations, however, it may not be possible to decouple grading
from the electrostatic potential. In general, numerical techniques like those discussed in Sec. 4
might be necessary, but there is a simple, important case that we should discuss.

Figure 13 considers the case of a uniformly doped p-type semiconductor with a linear
compositional grading. Figure 13 (a) shows the energy band diagram for a similar graded
semiconductor, but this one is intrinsic rather than p-type. The correct equilibrium energy band
diagram for the uniformly doped p-type structure is shown in Fig. 13 (b). We can establish that
this is the correct band diagram from a simple argument. If the doping is uniform, then the
resulting hole density will also be very nearly uniform because any separation of the mobile charge
from the dopants will uncover charge which will set up an electric field that opposes further
separation. Since the Fermi level is constant in equilibrium and because the separation of the
valence band and Fermi level determines the hole density, we conclude that the valence band is
very nearly constant. (We are ignoring the small slope in Ey caused by the variation of the

effective density of states, Ny.) For this case, the electrostatics force the valence band to be nearly
constant, and the full variation of the bandgap, Eg(0) - Eg(W) , is felt by the conduction band.

The key point is that the majority carrier band is flat and the minority carrier band acquires a slope
of dEg/dx.
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EG =1.42 eV
EV l
Ec
‘ AEg = 038 eV
Eg=1.80eV *

Eg=142eV

Fig. 13. The energy band diagram for a compositionally graded, uniformly doped p-type
semiconductor. (a) the band diagram for the intrinsic semiconductor, and (b) the band
diagram for a quasi-neutral, p-type semiconductor.

6. General Picture of a Compositionally Graded Semiconductor
In the most general case, both V(x) and the composition of the semiconductor vary with
position Since the composition is nonuniform, the crystal periodicity is broken, and one may
question the whole concept of energy bands. Consult (Gora, 1967) and van Vliet (1994) for a
discussion of this point. Suffice is to say that if the composition varies slowly, we may take the
band structure at any point to be the band structure of the corresponding bulk semiconductor with

the composition at that point.
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Because the composition is nonuniform, E¢ and Ey (and therefore ¢ and E¢g) will also be

nonuniform. As a result, (6) and (7) become

E.(x)=E, - xs(x)—qV(x) (53)

Ey(x)=E, = x5(x) = qV(x) — E;(x). (54)

An energy band for this case might look like Fig. 14

Fig. 14. An energy band diagram for a compositionally graded semiconductor.

Figure 14 shows a semiconductor with band-bending which is due to both an electric field and to
compositional variations. The slope of the conduction band gives the force on an electron, but it is

impossible to deduce the electric field from the energy band diagram.

Let's consider the force acting on an electron in the conduction band,
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~dE; _ _dV(x) , dx;

F = = 55
T Tae U o i (53)
and on a hole in the valence band
+dE, dV(x) d(x,+E;)
F, = V — - g g 56
L S dx (56)

The force on electrons is not equal in magnitude and opposite in direction to the force on holes, as
we would expect for forces due to electric fields. The electric field is only one component of the
force on a carrier. Since we are used to thinking of electric fields producing forces on carriers, we

can define quasi-electric fields for electrons by

F,=~-qE(x)—qE,(x) (57)
and for holes by
F, = +qE(x) + gEyp(x). (58)
With these definitions we have
1 dy
o=y
1 (59)
and
1 d
Epp=—— E(%s + E5).
q (60)

Notice that the quasi E-field for electrons can differ both in magnitude and direction from the quasi
E-field for holes. These quasi-FE fields give the device designer an additional degree of freedom

since they can be controlled by the nonuniform composition (Kroemer, 1957). Neither conditions |
(1), (2) nor (3) on page 2 apply to the E-band diagram of Fig. 13. Notice also that E¢ and Ey are

not constrained to be parallel in a heterostructure.

