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3.1 INTRODUCTION

Semiconductor solar cells are fundamentally quite simple devices. Semiconductors have the capacity
to absorb light and to deliver a portion of the energy of the absorbed photons to carriers of
electrical current – electrons and holes. A semiconductor diode separates and collects the carriers
and conducts the generated electrical current preferentially in a specific direction. Thus, a solar
cell is simply a semiconductor diode that has been carefully designed and constructed to efficiently
absorb and convert light energy from the sun into electrical energy.

A simple conventional solar cell structure is depicted in Figure 3.1. Sunlight is incident
from the top, on the front of the solar cell. A metallic grid forms one of the electrical contacts of
the diode and allows light to fall on the semiconductor between the grid lines and thus be absorbed
and converted into electrical energy. An antireflective layer between the grid lines increases the
amount of light transmitted to the semiconductor. The semiconductor diode is fashioned when an
n-type semiconductor and a p-type semiconductor are brought together to form a metallurgical
junction. This is typically achieved through diffusion or implantation of specific impurities
(dopants) or via a deposition process. The diode’s other electrical contact is formed by a metallic
layer on the back of the solar cell.

All electromagnetic radiation, including sunlight, can be viewed as being composed of
particles called photons which carry specific amounts of energy determined by the spectral properties
of their source. Photons also exhibit a wavelike character with the wavelength, λ, being related to
the photon energy Eλ by

Eλ = hc

λ
(3.1)

where h is Plank’s constant and c is the speed of light. Only photons with sufficient energy to
create an electron–hole pair, that is, those with energy greater than the semiconductor bandgap
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Figure 3.1 A schematic of a simple conventional solar cell. Creation of electron–hole pairs, e−
and h+, respectively, is depicted

(EG), will contribute to the energy conversion process. Thus, the spectral composition of sunlight
is an important consideration in the design of efficient solar cells.

The sun has a surface temperature of approximately 5762 K and its radiation spectrum can
be approximated by a black body radiator at that temperature. Emission of radiation from the
sun, as with all black body radiators, is isotropic. However, the Earth’s great distance from the
sun (approximately 93 million miles or 150 million kilometers) means that only those photons
emitted directly at the Earth contribute to the solar spectrum as observed from the Earth. Therefore,
for most practical purposes, the light falling on the Earth can be thought of as parallel streams
of photons. Just above the Earth’s atmosphere, the radiation intensity, or solar constant, is about
1.353 kW/m2 [1] and the spectral distribution is referred to as an air mass zero (AM0) radiation
spectrum. The air mass is a measure of how absorption in the atmosphere affects the spectral
content and intensity of the solar radiation reaching the Earth’s surface. The air mass number is
given by [1]

Air mass = 1

cos θ
(3.2)

where θ is the angle of incidence (θ = 0 when the sun is directly overhead). The air mass number
is always greater than or equal to one at the Earth’s surface.

A widely used standard for comparing solar cell performance is the AM1.5 (θ = 48.2◦)
spectrum normalized to a total power density of 1 kW/m2. The spectral content of sunlight at the
Earth’s surface also has a diffuse (indirect) component due to scattering and reflection in the atmo-
sphere and surrounding landscape, and can account for up to 20% of the light incident on a solar
cell. The air mass number is therefore further defined by whether or not the measured spectrum
includes the diffuse component. An AM1.5g (global) spectrum includes the diffuse component,
while an AM1.5d (direct) does not. Black body (T = 5762 K), AM0, and AM1.5g radiation spec-
trums are shown in Figure 3.2. The air mass and solar radiation are described in more detail in
Chapters 18 and 22.



84 THE PHYSICS OF THE SOLAR CELL

Figure 3.2 The radiation spectrum for a black body at 5780 K, an AM0 spectrum, and an AM1.5
global spectrum

The basic physical principles underlying the operation of solar cells are the subject of this
chapter. First, a brief review of the fundamental properties of semiconductors is given that includes
an overview of semiconductor band structure and carrier generation, recombination, and transport.
Next, the electrostatic properties of the pn-junction diode are reviewed, followed by a description of
the basic operating characteristics of the solar cell, including the derivation (based on the solution
of the minority-carrier diffusion equation) of an expression for the current–voltage characteristic of
an idealized solar cell. This is used to define the basic solar cell figures of merit, namely, the open-
circuit voltage VOC; the short-circuit current ISC; the fill factor FF ; the conversion efficiency η, and
the collection efficiency ηC. Much of the discussion here will focus on how carrier recombination
is the primary factor controlling solar cell performance. Finally, some additional topics relevant
to solar cell operation, design and analysis are presented. These include the relationship between
bandgap and efficiency, the solar cell spectral response, parasitic resistive effects, temperature
effects, voltage-dependent collection, a brief introduction to some modern cell design concepts,
and a brief overview of detailed numerical modeling of solar cells.

3.2 FUNDAMENTAL PROPERTIES OF SEMICONDUCTORS

An understanding of the operation of semiconductor solar cells requires familiarity with some basic
concepts of solid-state physics. Here, an introduction is provided to the essential concepts needed
to examine the physics of solar cells. More complete and rigorous treatments are available from a
number of sources [2–6].

Solar cells can be fabricated from a number of semiconductor materials, most commonly
silicon (Si) – crystalline, polycrystalline, and amorphous. Solar cells are also fabricated from other
semiconductor materials such as GaAs, GaInP, Cu(InGa)Se2, and CdTe, to name but a few. Solar
cell materials are chosen largely on the basis of how well their absorption characteristics match
the solar spectrum and upon their cost of fabrication. Silicon has been a common choice due to
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Table 3.1 Abbreviated periodic
table of the elements

I II III IV V VI

B C N O
Al Si P S

Cu Zn Ga Ge As Se
Ag Cd In Sn Sb Te

the fact that its absorption characteristics are a fairly good match to the solar spectrum, and silicon
fabrication technology is well developed as a result of its pervasiveness in the semiconductor
electronics industry.

3.2.1 Crystal Structure

Electronic grade semiconductors are very pure crystalline materials. Their crystalline nature means
that their atoms are aligned in a regular periodic array. This periodicity, coupled with the atomic
properties of the component elements, is what gives semiconductors their very useful electronic
properties. An abbreviated periodic table of the elements is given in Table 3.1.

Note that silicon is in column IV, meaning that it has four valence electrons – that is, four
electrons that can be shared with neighboring atoms to form covalent bonds with those neighbors.
In crystalline silicon, the atoms are arranged in a diamond lattice (carbon is also a column IV
element) with tetrahedral bonding – four bonds from each atom where the angle between any two
bonds is 109.5◦. Perhaps surprisingly, this arrangement can be represented by two interpenetrating
face-centered cubic (fcc) unit cells where the second fcc unit cell is shifted one-fourth of the
distance along the body diagonal of the first fcc unit cell. The lattice constant, 	, is the length of
the edges of the cubic unit cell. The entire lattice can be constructed by stacking these unit cells. A
similar arrangement, the zincblende lattice, occurs in many binary III–V and II–VI semiconductors
such as GaAs (a III–V compound) and CdTe (a II–VI compound). For example, in GaAs, one
interpenetrating fcc unit cell is composed entirely of gallium atoms and the other entirely of
arsenic atoms. Note that the average valency is four for each compound, so that there are four
bonds to and from each atom with each covalent bond involving two valence electrons. Some
properties of semiconductors are dependent on the orientation of the crystal lattice, and casting the
crystal structure in terms of a cubic unit cell makes identifying the orientation easier by means of
Miller indices.

3.2.2 Energy Band Structure

Of more consequence to the physics of solar cells, however, is how the periodic crystalline structure
of the semiconductor establishes its electronic properties. An electron moving in a semiconductor
material is analogous to a particle confined to a three-dimensional box that has a complex interior
structure, due primarily to the potential fields surrounding the component atom’s nucleus and tightly
bound core electrons. The dynamic behavior of the electron can be established from the electron
wavefunction, ψ , which is obtained by solving the time-independent Schrödinger equation

∇2ψ + 2m

�2
[E − U(�r)]ψ = 0 (3.3)
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Figure 3.3 A simplified energy band diagram at T > 0 K for a direct bandgap (EG) semiconductor.
Electrons near the maxima in valence band have been thermally excited to the empty states near
the conduction-band minima, leaving behind holes. The excited electrons and remaining holes are
the negative and positive mobile charges that give semiconductors their unique transport properties

where m is electron mass, � is the reduced Planck constant, E is the energy of the electron, and U(�r)
is the periodic potential energy inside the semiconductor. Solving this quantum mechanical equation
is beyond the scope of this work, but suffice it to say that the solution defines the band structure
(the allowed electron energies and the relationship between the electron’s energy and momentum)
of the semiconductor and, amazingly, tells us that the quantum mechanically computed motion of
the electron in the crystal is, to a good approximation, like that of an electron in free space if its
mass, m, is replaced by an effective mass m∗ in Newton’s second law of motion. Newton’s second
law of motion, from classical mechanics, is

F = m∗a (3.4)

where F is the applied force and a is the acceleration of the electron.