Example: Removing Band Spike in Npn AlGaAs/GaAs/GaAs HBTs:

We have already discussed how to grade the emitter base junction of an HBT optimally.
The concept of quasi-electric fields provide a simple, quick estimate for the required grading.
Assume that Figure 11 illustrates the emitter base junction of a heterojunction bipolar transistor.
For such devices, the p-type base is heavily doped and the band bending occurs on the N-AlGaAs
side of the heterojunction. The height of the band spike is then AE¢ above the conduction band in
the p-GaAs, and we seek a simple estimate for the compositional profile needed to eliminate the

band spike.
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Recall that the electrostatic potential pulls the conduction band down in Fig. 11, and the
compositional change from GaAs to AlGaAs pulls the conduction band up, producing the band
spike. We can think of these two effects in terms of electric fields. At the junction, the electric
field is E(0) and if we linearly grade the composition from GaAs to Alg3Gag 7As over a distance
of xg, then we have a quasi-electric field for electrons of AEc/xg which opposes the electric field.
To remove the band spike, we want the quasi-electric field to be smaller than the actual electric
field, so

AE. /g [E©)|
X

4

which gives the required grading distance as

AE./q

. 61
o (61)

xg>

(We are assuming that the electric field is approximately constant over the compositionally graded
region.) Equation (61) gives a rough estimate for the grading distance. Of course the resulting
band profile will not be as smooth as the optimal grading profile discussed in Sec. 5, in which the
quadratic compositional profile precisely matched the quadratic potential profile.

7. Drift-Diffusion Equations for Heterostructures
Our goal in this section is to derive the hole and electron current equations, J,, and J,, for a

semiconductor with nonuniform composition.

To begin, recall:

J = pp dF,
=p
? 7 dx (622)
and
Jn = nun an 4
dx (62b)

where F}, and F), are the quasi-Fermi levels. If the semiconductor is nondegenerate, the carrier

densities are related to the quasi-Fermi levels by
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p=N,(x)e™ " (632)
and
n= NC (X)e(F" _EC)/kT. (63b)
From (63a) and (63b), we obtain:
F,=E, —leog[ij
; N (64)
an
F,=E.—kTlog 2.
Ne (65)
Consequently
dF, _dE, _kT[}_ g 1 de}
dx  dx p dx N, dx (66)
dF, _iE_c_kT{i dn_ 1 ch}
dx  dx p dx N, dx (67)
Using the above in (62a) and (62b) we get
dE, kT aN, dp
J = Yo —— kT, 68
,,pu[dedx} My (63)
dE. | kT dN, dn
J":"”[dx A de Kk
(69)

These expressions look like drift-diffusion equations - especially if we use the Einstein relation

L, _D, _k
ul'l’p Mn q

(70)

To complete the derivation, we must express dE/dx and dEy/dx in terms of material parameters
and the electrostatic potential, V(x). From our band model for a nonuniform semiconductor, we

have

E.(x)=E - x(x)—qV(x) (71)
and
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E,(x)=E.(x)- E;(x)=E, — x(x)— E;(x) - qV(x), (72)

where Ey is a (constant) reference energy level. If we differentiate these, and use (68) and (69),we

get
Ey(x)| kT 1 dN d
7, =-pap,| LAy + 2D FeOL LN, )\ op B
dx q q q N, dx dx
1, = ngu,| v+ K LAy O (74)
dx q qg N, dx dx

In examining Egs. (73) and (74), we see that compositional variations introduce additional
terms into the drift-diffusion equations. The drift current (the part in {} brackets) includes both
electric and quasi-electric fields. We also see a conventional diffusion current, but there is another
term involving the gradient of the effective densities of states. It is not clear whether to write this
density-of-states effect (Marshak, 1978) as a drift current (because it is proportional to the
carrier concentration) or as a diffusion current (because it involves a gradient). This term arises
because carriers tend to diffuse in the direction of increasing density of states, because there are
more states available for the random walk. In practice, however, the biggest effect is drift in the
quasi-electric fields, and the density of states effect is rather small.

Finally, the current equations can be made more notationally compact by defining two band
parameters, Vp and Vy, as

qV,(x) =—[x(x) + E;(x) — kT log N, (x)] + const

(75)
and
qV,(x) = x(x)+ kTlog N, (x)+ const : (76)
With these definitions, we finally obtain
d dp (77)
J, = —pqupE(V— V,)—4D, o
J, ——nqun-—(V+V)+ D, Z—x}z 78

which look exactly like the conventional current equations except for the two new terms,
Vpand V. If we choose the constants in Eqgs. (75) and (76) to make the band parameters zero in a

reference material, then we get Eqs. (42) and (44), the same band parameters used in the Poisson-

Boltzmann equation.
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Example: Application to a linearly graded, quasi-neutral heterostructure

As an example of applying the current equations, (73) and (74), let's consider the graded
heterostructure of Fig. 13. If electrons are injected from the left, then under low injection
conditions, there will be a strong force producing an electron current, but the hole current will be
small. Assuming that J, =0, we can use Eq. (73) to find

Jp=—-pq,up%{v+m+EG—(x)}z0 (79)
q q

(we have assumed that the hole concentration is uniform and that the density-of-states does not

vary). From Eq. (79) we can find the electric field as

Ez_ﬂ:i{m&@} (80)
dx dx| q q

which is the electric field set up to flatten the valence band and keep the hole concentration
constant. If we insert this electric field into Eq. (74), we find the minority electron current as
d(E;/q)
J, =ngu, —S¢—32= 81

n = MGH, = (81)
So the minority carrier electrons drift in a total field (the actual field plus the quasi-electric field)
which is minus the gradient of the bandgap variation. This is exactly the conclusion we reached
from the energy band diagram we sketched in Sec. 5. The approach here, however, is easily
generalized to treat spatial variations of the effective densities of states and of the majority hole

density.

8. Heavy Doping Effects and Heterostructures
In a heavily doped semiconductor, carrier-carrier interactions reduce the energy gap and
carrier-dopant interactions distort the bands by introducing band tails (Abram, 1993). The resulting
position-dependent, perturbed band structure influences carrier transport and has a strong effect on
the electrical performance of devices (del Alamo 1987, Slotboom, 1976). Modeling transport in
such structures is much like modeling transport in any heterostructure, but the details of the
perturbed band structure are still not well-understood, so a specialized terminology has developed
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(Lundstrom, 1981, van Vliet, 1993). The specialized terminology is reviewed in this section and

is related to the conventional treatment of transport in heterostructures described in Sec. 7.

Band structure of Heavily Doped Semiconductors

Figure 15 illustrates the band structure perturbations induced by heavy impurity doping (del
Alamo, 1987). When the semiconductor is lightly doped, the conduction and valence bands are
parabolic with sharply defined band edges. As the doping density increases, the localized impurity
states broaden into an impurity band and the fluctuating potential associated with the dopants
located on randomly situated lattice sites produces tails in the conduction and valence bands. For
very heavy impurity doping, the impurity band merges with the conduction band. Under such
conditions, electron-hole correlation and exchange effects dominate and these many body effects
produce a more or less rigid shrinkage of the band gap. The electronic properties of heavily doped
semiconductors are profoundly influenced by these perturbations in the band structure.

Fig. 15 Illustration of how heavy impurity doping affects the band structure of an n-type
semiconductor (from del Alamo, 1987).

The n,p, Product
In heavily doped semiconductors, the perturbed band structure alters n p, which must be

evaluated from
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Emp

n,= [P (E-EL,)f(E-E,)dE, (82a)

E
co

and

E .
vo

p,= [P, (Eyy - EN1- f(E-E,)dE, (82b)

E bot

where p.' is the perturbed conduction band density-of-states, fis the Fermi function, and E[, is
the conduction band mobility edge (a corresponding set of definitions for the valence band apply to
the quantities with a subscript, V). For lightly-doped semiconductors, the densities-of-states are
parabolic and the product of Egs. (82a) and (82b) reduce to

n,p,=n. =N.N, e F'*" (83)

where N, and N, are the effective densities-of-states for the conduction and valence bands. For

heavily-doped semiconductors, however, the result is much different. The doping-induced

perturbation of the energy bands can be viewed at the simplest level as an effective narrowing of
the energy gap from which we conclude that n p, will increase with doping density. Both detailed

many body calculations and measurements confirm that n,p, does increase in heavily doped p-
GaAs (Abram, 1993; Harmon, 1994).