A simplified energy band structure is illustrated in Figure 3.3. The allowed electron energies
are plotted against the crystal momentum, p = �k, where k is the wave vector (represented here as
a scalar for simplicity) corresponding to the wavefunction solutions of the Schrödinger equation.
Only the energy bands of immediate interest are shown – energy bands below the valence band are
presumed to be fully occupied by electrons and those above the conduction band are presumed to
be empty. The electron effective mass is defined by the curvature of the band as

m∗ ≡
[

d2E

dp2

]−1

=
[

1

�2

d2E

dk2

]−1

. (3.5)

Near the top of the valence band, the effective mass is actually negative. Electrons (∗) fill the
states from bottom to top and the states near the top of the valence band are empty ( ) due to some
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electrons being thermally excited into the conduction band. These empty states can conveniently
be regarded as positively charged carriers of current called holes with a positive effective mass.
It is conceptually much easier to deal with a relatively few number of holes that have a positive
effective mass since they will behave like classical positively charged particles.

Notice that the effective mass is not constant within each band. The top of the valence
band and the bottom of the conduction band are approximately parabolic in shape and therefore
the electron effective mass (m∗

n) near the bottom of the conduction band is a constant, as is the
hole effective mass (m∗

p) near the top of the valence band. This is a very practical assumption that
greatly simplifies the modeling of semiconductor devices such as solar cells.

When the minimum of the conduction band occurs at the same value of the crystal momen-
tum as the maximum of the valence band, as it does in Figure 3.3, the semiconductor is a direct
bandgap semiconductor. When they do not align, the semiconductor is said to be an indirect
bandgap semiconductor. This is especially important when the absorption of light by a semicon-
ductor is considered later in this chapter.

Even amorphous materials exhibit a similar band structure. Over short distances, the atoms
are arranged in a periodic manner and an electron wavefunction can be defined. The wavefunc-
tions from these small regions overlap in such a way that a mobility gap can be defined, with
electrons above the mobility gap defining the conduction band and holes below the gap defining
the valence band. Unlike crystalline materials, however, there are a large number of localized
energy states within the mobility gap (band tails and dangling bonds) that complicate the analy-
sis of devices fabricated from these materials. Amorphous silicon (a-Si) solar cells are discussed
in Chapter 12.

3.2.3 Conduction-band and Valence-band Densities of State

Now that the dynamics of the electron motion in a semiconductor has been approximated by a
negatively charged particle with mass m∗

n in the conduction band and by a positively charged
particle with mass m∗

p in the valence band, it is possible to calculate the density of states in each
band. This again involves solving the time-independent Schrödinger equation for the wavefunction
of a particle in a box, but in this case the box is empty. All the complexities of the periodic
potentials of the component atoms have been incorporated into the effective mass. The density of
states in the conduction band is given by [3]

gC(E) = m∗
n

√
2m∗

n(E − EC)

π2�3
cm−3eV−1 (3.6)

while the density of states in the valence band is given by

gV(E) =
m∗
p

√
2m∗

p(EV − E)
π2�3

cm−3 eV−1. (3.7)

3.2.4 Equilibrium Carrier Concentrations

When the semiconductor is in thermal equilibrium (i.e. at a uniform temperature with no external
injection or generation of carriers), the Fermi function determines the ratio of filled states to available
states at each energy and is given by

f (E) = 1

1 + e(E−EF)/kT
(3.8)
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Figure 3.4 The Fermi function at various temperatures

where EF is the Fermi energy, k is Boltzmann’s constant, and T is the Kelvin temperature. As seen
in Figure 3.4, the Fermi function is a strong function of temperature. At absolute zero, it is a step
function and all the states below EF are filled with electrons and all those above EF are completely
empty. As the temperature increases, thermal excitation will leave some states below EF empty,
and the corresponding number of states above EF will be filled with the excited electrons.

The equilibrium electron and hole concentrations (number per cm3) are therefore

no =
∫ ∞

EC

gC(E)f (E)dE = 2NC√
π
F1/2((EF − EC)/kT ) (3.9)

po =
∫ EV

−∞
gV(E)[1 − f (E)]dE = 2NV√

π
F1/2((EV − EF)/kT ) (3.10)

where F1/2(ξ) is the Fermi–Dirac integral of order 1/2,

F1/2(ξ) =
∫ ∞

0

√
ξ ′dξ ′

1 + eξ ′−ξ
(3.11)

The conduction-band and valence-band effective densities of state (#/cm3), NC and NV,
respectively, are given by

NC = 2

(
2πm∗

nkT

h2

)3/2

(3.12)

and

NV = 2

(
2πm∗

pkT

h2

)3/2

. (3.13)
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When the Fermi energy, EF, is sufficiently far (>3 kT ) from either band edge, the carrier
concentrations can be well approximated (to within 2%) as [7]

no = NCe(EF−EC)/kT (3.14)

and

po = NVe(EV−EF)/kT , (3.15)

and the semiconductor is said to be nondegenerate. In nondegenerate semiconductors, the product
of the equilibrium electron and hole concentrations is independent of the location of the Fermi
energy and is just

pono = n2
i = NCNVe(EV−EC)/kT = NCNVe−EG/kT . (3.16)

In an undoped (intrinsic) semiconductor in thermal equilibrium, the number of electrons in
the conduction band and the number of holes in the valence band are equal; no = po = ni , where
ni is the intrinsic carrier concentration. The intrinsic carrier concentration can be computed from
Equation (3.17), giving

ni =
√
NCNVe(EV−EC)/2kT =

√
NCNVe−EG/2kT . (3.17)

The Fermi energy in an intrinsic semiconductor, Ei = EF, is given by

Ei = EV + EC

2
+ kT

2
ln

(
NV

NC

)
(3.18)

which is typically very close to the middle of the bandgap. The intrinsic carrier concentration
is typically very small compared with the densities of states and typical doping densities
(ni ≈ 1010 cm−3 in Si) and intrinsic semiconductors behave very much like insulators; that is, they
are not good conductors of electricity.

The number of electrons and holes in their respective bands, and hence the conductivity of
the semiconductor, can be controlled through the introduction of specific impurities, or dopants,
called donors and acceptors . For example, when semiconductor silicon is doped with phosphorus,
one electron is donated to the conduction band for each atom of phosphorus introduced. From
Table 3.1, it can be seen that phosphorous is in column V of the periodic table of elements and thus
has five valence electrons. Four of these are used to satisfy the four covalent bonds of the silicon
lattice and the fifth is available to fill an empty state in the conduction band. If silicon is doped
with boron (valency of three, since it is in column III), each boron atom accepts an electron from
the valence band, leaving behind a hole. All impurities introduce additional localized electronic
states into the band structure, often within the forbidden band between EC and EV, as illustrated
in Figure 3.5. If the energy of the state ED introduced by a donor atom is sufficiently close to the
conduction bandedge (within a few kT ), there will be sufficient thermal energy to allow the extra
electron to occupy a state in the conduction band. The donor state will then be positively charged
(ionized) and must be considered when analyzing the electrostatics of the situation. Similarly, an
acceptor atom will introduce a negatively charged (ionized) state at energy EA. The controlled
introduction of donor and acceptor impurities into a semiconductor allows the creation of the
n-type (electrons are the primary carriers of electrical current) and p-type (holes are the primary
carriers of electrical current) semiconductors, respectively. This is the basis for the construction
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Figure 3.5 Donor and acceptor levels in a semiconductor. The nonuniform spatial distribution of
these states reinforces the concept that these are localized states

of all semiconductor devices, including solar cells. The number of ionized donors and acceptors
are given by [7]

N+
D = ND

1 + gDe(EF−ED)/kT
= ND

1 + e(EF−E′
D)/kT

(3.19)

and
N−

A = NA

1 + gAe(EA−EF)/kT
= NA

1 + e(E
′
A−EF)/kT

(3.20)

where gD and gA are the donor and acceptor site degeneracy factors. Typically, gD = 2 and
gA = 4. These factors are normally combined into the donor and the acceptor energies so that
E′
D = ED − kT ln gD and E′

A = EA + kT ln gA. Often, the donors and acceptors are assumed to be
completely ionized so that no � ND no � ND in n-type material and po � NA in p-type material.
The Fermi energy can then be written as

EF = Ei + kT ln
ND

ni
(3.21)

in n-type material and as

EF = Ei − kT ln
NA

ni
(3.22)

in p-type material.

When a very large concentration of dopants is introduced into the semiconductor, the dopants
can no longer be thought of as a minor perturbation to the system. Their effect on the band structure
must be considered. Typically, this so-called heavy doping effect manifests itself as a reduction in
the bandgap, EG, and thus an increase in the intrinsic carrier concentration, as can be seen from
Equation (3.17). This bandgap narrowing (BGN) [8] is detrimental to solar cell performance and
solar cells are typically designed to avoid this effect, though it may be a factor in the heavily doped
regions near the solar cell contacts.

3.2.5 Light Absorption

The creation of electron–hole pairs via the absorption of sunlight is essential to the operation of
solar cells. The excitation of an electron directly from the valence band (which leaves a hole behind)
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to the conduction band is called fundamental absorption . Both the total energy and momentum of
all particles involved in the absorption process must be conserved. Since the photon momentum,
pλ = h/λ, is very small compared with the range of the crystal momentum, p = h/	, the photon
absorption process effectively conserves the momentum of the electron.1 The absorption coefficient
for a given photon energy, hν, is proportional to the probability, P12, of the transition of an electron
from the initial state E1 to the final state E2, the density of electrons in the initial state gV(E1)

and the density of available final states, and is then summed over all possible transitions between
states where E2 − E1 = hν [9],

α(hv) ∝
∑
P12gV(E1)gC(E2), (3.23)

assuming that all the valence-band states are full and all the conduction-band states are empty.
Absorption results in creation of an electron–hole pair since a free electron excited into the con-
duction band leaves a free hole in the valence band.

In direct bandgap semiconductors, such as GaAs, GaInP, CdTe, and Cu(InGa)Se2, the basic
photon absorption process is illustrated in Figure 3.6. Both energy and momentum must be con-
served in the transition. Every initial electron state with energy E1 and crystal momentum p1 in
the valence band is associated with a final state in the conduction band at energy E2 and crystal
momentum p2. Since the electron momentum is conserved, the crystal momentum of the final state
is the same as the initial state, p1 ≈ p2 = p.

Conservation of energy dictates that the energy of the absorbed photon is

hv = E2 − E1 (3.24)

Since we have assumed parabolic bands,

EV − E1 = p2

2m∗
p

(3.25)

and

E2 − EC = p2

2m∗
n

(3.26)

EG

E2
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Band
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E

p
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Figure 3.6 Photon absorption in a direct bandgap semiconductor for an incident photon with
energy hν = E2 − E1>EG

1 The wavelength of sunlight, λ, is of the order of a micrometer (10−4 cm), while the lattice constant is a few
angstroms (10−8 cm). Thus, the crystal momentum is several orders of magnitude larger than the photon momentum.
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Combining Equations (3.25), (3.26), and (3.27) yields

hv − EG = p2

2

(
1

m∗
n

+ 1

m∗
p

)
(3.27)

and the absorption coefficient for direct transitions is [9]

α(hv) ≈ A∗(hv − EG)
1/2, (3.28)

where A∗ is a constant. In some semiconductor materials, quantum selection rules do not allow
transitions at p = 0, but allow them for p = 0. In such cases [9]

α(hv) ≈ B∗

hv
(hv − EG)

3/2, (3.29)

where B∗ is a constant.

In indirect band gap semiconductors such as Si and Ge, where the valence-band maximum
occurs at a different crystal momentum from that of the conduction-band minimum, conservation of
electron momentum necessitates that the photon absorption process involve an additional particle.
Phonons, the particle representation of lattice vibrations in the semiconductor, are suited to this
process because they are low-energy particles with relatively high momentum. This is illustrated
in Figure 3.7. Notice that light absorption is facilitated by either phonon absorption or phonon
emission. The absorption coefficient, when there is phonon absorption, is given by

αa(hv) = A(hv − EG + Eph)2
eEph/kT − 1

(3.30)

and by

αe(hv) = A(hv − EG − Eph)2
1 − e−Eph/kT (3.31)

when a phonon is emitted [9]. Because both processes are possible,

α(hv) = αa(hv)+ αe(hv). (3.32)

phonon absorption

Valence
Band

E2

Conduction
Band

phonon emission

photon
absoption

E1
E

p

Figure 3.7 Photon absorption in an indirect bandgap semiconductor for a photon with energy
hν < E2 − E1 and a photon with energy hν >E2 − E1. Energy and momentum in each case are
conserved by the absorption and emission of a phonon, respectively
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Figure 3.8 Absorption coefficient as a function of photon energy for Si (indirect bandgap) and
GaAs (direct bandgap) at 300 K. Their bandgaps are 1.12 and 1.42 eV, respectively

Since both a phonon and an electron are needed to make the indirect gap absorption process
possible, the absorption coefficient depends not only on the density of full initial electron states
and empty final electron states but also on the availability of phonons (both emitted and absorbed)
with the required momentum. Thus, compared with direct transitions, the absorption coefficient
for indirect transitions is relatively small. As a result, light penetrates more deeply into indirect
bandgap semiconductors than direct bandgap semiconductors. This is illustrated in Figure 3.8 for
Si, an indirect bandgap semiconductor, and GaAs, a direct bandgap semiconductor. Similar spectra
are shown for other semiconductors elsewhere in this handbook.

In both direct bandgap and indirect bandgap materials, a number of photon absorption
processes are involved, though the mechanisms described above are the dominant ones. A direct
transition, without phonon assistance, is possible in indirect bandgap materials if the photon energy
is high enough (as seen in Figure 3.8 for Si at about 3.3 eV). Conversely, in direct bandgap
materials, phonon-assisted absorption is also a possibility. Other mechanisms may also play a role
in determining the optical absorption in semiconductors. These include absorption in the presence
of an electric field (the Franz–Keldysh effect), absorption aided by localized states in the forbidden
gap, and degeneracy effects when a significant number of states in the conduction band are not
empty and/or when a significant number of state in the valence band are not full, as can happen
in heavily doped materials (BGN) and under high-level injection (the Burstein–Moss shift). The
net absorption coefficient is then the sum of the absorption coefficients due to all absorption
processes or

α(hv) =
∑

i

αi(hv). (3.33)

In practice, measured absorption coefficients or empirical expressions for the absorption
coefficient are used in analysis and modeling. Chapter 17 has more details on extracting optical
parameters from measurements and on the relation between optical and electric constants especially
for thin film and conductive oxides, including heavily doped materials.
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The rate of creation of electron–hole pairs (number of electron–hole pairs per cm3 per
second) as a function of position within a solar cell is

G(x) = (1 − s)
∫
λ

(1 − r(λ))f (λ)α(λ)e−αx dλ (3.34)

where s is the grid-shadowing factor, r(λ) is the reflectance, α(λ) is the absorption coefficient,
and f (λ) is the incident photon flux (number of photons incident per unit area per second per
wavelength). The sunlight is assumed to be incident at x = 0. Here, the absorption coefficient has
been cast in terms of the light’s wavelength through the relationship hν = hc/λ. The photon flux,
f (λ), is obtained by dividing the incident power density at each wavelength by the photon energy.

Free-carrier absorption, in which electrons in the conduction band absorb the energy of
a photon and move to an empty state higher in the conduction band (correspondingly for holes
in the valence band), is typically only significant for photons with E < EG since the free-carrier
absorption coefficient increases with increasing wavelength,

αfc ∝ λγ (3.35)

where 1.5 < γ < 3.5 [9]. Thus, in single-junction solar cells, it does not affect the creation of
electron–hole pairs and can be ignored (although free-carrier absorption can be exploited to probe
the excess carrier concentrations in solar cells for the purpose of determining recombination param-
eters [10]). However, free-carrier absorption is a consideration in tandem solar cell systems in which
a wide bandgap (EG1) solar cell is stacked on top of a solar cell of smaller bandgap (EG2 < EG1).
Photons with energy too low to be absorbed in the top cell (hν < EG1) will be transmitted to the
bottom cell and be absorbed there (if hν >EG2). Of course, more solar cells can be stacked as
long as EG1>EG2>EG3 . . . , and so on. The number of photons transmitted to the next cell in
the stack will be reduced by whatever amount of free-carrier absorption occurs. This loss can be
avoided by splitting the incident spectrum and directing the matched portion of the spectrum to
each component solar cell of a multijuction system [11]. Multijunction solar cells are discussed
more completely in Chapters 8 and 12.

3.2.6 Recombination

When a semiconductor is taken out of thermal equilibrium, for instance by illumination and/or
the injection of current, the concentrations of electrons (n) and holes (p) tend to relax back
toward their equilibrium values through a process called recombination in which an electron falls
from the conduction band to the valence band, thereby eliminating a valence-band hole. There
are several recombination mechanisms important to the operation of solar cells – recombination
through traps (defects) in the forbidden gap, radiative (band-to-band) recombination, and Auger
recombination – that will be discussed here. These three processes are illustrated in Figure 3.9.

The net recombination rate per unit volume per second through a single level trap
(SLT) located at energy E = ET within the forbidden gap, also commonly referred to as
Shockley–Read–Hall recombination , is given by [12]

RSLT = pn− n2
i

τSLT,n(p + nie(Ei−ET)/kT )+ τSLT,p(n+ nie(ET−Ei)/kT )
. (3.36)

The carrier lifetimes are given by

τSLT = 1

σvthNT
(3.37)
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Figure 3.9 Recombination processes in semiconductors

where σ is the capture cross-section (σn for electrons and σp for holes), vth is the thermal velocity
of the carriers, and NT is the concentration of traps. The capture cross-section can be thought of
as the size of the target presented to a carrier traveling through the semiconductor at velocity vth.
Small lifetimes correspond to high rates of recombination. If a trap presents a large target to the
carrier, the recombination rate will be high (low carrier lifetime). When the velocity of the carrier
is high, it has more opportunity within a given time period to encounter a trap and the carrier
lifetime is low. Finally, the probability of interaction with a trap increases as the concentration of
traps increases and the carrier lifetime is therefore inversely proportional to the trap concentration.

Some reasonable assumptions allow Equation (3.36) to be simplified. If the material is
p-type (p ≈ po � no), in low injection (no ≤ n� po), and the trap energy is near the middle of
the forbidden gap (ET ≈ Ei), the recombination rate can be written as

RSLT ≈ n− no
τSLT,n

. (3.38)

Notice that the recombination rate is solely dependent on the minority carrier. This is
reasonable since there are far fewer minority carriers than majority carriers and one of each is
necessary for there to be recombination.