The n,p, product is an important factor in device design and analysis, and for such

purposes it is convenient to express the product in the simple form (Lundstrom, 1981),
n,p, =i, =, "0 (84)

The effective intrinsic carrier concentration n,, is greater than n,,, which refers to a lightly doped

semiconductor. It is important to note that Eq. (84) is a defining equation for A’;, the equilibrium
effective (or apparent or electrical) energy gap shrinkage, which is not a physical energy gap
shrinkage but is, rather, related to the band structure by equating Eq. (84) to the product of Egs.
(82a) and (82b). If we adopt a simple parabolic band model for the band structure of a heavily
doped semiconductor, then the effective gap shrinkage is

A(x)=AE. +k,T lg(mg_)} hr log( Fl/z(ﬂv)Fl/zc(nc)) -

Ny n
Vref* ¥ Cref e e
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where 1, =(E,, — E;)/ k;T and 1, =(E,~E_,)/k,T, and F,, is the Fermi-Dirac integral of
order one-half. For a degenerate p-type semiconductor, F,,,(1,)/e™ <1 and F,,(n.)/e" =1,
so the effect of majority carrier degeneracy is to widen the effective energy gap, which is
analogous to the well-known, Burstein-Moss shift in the optical gap. Equation (85) is valid only
when the energy bands are parabolic, but it does illustrate how band gap shrinkage and Fermi-
Dirac statistics influence the n,p, product. Under nondegenerate conditions and if the densities of
states are not perturbed, then the effective gap shrinkage reduces to the actual bandgap shrinkage.
It must be emphasized that a variety of effective or apparent energy gap shrinkages have
been defined and that these nonphysical, defined quantities should not be confused (Lundstrom,
1981; del Alamo, 1987; Marshak, 1987). This distinction is especially important when comparing
the results of electrical measurements of devices to optical absorption or photoluminescence
measurements. The effective gap shrinkage (or equivalently, the effective intrinsic carrier
concentration) is the important quantity for modeling bipolar devices because it determines the
minority carrier concentration and, as we demonstrate below, the minority carrier current in a

heavily doped semiconductor.

Minority Carrier Transport

Equations (77) and (78) show that the drift-diffusion equations for heterostructures are just
like the conventional equations but with additional terms that account for the quasi-electric fields
and position-dependent effective mass. It is interesting to observe that

niz(x) = nt.z(ref) X eq(v"(x)w”(x))/k"T, (86)

which shows that the quantity V, +V, acts like an effective energy gap shrinkage given by

Ag(x)=qV,+qV,=AE; +k,T log(M%J . 87)
Vref

Cref

Equation (87) relates the band parameters introduced for heterostructures to the effective bandgap
shrinkage used to described heavily doped semiconductors. Equation (87) is a simplified form of
Eq. (85) for nondegenerate semiconductors.

For heavily doped semiconductors, it is convenient to re-cast the drift-diffusion equations

in terms of the effective energy gap shrinkage. A little algebra shows that (Lundstrom, 1981)

d dn
J,=-nqu, E{V + YA/ q}+k,TH, = (88a)
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and
d dp
T ==Patt,——{V = (1= 1)Ag / q} =Ry Tht,—~ (88b)
where
Vv
=— 89
4 V,.+V, (89)

is the effective asymmetry factor, a measure of the change in band edge and band structure
associated with the conduction band.

The form of Egs. (88) suggests that they are restricted to non-degenerate semiconductors,
but they are easily generalized. When carriers are degenerate, k,Tu # gD, so the final term in the
current equations should not be interpreted as a diffusion current. Instead, the influence of carrier
degeneracy on the diffusion coefficient, D, can be included in the parameters, y and A, if they
are generalized for Fermi-Dirac statistics (Lundstrom, 1981).

According to Egs. (88), the perturbed band structure introduces two additional parameters
into the current equations. The first, A;, is precisely the effective gap shrinkage defined in

equilibrium by Eq. (84), and the second, the effective asymmetry factor, ¥, is a measure of how
much of the perturbation is associated with the conduction band. Equation (84) defines the
effective gap shrinkage in equilibrium. Under low injection conditions, it is common to assume
that the effective gap shrinkage is equal to its value in equilibrium, but high densities of injected
carriers may perturb the band structure.