If high-injection conditions prevail (p ≈ n� po, no),

RSLT ≈ n

τSLT,p + τSLT,n
≈ p

τSLT,p + τSLT,n
. (3.39)

In this case, the effective recombination lifetime is the sum of the two carrier lifetimes.
While the recombination rate is high due to the large number of excess holes and electrons, the
carrier lifetime is actually longer than in the case of low injection. This can be of significance in the
base region of solar cells, especially concentrator cells (solar cells illuminated with concentrated
sunlight), since the base is the least doped layer.

Radiative (band-to-band) recombination is simply the inverse of the optical generation
process and is much more efficient in direct bandgap semiconductors than in indirect bandgap
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semiconductors. When radiative recombination occurs, the energy of the electron is given to an
emitted photon – this is how semiconductor lasers and light emitting diodes (LEDs) operate. In an
indirect bandgap material, some of that energy is shared with a phonon. The net recombination rate
due to radiative processes is given as

Rλ = B(pn − n2
i ) (3.40)

If we have an n-type (n ≈ no � po) semiconductor in low injection (po ≤ p � no), the
net radiative recombination rate can be written in terms of an effective lifetime, τλ,p,

Rλ ≈ p − po
τλ,p

(3.41)

where

τλ,p = 1

noB
. (3.42)

A similar expression can be written for p-type semiconductors. If high-injection conditions
prevail (p ≈ n� po, no), then

Rλ ≈ Bp2 ≈ Bn2. (3.43)

Since photons with energies near that of the bandgap are emitted during this recombination
process, it is possible for these photons to be reabsorbed before exiting the semiconductor. A well-
designed direct bandgap solar cell can take advantage of this photon recycling and increase the
effective lifetime [13].

Auger recombination is somewhat similar to radiative recombination, except that the energy
of transition is given to another carrier (in either the conduction band or the valence band), as
shown in Figure 3.9. This electron (or hole) then relaxes thermally (releasing its excess energy and
momentum to phonons). Just as radiative recombination is the inverse process to optical absorption,
Auger recombination is the inverse process to impact ionization , where an energetic electron collides
with a crystal atom, breaking the bond and creating an electron–hole pair. The net recombination
rate due to Auger processes is

RAuger = (Cnn+ Cpp)(pn− n2
i ) (3.44)

In an n-type material in low injection (and assuming Cn and Cp are of comparable magni-
tudes), the net Auger recombination rate becomes

RAuger ≈ p − po
τAuger,p

(3.45)

with

τAuger,p = 1

Cnn2
o

. (3.46)

A similar expression can be derived for minority electron lifetime in p-type material. If
high-injection conditions prevail (p ≈ n� po, no), then

RAuger ≈ (Cn + Cp)p3 ≈ (Cn + Cp)n3 (3.47)
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While the SLT recombination rate can be minimized by reducing the density of single-
level traps and the radiative recombination rate can be minimized via photon recycling, the Auger
recombination rate is a fundamental property of the semiconductor.

Each of these recombination processes occurs in parallel. And, there can be multiple and/or
distributed traps2 in the forbidden gap – in which case the net recombination is a sum of the
contributions of each trap (

∑
traps i

RSLT,i ). Thus, the total recombination rate is the sum of rates due

to each process

R =

∑

traps i

RSLT,i


+ Rλ + RAuger. (3.48)

An effective minority-carrier lifetime for a doped material in low-level injection is given as

1

τ
=

∑

traps i

1

τSLT,i


+ 1

τλ
+ 1

τAuger
. (3.49)

The distribution of traps in the energy gap for semiconductor materials can be influenced
by the specific growth or processing conditions, impurities, and crystallographic defects.

Interfaces between two dissimilar materials, such as those that occur at the front surface of
a solar cell, have a high concentration of defects due to the abrupt termination of the crystal lattice.
These manifest themselves as a continuum of traps (surface states) within the forbidden gap at the
surface and electrons and holes can recombine through them just as with bulk traps. These surface
states are illustrated in Figure 3.10. Rather than giving a recombination rate per unit volume per
second, surface states give a recombination rate per unit area per second. A general expression for
surface recombination is [12]

RS =
∫ EC

EV

pn− n2
i

(p + nie(Ei−Et)/kT )/sn(Et)+ (n+ nie(Et−Ei)/kT )/sp(Et)
DΠ(Et) dEt (3.50)

where Et is the trap energy, DΠ(Et) is the surface state (the concentration of traps is probably
varies with trap energy), and sn(Et) and sp(Et) are surface recombination velocities, analogous
to the carrier lifetimes for bulk traps. The surface recombination rate is generally written, for
simplicity, as [12]

RS = Sp(p − po) (3.51)

in n-type material and as

RS = Sn(n− no) (3.52)

in p-type material. Sp and Sn are effective surface recombination velocities. It should be mentioned
that these effective recombination velocities are not necessarily constants independent of carrier
concentration, though they are commonly treated as such.

2 It is unlikely that more than one trap will be involved in a single recombination event since the traps are spatially
separated.
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Figure 3.10 Illustration of surface states at a semiconductor surface or interface between dissim-
ilar materials such as a semiconductor and an insulator (i.e., antireflective coating), two different
semiconductors (heterojunction) or a metal and a semiconductor (Schottky contact)

3.2.7 Carrier Transport

As has already been established, electrons and holes in a semiconductor behave much like a free
particle of the same electronic charge with effective masses of m∗

n and m∗
p, respectively. Thus, they

are subject to the classical processes of drift and diffusion. Drift is a charged particle’s response to
an applied electric field. When an electric field is applied across a uniformly doped semiconductor,
the bands bend upward in the direction of the applied electric field. Electrons in the conduction
band, being negatively charged, move in the opposite direction to the applied field and holes
in the valence band, being positively charged, move in the same direction as the applied field
(Figure 3.11) – in other words, electrons sink and holes float . This is a useful conceptual tool for
analyzing the motion of holes and electrons in semiconductor devices.

With nothing to impede their motion, the holes and electrons would continue to accelerate
without bound. However, the semiconductor crystal is full of objects with which the carriers collide
and are scattered. These objects include the component atoms of the crystal, dopant ions, crystal
defects, and even other electrons and holes. On a microscopic scale, their motion is much like that of
a ball in pinball machine, the carriers are constantly bouncing (scattering) off objects in the crystal,

EC

EV

direction of
electric field

+ −

Figure 3.11 Illustration of the concept of drift in a semiconductor. Note that electrons and holes
move in opposite directions. The electric field can be created by the internal built-in potential of
the junction or by an externally applied bias voltage
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but generally moving in the direction prescribed by the applied electric field, �E = −∇φ, where
φ is the electrostatic potential. The net effect is that the carriers appear to move, on a macroscopic
scale, at a constant velocity, vd, the drift velocity. The drift velocity is directly proportional to the
electric field

|�vd | =
∣∣∣µ �E

∣∣∣ = |µ∇φ| (3.53)

where µ is the carrier mobility. The carrier mobility is generally independent of the electric field
strength unless the field is very strong, a situation not typically encountered in solar cells. The drift
current densities for holes and electrons can be written as

�J drift
p = qp�vd,p = qµpp �E = −qµpp∇φ (3.54)

and

�J drift
n = −qn�vd,n = qµnn �E = −qµnn∇φ. (3.55)

The most significant scattering mechanisms in solar cells are lattice (phonon) and ionized
impurity scattering. These component mobilities can be written as

µL = CLT
−3/2 (3.56)

for lattice scattering and as

µI = CIT
3/2

N+
D +N−

A

(3.57)

for ionized impurity scattering. These can then be combined using Mathiessen’s rule to give the
carrier mobility [14]

1

µ
= 1

µL
+ 1

µI
. (3.58)

This is a first-order approximation that neglects the velocity dependencies of the scattering
mechanisms. These two types of mobility can be distinguished experimentally by their different
dependencies on temperature and doping. A better approximation is [14]

µ = µL

[
1 +

(
6µL

µI

)(
Ci

(
6µL

µI

)
cos

(
6µL

µI

)
+
[

Si

(
6µL

µI

)
− π

2

]
sin

(
6µL

µI

))]
, (3.59)

where Ci and Si (not to be confused with the abbreviation for silicon) are the cosine and sine
integrals, respectively.

When modeling solar cells, it is more convenient to use measured data or empirical formulas.
Carrier mobilities in Si at 300 K are well approximated by [14]

µn = 92 + 1268

1 +
(
N+

D +N−
A

1.3 × 1017

)0.91 cm2/V − s (3.60)

µp = 54.3 + 406.9

1 +
(
N+

D +N−
A

2.35 × 1017

)0.88 cm2/V − s (3.61)

and are plotted in Figure 3.12. At low impurity levels, the mobility is governed by intrinsic lattice
scattering, while at high levels the mobility is governed by ionized impurity scattering.
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Figure 3.12 Electron and hole mobilities in silicon for T = 300 K

Electrons and holes in semiconductors tend, as a result of their random thermal motion,
to move (diffuse) from regions of high concentration to regions of low concentration. Much like
the way the air in a balloon is distributed evenly within the volume of the balloon, carriers,
in the absence of any external forces, will also tend to distribute themselves evenly within the
semiconductor. This process is called diffusion and the diffusion current densities are given by

�J diff
p = −qDp∇p (3.62)

�J diff
n = qDn∇n (3.63)

whereDp andDn are the hole and electron diffusion coefficients, respectively. Note that the currents
are driven by the gradient of the carrier densities.