Equations (88a) and (88b) are equivalent to those commonly used for analyzing
semiconductor heterostructures (Sutherland, 1977; Lundstrom, 1983) but are expressed in the
form most useful when the compositional variation is due to heavy doping effects (Lundstrom,
1981). Detailed expressions for A; and ¥ are available (Lundstrom, 1981), but it may be helpful
to note that if the semiconductor is non degenerate and the band structure perturbation is a simple,
rigid shift of the bands without any change in band shape, then A, is the actual energy gap

shrinkage and ¥ is the fraction of the shrinkage associated with a perturbation in the conduction

band edge.

Minority Carrier Transport in Quasi-Neutral Regions

Many minority carrier devices are controlled by diffusion of carriers across a quasi-neutral
region in low level injection. Consider a quasi-neutral p-type region in low level injection. The
equilibrium field is found from Eq. (88b) by setting J , =0 which is then inserted in Eq. (88a) to

find
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J =-nqu, [—(kBT /q) Vo, + V(AG / 4)} +ksTH,Vn, (90)
14

o

where a subscript or superscript, "o," denotes the equilibrium value of a quantity. Equation (90)
should accurately describe low injection electron transport in p*-GaAs because under such
conditions, the electrostatic potential, the effective gap shrinkage, and the majority carrier hole
concentration are all very near their equilibrium values. The important point is that to describe low
injection electron transport in quasi-neutral p*-GaAs, the only information required about the
perturbed band structure is the quantity, A; - the effective gap shrinkage, which explains its
widespread use in device modeling. Conversely, electrical measurements of minority carrier
currents only provide information on Aj;; they are insensitive to y. When the simplifying
assumptions of minority carrier diffusion in quasi-neutral regions under low level injection are not
met, then a detailed understanding of the perturbed band structure is necessary. For example, just
to compute the built-in potential of a p-n junction requires knowledge of both A}, and y°

(Lundstrom, 1981).

9. Band Offsets
We have saved the most difficult part for last. We now know how to draw band diagrams,
compute electrostatic potentials, and deduce current flows, but everything depends on how the
bands line up. Given a pair of materials, we need a way to determine the band offsets. In this
section, I'll discuss a few theories and approaches and will try to give a pragmatic approach to the
question. A problem that all approaches face, is that while one might predict a band offset to 0.1
eV or so, they frequently influence devices through exp[-AEc /kT] terms, so very accurate values

are often needed.

The Electron Affinity Rule:

In the approach we have been taking, the conduction band offset was given by the
difference in the electron affinities of the two materials in the heterojunction (recall Eq. (15)). This
approach is also known as the Anderson Rule, after R.L. Anderson, one of the early
heterojunction researchers (Anderson, 1962). In practice, however, the electron affinity rule has
not proven to be a reliable way to deduce band offsets.

There are several reasons for the difficulties with the electron affinity rule. First, recall that
electron affinities are typically about 4 eV and that band discontinuities are frequently one-tenth of
this. Subtracting two large numbers with their experimental errors to get a small result is bound to

produce large errors. In addition, electron affinities depend on surface charges and dipoles, but the
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band offsets should depend on properties of the two bulk semiconductors, surfaces should not
have to enter into the problem. Finally, note that when two semiconductors are brought into
contact, there is a charge transfer between the bond at the interface which sets up a dipole. There is
no reason to believe that the dipole at a semiconductor-semiconductor interface will be the same as
the dipole at the semiconductor vacuum interface. For these reasons, researchers sought better

ways to deduce band offsets.

The Common Anion Rule:

When one deduces the band structure of a semiconductor by a tight binding approach, one
finds that to zeroth order, the valence band is made up of the anion wavefunction. For a
heterojunction like AlAs/GaAs (or AlGaAs/GaAs) for which As is the common anion, the valence
bands for each of the materials should be similar. The expectation would be that the valence band
discontinuity would be small and most of the discontinuity would be taken up by the conduction
band. For a long time, people thought that the conduction band discontinuity in AlGaAs/GaAs
was 85% of the bandgap discontinuity, and the common anion rule was cited as the theoretical
explanation. Later measurements, however, revealed that only about 60% of the bandgap
discontinuity went to the conduction band, and people began to look more critically at the common
anion argument. The valence band is determined in the first approximation by the anion, but the
first order corrections involve the cation and are large enough to render the common anion rule
unreliable. (Remember that band discontinuities tend to be small, so small shifts in the valence
band energies can have a large effect on the resulting discontinuity.) The common anion rule is
now used qualitatively. When there is a common anion, people expect the conduction band
discontinuity to be larger than the valence band discontinuity, but how much is hard to say.