In thermal equilibrium, there can be no net hole current and no net electron current – in
other words, the drift and diffusion currents must exactly balance. In nondegenerate materials, this
leads to the Einstein relationship

D

µ
= kT

q
(3.64)

and allows the diffusion coefficient to be directly computed from the mobility. Generalized forms
of the Einstein relationship, valid for degenerate materials, are

Dn

µn
= 1

q
n

[
dn

dEF

]−1

(3.65)

and

Dp

µp
= − 1

q
p

[
dp

dEF

]−1

. (3.66)

The diffusion coefficient actually increases when degeneracy effects come into play.
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The total hole and electron currents (vector quantities) are the sum of their drift and diffusion
components

�Jp = �J drift
p + �J diff

p = qµpp �E − qDp∇p = −qµpp∇φ − qDp∇p (3.67)

�Jn = �J drift
n + �J diff

n = qµnn �E + qDn∇n = −qµnn∇φ + qDn∇n (3.68)

The total current is then

�J = �Jp + �Jn + �Jdisp (3.69)

where �Jdisp is the displacement current given by

�Jdisp = ∂ �D
∂t
. (3.70)

�D = ε �E is the dielectric displacement field, where ε is the electric permittivity of the semiconductor.
The displacement current can be neglected in solar cells since they are static (dc) devices.

3.2.8 Semiconductor Equations

The operation of most semiconductor devices, including solar cells, can be described by the so-called
semiconductor device equations, first described by Van Roosbroeck in 1950 [15]. A generalized
form of these equations is given here.3

∇ · ε �E = q(p − n+N) (3.71)

This is a form of Poisson’s equation, where N is the net charge due to dopants and other
trapped charges. The hole and electron continuity equations are

∇ · �Jp = q

(
G− Rp − ∂p

∂t

)
(3.72)

∇ · �Jn = q

(
Rn −G+ ∂n

∂t

)
(3.73)

where G is the optical generation rate of electron–hole pairs. Thermal generation is included in
Rp and Rn. The hole and electron current densities are given by (Equations 3.67 and 3.68)

�Jp = −qµpp∇(φ − φp)− kT µp∇p (3.74)

and

�Jn = −qµnn∇(ϕ + ϕn)+ kT µn∇n. (3.75)

Two new terms, φp and φn, have been introduced here. These are the so-called band param-
eters that account for degeneracy and a spatially varying bandgap (heterostructure solar cells) and
electron affinity [17]. These terms were ignored in the preceding discussion and can usually be
ignored in nondegenerate homostructure solar cells.

3 In some photovoltaic materials such as GaInN, polarization is important and Poisson’s equation becomes
∇ · (ε �E + �P) = q(p − n+N), where �P is the polarization [16].
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The intent here is to derive a simple analytic expression for the current–voltage characteristic
of a solar cell, and so some simplifications are in order. It should be noted, however, that a complete
description of the operation of solar cells can be obtained by solving the full set of coupled partial
differential equations, Equations (3.71–3.75). The numerical solution of these equations is briefly
addressed later in this chapter.

3.2.9 Minority-carrier Diffusion Equation

In a uniformly doped semiconductor, the bandgap and electric permittivity are independent of
position. Since the doping is uniform, the carrier mobilities and diffusion coefficients are also
independent of position. As we are mainly interested in the steady-state operation of the solar cell,
the semiconductor equations reduce to

d �E
dx

= q

ε
(p − n+ND −NA) (3.76)

qµp
d

dx
(p �E)− qDp d2p

dx2
= q(G− R) (3.77)

and

qµn
d

dx
(n �E)+ qDn d2n

dx2
= q(R −G) (3.78)

In regions sufficiently far from the pn-junction of the solar cell (quasi-neutral regions), the
electric field is very small. When considering the minority carrier (holes in the n-type material and
electrons in the p-type material) and low-level injection (∆p = ∆n� ND, NA), the drift current
can be neglected with respect to the diffusion current. Under low-level injection, R simplifies to

R = nP − nPo
τn

= ∆nP

τn
(3.79)

in the p-type region and to

R = pN − pNo
τp

= ∆pN

τp
(3.80)

in the n-type region. ∆pN and ∆nP are the excess minority-carrier concentrations. The minority-
carrier lifetimes, τn and τp, are given by Equation (3.49). For clarity, the capitalized subscripts, P
and N , are used to indicate quantities in p-type and n-type regions, respectively, when it may not
be otherwise apparent. Lowercase subscripts, p and n, refer to quantities associated with minority
holes and electrons, respectively. For example, ∆nP is the minority electron concentration in the
p-type material.

Thus, Equations (3.77) and (3.78) each reduce to what is commonly referred to as the
minority-carrier diffusion equation . It can be written as

Dp
d2∆pN

dx2
− ∆pN

τp
= −G(x) (3.81)

in n-type material and as

Dn
d2∆nP

dx2
− ∆nP

τn
= −G(x) (3.82)
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in p-type material. The minority-carrier diffusion equation is often used to analyze the operation
of semiconductor devices, including solar cells, and will be used in this way later in this chapter.

3.2.10 pn-junction Diode Electrostatics

Where an n-type semiconductor comes into contact with a p-type semiconductor, a pn-junction is
formed. In thermal equilibrium there is no net current flow and by definition the Fermi energy must
be independent of position. Since there is a concentration difference of holes and electrons between
the two types of semiconductors, holes diffuse from the p-type region into the n-type region and,
similarly, electrons from the n-type material diffuse into the p-type region. As the carriers diffuse,
the charged impurities (ionized acceptors in the p-type material and ionized donors in the n-type
material) are uncovered – that is, they are no longer screened by the majority carrier. As these
impurity charges are uncovered, an electric field (or electrostatic potential difference) is produced,
which counteracts the diffusion of the holes and electrons. In thermal equilibrium, the diffusion and
drift currents for each carrier type exactly balance, so there is no net current flow. The transition
region between the n-type and the p-type semiconductors is called the space-charge region . It is
also often called the depletion region , since it is effectively depleted of both holes and electrons.
Assuming that the p-type and the n-type regions are sufficiently thick, the regions on either side of
the depletion region are essentially charge-neutral (often termed quasi-neutral ). The electrostatic
potential difference resulting from the junction formation is called the built-in voltage, Vbi. It arises
from the electric field created by the exposure of the positive and the negative space charge in the
depletion region.

The electrostatics of this situation (assuming a single acceptor and a single donor level) are
governed by Poisson’s equation

∇2φ = q

ε
(no − po +N−

A −N+
D ) (3.83)

where φ is the electrostatic potential, q is magnitude of the electron charge, ε is the electric
permittivity of the semiconductor, po is the equilibrium hole concentration, no is the equilibrium
electron concentration, N−

A is the ionized acceptor concentration, and N+
D is the ionized donor

concentration. Equation (3.83) is a restatement of Equation (3.71) for the given conditions.

This equation is easily solved numerically; however, an approximate analytic solution for
an abrupt pn-junction can be obtained that lends physical insight into the formation of the space-
charge region. Figure 3.13 depicts a simple one-dimensional (1D) pn-junction solar cell (diode),
with the metallurgical junction at x = 0, which is uniformly doped, with a doping density of ND

on the n-type side and of NA on the p-type side. For simplicity, it is assumed that the each side is
nondegenerately doped and that the dopants are fully ionized. In this example, the n-type side is
assumed to be more heavily doped (n+) than the p-type side.

Within the depletion region, defined by −xN < x < xP , it can be assumed that po and no
are both negligible compared to |NA −ND| so that Equation (3.83) can be simplified to

∇2φ = −q
ε
ND, for − xN < x < 0 and

∇2φ = q

ε
NA, for 0 < x < xP (3.84)

Outside the depletion region, charge neutrality is assumed and

∇2φ = 0, for x ≤ −xN and x ≥ xP . (3.85)
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Figure 3.13 Simple solar cell structure used to analyze the operation of a solar cell. Free carriers
have diffused across the junction (x = 0) leaving a space-charge or depletion region practically
devoid of any free or mobile charges. The fixed charges in the depletion region are due to ionized
donors on the n-side and ionized acceptors on the p-side

This is commonly referred to as the depletion approximation . The regions on either side of the
depletion regions are the quasi-neutral regions.

The electrostatic potential difference across the junction is the built-in voltage, Vbi, and can
be obtained by integrating the electric field, �E = −∇φ.