Tersoff's Quantum Dipole Theory:

Band discontinuities must be related to the microscopic properties of the heterointerface and
there have been several different theoretical approaches to the problem. One of the most successful
theories is due to Tersoff (Tersoff, 1984). In Tersoff's view, a band discontinuity arises from a
quantum dipole set up when bulk states from one semiconductor tunnel a few Angstroms into gap
states located within the bandgap of the other. These “interface induced gap states” are analogous
to the “metal induced gap states” that form at a metal-semiconductor interface. The band
discontinuity adjusts itself to force the dipole to zero. The view is that the gap states are mostly
conduction band in character near the top of the bandgap (i.e. negatively charged when filled, or
acceptor-like) and valence band in character near the bottom of the bandgap (neutral when filled, or
donor-like). Somewhere in between is a neutral point, where the gap states take equal
contributions from the conduction and valence bands. Tersoff argues that the semiconductors align
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to match these effective midgap points. By calculating the effective midgap points for several
semiconductors and evaluating band discontinuities by subtracting them, Tersoff obtained
remarkably good agreement with experimentally measured discontinuities. Figure 16 shows the
absolute location of the bands for several semiconductors using Tersoff's midgap energy as the
reference.

An interesting feature of Tersoff's theory is that it also provides an explanation for the
observed Schottky barrier heights of several metal-semiconductor pairs. In Tersoff's theory, the
effective midgap point of the semiconductor aligns with the Fermi level of the metal. His theory is
equally successful at explaining the observed barrier heights of metal-semiconductor junctions.
While Tersoff's theory has gained a wide acceptance among theorists and experimentalists, other
theories have also been proposed to explain the close connection between Schottky barrier heights
and heterojunction band offsets (e.g. Frecouf, 1986).
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1.2 AlP AlAs
T T Gaas AP ZnSe
0.8 Si T
R . InP GaSb CdTe
Ge o
04
InSb
InAs I
00 -1~ “T“-1T"-71""1T-1"=---~r~-=- “"'""‘“‘”Midgap
0.4 —+ :[ 1
-0.8 4 - N .
-1.2
-1.6
' Midgap data is from [Ter86b] —
Bandgap data is from [Pan71]
*Band offset between MnTe and CdTe is derived experimentally from [Han91]

[Ter86b] J. Tersoff, Phys. Rev. Lett. 56, 2755 (1986).

[Pan71} J.I. Pankowe, Optical processes in semiconductors, Dover Publications, Inc., NY (1971).

[Han91] J. Han et al., J. Cryst. Growth 111, 767 (1991).

Fig. 16 The conduction and valence band positions for several common semiconductors as

deduced from Tersoff's theory. (Courtesy of Jung Han, Purdue University)
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Deducing Band Offsets from Schottky Barrier Heights

The correlation between measured Schottky barrier heights and heterojunction band offsets
had been noticed well before Tersoff developed his theory. This correlation provides a practical
approach to estimating band offsets. Figure 17 illustrates how it works. We show two metal-
semiconductor junction, with a common metal. According to Tersoff, the effective midgap point
of each semiconductor aligns to the Fermi level of the metal. Therefore, we take the Fermi level as
our long sought reference level. From the figure, we see that

E.=¢,, on
and

E, = E; = ¢y, ®2)

Extensive tables of measured Schottky barrier heights are available (e.g. see S.M. Sze, Physics of
Semiconductor Devices, John Wiley and Son, Inc. 1981, page 291), we can construct a table of
the energies of the conduction and valence bands of various semiconductors. When we form a
heterojunction, the band offset is just the difference between the two energies. Alternatively, we
can view the process of forming a heterojunction as reducing the thickness of the metal in Fig. 18

until the two semiconductors meet. It is clear from Fig. 17 that
AE. = ¢,,(AlAs) - ¢,,(GaAs) . (93)

The valence band discontinuity is then deduced from the known bandgap difference and AEc. (In
practice, the procedure is usually reversed, one deduces the valence band discontinuity first from
the Schottky barrier heights for p-type semiconductors. This procedure is more reliable because
the valence band maximum is always atk = 0.)