∫ xP

−xN
�Edx = −

∫ xP

−xN

dφ

dx
dx = −

∫ V (xP )

V (−xN )
dφ = φ(−xN)− φ(xP ) = Vbi (3.86)

Solving Equations (3.84) and (3.85) and defining φ(xP ) = 0, gives

φ(x) =




Vbi, x ≤ −xN
Vbi − qND

2ε
(x + xN)2, −xN < x ≤ 0

qNA

2ε
(x − xP )2, 0 ≤ x < xP

0, x ≥ xP

(3.87)

The electrostatic potential must be continuous at x = 0. Therefore, from Equation (3.87),

Vbi − qND

2ε
x2
N = qNA

2ε
x2
P (3.88)

In the absence of any interface charge at the metallurgical junction, the electric field is also
continuous at this point (really, it is the displacement field, �D = ε �E, that is continuous, but in this
example, ε is independent of position), and

xNND = xPNA (3.89)

This is simply a statement that the total charge in either side of the depletion region exactly
balance each other and therefore the depletion region extends furthest into the more lightly
doped side.
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Solving Equations (3.88) and (3.89) for the depletion width, WD, gives4

WD = xN + xP =
√

2ε

q

(
NA +ND

NAND

)
Vbi. (3.90)

Under nonequilibrium conditions, the electrostatic potential difference across the junction
is modified by the applied voltage V which is zero in thermal equilibrium. As a consequence, the
depletion width is dependent on the applied voltage,

WD(V ) = xN + xP =
√

2ε

q

(
NA +ND

NAND

)
(Vbi − V ). (3.91)

As previously stated, the built-in voltage, Vbi, can be calculated by noting that, under thermal
equilibrium, the net hole and electron currents are zero. The hole current density is

�Jp = qµppo �E − qDp∇p = 0. (3.92)

Thus, in 1D and utilizing the Einstein relationship, the electric field can be written as

�E = kT

q

1

po

dpo
dx

(3.93)

Rewriting Equation (3.86) and substituting Equation (3.93) yields

Vbi =
∫ xP

−xN
E�dx =

∫ xP

−xN

kT

q

1

po

dpo
dx

dx = kT

q

∫ po(xP )

po(−xN )

dpo
po

= kT

q
ln

[
po(xP )

po(−xN)
]

(3.94)

Since we have assumed nondegeneracy, po(xP ) = NA and po(−xN) = n2
i /ND. Therefore,

Vbi = kT

q
ln

[
NDNA

n2
i

]
. (3.95)

Figure 3.14 shows the equilibrium energy band diagram (a), electric field (b), and charge
density (c) for a simple abrupt pn-junction silicon diode in the vicinity of the depletion region.
The conduction band edge is given by EC(x) = E0 − qφ(x)− χ , the valence band edge by
EV(x) = EC(x)− EG, and the intrinsic energy by Equation (3.18). E0, defined as the vacuum
energy, serves as a convenient reference point and is universally constant with position. An elec-
tron at the vacuum energy is, by definition, completely free of influence from all external forces.
The electron affinity χ is the minimum energy needed to free an electron from the bottom of the
conduction band and take it to the vacuum level. The electric field is a result of the uncovered
ionized donors and acceptors, and opposes the diffusion of electrons and holes in the quasi-
neutral regions. The charge density plot illustrates the balance of charge between the two sides

4 A somewhat more rigorous treatment of equation 3.89 would yield a factor of 2kT/q which is ∼50 mV at
300 K, or

WD =
√

2ε

q

(
NA +ND

NAND

)
(Vbi − 2kT /q) [3].
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Figure 3.14 Equilibrium conditions in a solar cell: (a) energy bands; (b) electric field; (c) charge
density

of the depletion region. In heterostructures, both the bandgap and the electron affinity are position-
dependent – making the calculation of the junction electrostatics and energy band diagram more
complex, as discussed in Section 3.4.8.

3.2.11 Summary

The fundamental physical principles relevant to solar cell operation have been reviewed and the
basic solar cell structure has now been established (Figures 3.1 and 3.13). A solar cell is simply
a pn-junction diode consisting of two quasi-neutral regions on either side of a depletion region
with an electrical contact made to each quasi-neutral region. Typically, the more heavily doped
quasi-neutral region is called the emitter (the n-type region in Figure 3.13) and the more lightly
doped region is called the base (the p-type region in Figure 3.13). The base region is also often
referred to as the absorber region since the emitter region is usually very thin and most of the
light absorption occurs in the base. This basic structure will now serve as the basis for deriving the
fundamental operating characteristics of the solar cell.

3.3 SOLAR CELL FUNDAMENTALS

The basic current–voltage characteristic of the solar cell can be derived by solving the minority-
carrier diffusion equation with appropriate boundary conditions.
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3.3.1 Solar Cell Boundary Conditions

In Figure 3.13, at x = −WN , the usual assumption is that the front contact can be treated as an
ideal ohmic contact, i.e.

∆p(−WN) = 0. (3.96)

However, since the front contact is usually a grid with metal contacting the semiconductor
on only a small percentage of the front surface, modeling the front surface with an effective surface
recombination velocity is more realistic. This effective recombination velocity models the combined
effects of the ohmic contact and the antireflective passivation layer (SiO2 in silicon solar cells). In
this case, the boundary condition at x = −WN is

d∆p

dx
= SF,eff

Dp
∆p(−WN) (3.97)

where SF,eff is the effective front surface recombination velocity. As SF,eff → ∞, ∆p → 0, and
the boundary condition given by Equation (3.97) reduces to that of an ideal ohmic contact
(Equation 3.96). In reality, SF,eff depends upon a number of parameters and is bias dependent.
This will be discussed in more detail later.

The back contact can also be treated as an ideal ohmic contact, so that

∆n(WP ) = 0. (3.98)

However, solar cells are often fabricated with a back-surface field (BSF), a thin, more heavily doped
region at the back of the base region. An even more effective BSF can be created by inserting a
wider bandgap semiconductor material at the back of the solar cell (a heterojunction). The BSF
keeps minority carriers away from the back ohmic contact and increases their chances of being
collected and it can be modeled by an effective, and relatively low, surface recombination velocity.
This boundary condition is then

d∆n

dx

∣∣∣∣
x=WP

= −SBSF

Dn
∆n(WP ), (3.99)

where SBSF is the effective surface recombination velocity at the BSF.

All that remains now is to determine suitable boundary conditions at x = −xN and x = xP .
These boundary conditions are commonly referred to as the law of the junction .

Under equilibrium conditions, zero applied voltage and no illumination, the Fermi energy,
EF, is constant with position. When a bias voltage is applied, it is convenient to introduce the
concept of quasi-Fermi energies. It was shown earlier that the equilibrium carrier concentrations
could be related to the Fermi energy (Equations 3.14 and 3.15). Under nonequilibrium conditions,
similar relationships hold. Assuming the semiconductor is nondegenerate,

p = nie
(Ei−FP )/kT (3.100)

and

n = nie
(FN−Ei)/kT (3.101)

It is evident that, under equilibrium conditions, FP = FN = EF. Under nonequilibrium
conditions, assuming that the majority carrier concentrations at the contacts retain their equilibrium
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values, the applied voltage can be written as

qV = FN(−WN)− FP (WP ) (3.102)

Since, in low-level injection, the majority carrier concentrations are essentially con-
stant throughout the quasi-neutral regions, that is, pP (xP ≤ x ≤ WP ) = NA and nN(−WN ≤
x ≤ −xN) = ND, FN(−WN) = FN(−xN) and FP (WP ) = FP (xP ). Then, assuming that both the
quasi-Fermi energies remain constant inside the depletion region,

qV = FN(x)− FP (x) (3.103)

for −xN ≤ x ≤ xP , that is, everywhere inside the depletion region. Using Equations (3.100) and
(3.101), this leads directly to the law of the junction , the boundary conditions used at the edges of
the depletion region,

pN(−xN) = n2
i

ND
eqV /kT (3.104)

and

nP (xP ) = n2
i

NA
eqV /kT . (3.105)

3.3.2 Generation Rate

For light incident at the front of the solar cell, x = −WN , the optical generation rate takes the form
(see Equation 3.34)

G(x) = (1 − s)
∫
λ

(1 − r(λ))f (λ)α(λ)e−α(x+WN) dλ. (3.106)

Essentially, only photons with λ ≤ hc/EG contribute to the generation rate.

3.3.3 Solution of the Minority-carrier Diffusion Equation

Using the boundary conditions defined by Equations (3.97), (3.99), (3.104), and (3.105) and the
generation rate given by Equation (3.106), the solution to the minority-carrier diffusion equation,
Equations (3.81) and (3.82), is easily shown to be

∆pN(x) = AN sinh[(x + xN)/Lp] + BN cosh[(x + xN)/Lp] +∆p′
N(x) (3.107)

in the n-type region and

∆nP (x) = AP sinh[(x − xP )/Ln] + BP cosh[(x − xP )/Ln] +∆n′
P (x) (3.108)

in the p-type region. The particular solutions, ∆p′
N(x) and ∆n′

P (x), due to G(x) are given by

∆p′
N(x) = −(1 − s)

∫
λ

τp

(L2
pα

2 − 1)
[1 − r(λ)]f (λ)α(λ)e−α(x+WN) dλ (3.109)

and

∆n′
P (x) = −(1 − s)

∫
λ

τn

(L2
nα

2 − 1)
[1 − r(λ)]f (λ)α(λ)e−α(x+WN) dλ. (3.110)



SOLAR CELL FUNDAMENTALS 109

Using the boundary conditions set above, AN,BN,AP , and BP in Equations (3.107) and (3.108)
are readily solved for and are needed to obtain the diode current–voltage (I –V ) characteristics.

3.3.4 Derivation of the Solar Cell I –V Characteristic

The minority-carrier current densities in the quasi-neutral regions are just the diffusion currents,
because the electric field is negligible. Using the active sign convention for the current (since a
solar cell is typically thought of as a battery) gives

�Jp,N (x) = −qDp d∆pN
dx

(3.111)

and

�Jn,P (x) = qDn d∆nP
dx

(3.112)

The total current is given by

I = A[Jp(x)+ Jn(x)] (3.113)

and is true everywhere within the solar cell (A is the area of the solar cell). Equations (3.111)
and (3.112) give only the hole current in the n-type region and the electron current in the p-type
region, not both at the same point. However, integrating Equation (3.73), the electron continuity
equation, over the depletion region, gives∫ xP

−xN

d �Jndx
dx

dx = �Jn(xP )− �Jn(−xN) = q
∫ xP

−xN
[R(x)−G(x)]dx (3.114)

G(x) is easily integrated and the integral of the recombination rate can be approximated by
assuming that the recombination rate is constant within the depletion region and is R(xm) where xm
is the point at which pD(xm) = nD(xm) and corresponds to the maximum recombination rate in the
depletion region. If recombination via a midgap single level trap is assumed, then, from Equations
(3.36), (3.100), (3.101), and (3.103), the recombination rate in the depletion region is

RD = pDnD − n2
i

τn(pD + ni)+ τp(nD + ni)
= n2

D − n2
i

(τn + τp)(nD + ni)
= nD − ni

(τn + τp) = ni(eqV /2kT − 1)

τD

(3.115)

where τD is the effective lifetime in the depletion region. From Equation (3.114), �Jn(−xN), the
majority carrier current at x = −xN , can now be written as

�Jn(−xN) = �Jn(xP )+ q
∫ xP

−xN
G(x) dx − q

∫ xP

−xN
RD dx

= �Jn(xP )+ q(1 − s)
∫
λ

[1 − r(λ)]f (λ)e[−α(WN−xN )−e−α(WN+xP )] dλ

−qWDni

τD
(eqV /2kT − 1) (3.116)

where WD = xP + xN . Substituting into Equation (3.113), the total current is now

I = A
[
Jp(−xN)+ Jn(xP )+ JD − qWDni

τD
(eqV /2kT − 1)

]
(3.117)
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where

JD = q(1 − s)
∫
λ

[1 − r(λ)]f (λ)(e−α(WN−xN ) − e−α(WN+xP )) dλ (3.118)

is the generation current density from the depletion region and A is the area of the solar cell. The
last term of Equation (3.117) represents recombination in the space-charge region.

The solutions to the minority-carrier diffusion equation, Equations (3.107) and (3.108), can
be used to evaluate the minority-carrier current densities, Equations (3.111) and (3.112). These can
then be substituted into Equation (3.117), which, with some algebraic manipulation, yields the solar
cell current–voltage characteristic

I = ISC − Io1(eqV /kT − 1)− Io2(eqV /2kT − 1). (3.119)

where ISC is the short-circuit current and is the sum of the contributions from each of the three
regions: the n-type region (ISCN), the depletion region (ISCD = AJ D), and the p-type region (ISCP )

ISC = ISCN + ISCD + ISCP (3.120)

where

ISCN = qADp


∆p

′ (−xN)Tp1 − SF,eff∆p
′(−WN)+Dp d∆p′

dx

∣∣∣
x=−WN

LpTp2
− d∆p′

dx

∣∣∣∣
x=−xN


 (3.121)

with

Tp1 = Dp/Lp sinh[(WN − xN/Lp] + SF,eff cosh[(WN − xN/Lp] (3.122)

Tp2 = Dp/Lp cosh[(WN − xN/Lp] + SF,eff sinh[(WN − xN/Lp] (3.123)

and

ISCP = qADn


∆n

′(xP )Tn1 − SBSF∆n
′(WP )−Dn d∆n′

dx

∣∣∣
x=WP

LnTn2
+ d∆n′

dx

∣∣∣∣
x=xP


 (3.124)

with

Tn1 = Dn/Ln sinh[(WP − xP )/Ln] + SBSF cosh[(WP − xP )/Ln] (3.125)

Tn2 = Dn/Ln cosh[(WP − xP )/Ln] + SBSF sinh[(WP − xP )/Ln] (3.126)

Io1 is the dark saturation current due to recombination in the quasi-neutral regions,

Io1 = Io1,p + Io1,n (3.127)

with

Io1,p = qA n
2
i

ND

Dp

Lp

{
Dp/Lp sinh[(WN − xN)/Lp] + SF,eff cosh[(WN − xN/Lp]

Dp/Lp cosh[(WN − xN)/Lp] + SF,eff sinh[(WN − xN/Lp]

}
(3.128)
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and

Io1,n = qA
n2

i

NA

Dn

Ln

{
Dn/Ln sinh[(WP − xP )/Ln] + SBSF cosh[(WP − xP /Ln]
Dn/Ln cosh[(WP − xP )/Ln] + SBSF sinh[(WP − xP /Ln]

}
(3.129)

These are very general expressions for the dark saturation current and reduce to more
familiar forms when appropriate assumptions are made, as will be seen later.

Io2 is the dark saturation current due to recombination in the space-charge region,

Io2 = qAWDni

τD
(3.130)

and is bias-dependent since the depletion width, WD, is a function of the applied voltage
(Equation 3.91).

3.3.5 Interpreting the Solar Cell I –V Characteristic

Equation (3.119), repeated here, is a general expression for the current produced by a solar cell.

I = ISC − Io1(eqV /kT − 1)− Io2(eqV /2kT − 1) (3.131)

The short-circuit current and dark saturation currents are given by rather complex expres-
sions (Equations 3.120, 3.127, 3.128, 3.129, and 3.130) that depend on the solar cell structure,
material properties, and the operating conditions. A full understanding of solar cell operation
requires detailed examination of these terms. However, much can be learned about solar cell oper-
ation by examining the basic form of Equation (3.131). From a circuit perspective, it is apparent
that a solar cell can be modeled by an ideal current source ISC in parallel with two diodes – one
with an ideality factor of 1 and the other with an ideality factor of 2, as shown in Figure 3.15.
Note that the direction of the current source is such that it serves to forward-bias the diodes.

The current–voltage (I –V ) characteristic of a typical silicon solar cell is plotted in
Figure 3.16 for the parameter values given in Table 3.2. Note that it is the minority-carrier
properties which determine the solar cell behavior, as indicated by Equations (3.119–3.129). For
simplicity, the dark current due to the depletion region (diode 2) has been ignored (a reasonable
and common assumption for a good solar cell, especially at larger forward biases). It illustrates
several important figures of merit for solar cells – the short-circuit current, the open-circuit voltage,

ISC
1 2 V

I

+

−

Figure 3.15 Simple solar cell circuit model. Diode 1 represents the recombination current in the
quasi-neutral regions (∝ eqV/kT ), while diode 2 represents recombination in the depletion region
(∝ eqV/2kT )
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Figure 3.16 Current–voltage characteristic calculated for the silicon solar cell defined by Table 3.2
(area A = 100 cm2)

Table 3.2 Si solar cell model parameters

Parameter n-type Si emitter p-type Si base

Thickness WN = 0.35 µm WP = 300 µm

Doping density ND = 1 × 1020 cm−3 NA = 1 × 1015 cm−3

Surface recombination Dp = 1.5 cm−2/V s Dn = 35 cm−2/V s

Minority-carrier diffusivity SF,eff = 3 × 104 cm/s SBSF = 100 cm/s

Minority-carrier lifetime τp = 1 µs τn = 350 µs

Minority-carrier diffusion length Lp = 12 µm Ln = 1100 µm

and the fill factor. At small applied voltages, the diode current is negligible and the current is just
the short-circuit current, ISC, as can be seen when V is set to zero in Equation (3.131). When
the applied voltage is high enough so that the diode current (recombination current) becomes
significant, the solar cell current drops quickly.

Table 3.2 shows the huge asymmetry between the n-emitter and the p-base in a typical
solar cell. The emitter is ∼1000 times thinner, 10 000 times more heavily doped, and its diffusion
length is ∼100 times shorter than the corresponding quantities in the base.

At open-circuit (I = 0), all the light-generated current ISC is flowing through diode 1 (diode
ignored, as assumed above), so the open-circuit voltage can be written as

VOC = kT

q
ln
ISC + Io1
Io1

≈ kT

q
ln
ISC

Io1
, (3.132)

where ISC � Io1.
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Of particular interest is the point on the I –V curve where the power produced is at a
maximum. This is referred to as the maximum power point with V = VMP and I = IMP. As seen
in Figure 3.16, this point defines a rectangle whose area, given by PMP = VMPIMP, is the largest
rectangle for any point on the I –V curve. The maximum power point is found by solving

∂P

∂V

∣∣∣∣
V=VMP

= ∂(IV )

∂V

∣∣∣∣
V=VMP

=
[
I + V ∂I

∂V

]∣∣∣∣
V=VMP

= 0 (3.133)

for V = VMP. The current at the maximum power point, IMP, is then found by evaluating
Equation (3.131) at V = VMP.