Schottky barrier heights are typically several tenths of an electron volt and band
discontinuities are typically a few tenths of an eV, so the subtraction in Eq. (93) is not prone to
excessive errors. Dedlicing band discontinuities from measured Schottky barrier heights has
proven to be easy and fairly reliable in practice. Figure 18 displays the absolute locations of the
conduction and valence bands for several common III-V semiconductors as deduced from Schottky
barrier heights (Tiwari, 1992).
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Illustration of how one deduces band offsets from measured Schottky barrier
heights.
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Lattice Constant (A)

The conduction and valence band energies plotted as a function of lattice constant of
semiconductors. The circles indicate the band edges of binary semiconductors and
the lines show the band edges of the ternary alloys. The two endpoints of each
ternary line are the binary constituents of that ternary. Discontinuities between two
lattice matched or nearly lattice matched semiconductor alloys may be found from
the difference in energy between their band-edge energies. The zero energy point
represents the approximate gold Schottky barrier position in the band gap of any
given alloy. (From Tiwari, 1992)
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11. Exercises

To test your understanding of the concepts discussed in these notes, try working the following
problems.

1)

2)
3)

4)

5)

6)
7)

8)

9)

10)

Using the observed band offsets for AlIGaAs/GaAs as illustrated in Fig. 1, sketch an
energy band diagram for a doubly intrinsic, Alp 3Gag 7As / GaAs heterojunction.

Sketch the band diagram for an Alg 3Gag7As / GaAs Pp heterojunction.

Sketch the energy band diagram for an Al 3Gag 7As / GaAs / Alp3Gag7As NpN
heterojunction.

Compute the built-in potential for an Alg3Gag7As / GaAs Np heterojunction assuming that
Np =2.0x 1017 and Ny = 1.0 x 1019 cm-3.

For the Alg.3Gag 7As / GaAs heterojunction in problem 4, use the depletion approximation

to compute, E(0-), E(0%), xy, Xp, Vjp, and Vyy. Assume that k¥ = 10.8 for Alp 3Gag 7As
and 12.1 for GaAs.

Repeat the problem sketch in Fig. 13, but this time assume n-type doping.

For heavily doped semiconductors, another common practice is to express the current
equations in terms of the position dependent effective intrinsic carrier concentration. What
assumption is necessary to do so for Egs. (77a) and (77b)? What assumptions are
necessary to do the same in Eq. (79)?

Assuming the AlGaAs/GaAs Np heterojunction of problems 4 and 5, deduce the grading
width to remove the band spike under equilibrium conditions. Assume linear
compositional grading and use Eq. (49). Construct an energy band diagram for the graded
junction under equilibrium and under a forward bias of 1.2 volts.

Assuming the AlGaAs/GaAs Np heterojunction of problems 4 and 5 to deduce the grading
width to remove the band spike under equilibrium conditions. Assume quadratic
compositional grading. Construct an energy band diagram for the graded junction under
equilibrium and under a forward bias of 1.2 volts.

Derive a minority carrier transport equation like Eq. (70) but allow the hole concentration
and the effective densities of states to vary with position. Compare your result to Eq. (79).
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Additional information for Exercises 2—5 on page T3-42.
(2) Assume Er — E, = 0.1eV for both the Aly3Gay7As and GaAs components.

(3) Assume abrupt heterojunctions, Er = Ey for the GaAs base, and E slightly below E, for
both the AlGaAs emitter and collector.

(4) Note that both the Alp3Gao 7As and GaAs are weakly degenerately doped. Refer to
Table 4.2 and the Ny relationship in the nearby text of Volume VI in determining Ny and
Nc. Employ the electron density of states effective mass for Aly3Gag 7As as deduced from
Table 1.1 on page T4-1. Make use of Fig. 4.15 in Volume VI in deducing the approximate
positions of the Fermi levels.

(5) Perform the calculations for V) = 0.