The rectangle-defined by VOC and ISC provides a convenient reference for describing the
maximum power point. The fill factor, FF , is a measure of the squareness of the I –V characteristic
and is always less than one. It is the ratio of the areas of the two rectangles shown in Figure 3.16 or

FF = VMPIMP

VOCISC
= PMP

VOCISC
. (3.134)

Arguably, the most important figure of merit for a solar cell is its power conversion effi-
ciency, η, which is defined as

η = PMP

Pin
= FFV OCISC

Pin
(3.135)

The incident power Pin is determined by the properties of the light spectrum incident upon the
solar cell. Further information regarding experimental determination of these parameters appears in
Chapter 18.

Another important figure of merit is the collection efficiency, which can be defined relative
to both optical and recombination losses as an external collection efficiency

ηext
C = ISC

Iinc
(3.136)

where

Iinc = qA
∫
λ<λG

f (λ) dλ (3.137)

is the maximum possible photocurrent that would result if all photons with E>EG (λ < λG =
hc/EG) created electron–hole pairs that were collected. The collection efficiency can also be
defined with respect to recombination losses as the internal collection efficiency

ηint
C = ISC

Igen
(3.138)

where

Igen = qA(1 − s)
∫
λ<λG

[1 − r(λ)f (λ)(1 − e−α(WN+WP )) dλ (3.139)

is the light-generated current. This represents what the short-circuit current would be if every photon
that is absorbed is collected and contributes to the short-circuit current. Igen = Iinc when there is
no grid shadowing, no reflective losses, and the solar cell has infinite optical thickness.
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3.3.6 Properties of Efficient Solar Cells

Using these figures of merit, the properties of a good (efficient) solar cell can be ascertained.
From Equation (3.135), it is clear that an efficient solar cell will have a high short-circuit current
ISC, a high open-circuit voltage, VOC and a fill factor FF as close as possible to 1. A more
detailed understanding of what influences the solar cell efficiency can be obtained by rewriting
the efficiency as [18]

η = Pmax

Pin
= ηidealηphotonFFηV η

int
C , (3.140)

where FF and ηint
C have been previously defined (Equations 3.134 and 3.138, respectively) and

ηideal , ηphoton, and ηV are defined below.

Assuming the maximum energy that can be extracted from an absorbed photon is EG, the
ideal efficiency can be expressed as

ηideal(EG) =
1

q
EGIinc

Pin
= EG

(Pin/A)

∫
λ<λG

f (λ) dλ. (3.141)

Since only photons with hν >EG can create electron–hole pairs and contribute to the output power
of the solar cell, it is clear that the bandgap determines how well the solar cell is coupled to the
solar spectrum. A simple analysis can be performed to predict the ideal efficiency. This is plotted
in Figure 3.17 for an AM1.5 global spectrum and shows a maximum efficiency of 48% at about
EG = 1.1 eV, close to the bandgap of silicon, although bandgaps between 1.0 and 1.6 eV have
comparable ideal efficiencies.
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Figure 3.17 Ideal efficiency as a function of semiconductor band gap for an AM1.5 global
spectrum
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Of course, this assumes that VOC = 1
q
EG and FF = 1, which are obvious exaggerations.

Perfect light trapping is also assumed so that ISC = Iinc, but that is a more realistic prospect.
However, this quantity does serve to set an upper bound on the efficiency of a single-junction
solar cell. Of course, multijuction photovoltaic systems will have a higher ideal efficiency. More
complete analyses of the theoretical limits of solar cells are given elsewhere [19–21] and are also
discussed in Chapter 4 of this handbook.

The photon efficiency ηphoton accounts for photons that are reflected, transmitted through,
or otherwise not absorbed in the solar cell and can be written as

ηphoton = Igen

Iinc
= ηextC

ηint
C

. (3.142)

To maximize ηphoton(ηphoton → 1 when Igen → Iinc or, equivalently, ηextC → ηint
C ), the solar

cell should be designed with a minimum amount of grid shadowing s, minimum reflectance r(λ),
and be optically thick enough such that nearly all the photons with E>EG are absorbed.

A transcendental relationship between VOC and VMP can be obtained from the solution of
Equation (3.131) for the single-diode model, from which the following semi-empirical expression
for the fill factor can be extracted [22]

FF =
VOC − kT

q
ln[qVOC/kT + 0.72]

VOC + kT /q . (3.143)

It can be seen that FF is a weak function of the open-circuit voltage, increasing slowly as the
open-circuit voltage increases. This expression neglects any series and shunt resistances which tend
to degrade the fill factor, as will be discussed later in this chapter.

The voltage efficiency ηV is the ratio of the open-circuit voltage to the bandgap voltage

ηV = VOC
1
q
EG
. (3.144)

Empirically, the best solar cells have an open-circuit voltage approximately 0.4 V less than the
bandgap voltage (no solar concentration). For silicon, this gives ηV = 0.643. It is clearly desirable
to have the open-circuit voltage approach the bandgap voltage and this is one of the challenges in
the development of next generation solar cells. At open-circuit, since there is no flow of carriers
out of the devices, every electron–hole pair must recombine. It is the rate of this recombination,
or the reverse saturation current, that constrains the open-circuit voltage. The open-circuit voltage
(Equation 3.132)

VOC ≈ kT

q
ln
ISC

Io1
(3.145)

is logarithmically proportional to the short-circuit current and to the reciprocal of the reverse
saturation current Io1. Therefore, reducing the saturation current will increase the open-circuit
voltage. From Equations (3.128) and (3.129), it is obvious that Io1 → 0 as τ → ∞ and S → 0.

The final term in Equation (3.140) is for the internal collection efficiency, which was defined
previously in Equation (3.138), ISC = ηint

C Igen is dependent on the recombination in the solar cell
and will approach 1 as τ → ∞ and S → 0. Voltage-dependent collection can compensate for low
effective carrier lifetimes [23] in achieving a higher short-circuit current, but the open-circuit voltage
and fill factor do not benefit from this effect. This effect is briefly discussed later in this chapter.
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From this discussion, it can be seen that the design of an efficient solar cell has several
key goals:

1. Selection of a semiconductor material with a bandgap well matched to the solar spectrum, i.e.
maximizing ηideal.

2. Minimizing optical losses such as grid shadowing, reflectance, and absorption in the optical
components, as well as maximizing the optical thickness of the solar cell, thereby maximiz-
ing ηphoton.

3. Minimizing series and shunt resistances in the cell and its connections, thereby maximizing the
fill factor, FF .

4. Minimization of the bulk and surface recombination rates, maximizing ηV and hence the open-
circuit voltage.

5. Minimization of the bulk and surface recombination rates will also maximize the internal col-
lection efficiency ηint

C and hence the short-circuit current.

Simultaneous achievement of all of these goals will result in a very efficient solar cell. For
a silicon solar cell with VOC = 0.72 V, the predicted efficiency from Equation (3.140) (assuming
ηphoton = ηint

C = 1 under AM1.5 global illumination is 26.2% – just slightly higher than the best
reported silicon solar cells [24].

It is evident that, despite the apparent complexity of the expressions describing the funda-
mental operation of solar cells, the basic operating principles are easy to understand, as illustrated
by the above discussion.

3.3.7 Lifetime and Surface Recombination Effects

The solar cell characteristics previously derived (Equations 3.119–3.132) allow examination of the
dependence of the solar cell performance on specific sources of recombination. Figure 3.18 shows
how the base minority-carrier lifetime affects VOC, ISC, and the FF . Unless otherwise stated, the
parameters of Table 3.2 are used to compute the solar cell performance. Short lifetimes mean that
the diffusion length in the base is much less than the base thickness and carriers created deeper than
about one diffusion length in the base are unlikely to be collected. When this is true (Ln � WP ),
the contribution to the dark saturation current in the base (Equation 3.129) becomes

Io1,n = qA
n2

i

NA

Dn

Ln
(3.146)

and is commonly referred to as the long-base approximation . In this case, the BSF has no effect
on the dark saturation current. On the other hand, when the base minority-carrier lifetime is long
(Ln � WP ), the carriers readily come in contact with the BSF and the dark saturation current is a
strong function of SBSF

Io1,n = qA
n2

i

NA

Dn

(WP −XP )
SBSF

SBSF +Dn/(WP − xP ) (3.147)

When SBSF is very large (i.e. no BSF), this reduces to the more familiar short-base approx-
imation

Io1,n = qA
n2

i

NA

Dn

(WP − xP ) . (3.148)

Figure 3.19 shows how SBSF affects VOC, ISC, and FF . Notice that the break point in the curves
occurs when SBSF ≈ Dn/WP = 1000 cm/s, as can be inferred from Equation (3.147).
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Figure 3.18 Effect of base lifetime on solar cell performance for the solar cell parameters in
Table 3.2. The minority-carrier diffusion length (Ln = √

Dnτn) is equal to the base thickness (WP )
when τn = 25.7 µs

Front surface recombination for solar cells with contact grids on the front of the device is
really an average over the front surface area of the relatively low surface recombination velocity
between the grid lines and the very high surface recombination velocity of the ohmic contact. An
expression for the effective front surface recombination velocity is given by [25]

SF,eff =

(1 − s)SFḠNτp

(
cosh

WN

Lp
− 1

)
+ po(eqV /AokT − 1)


s DpLp

cosh
WN

Lp

sinh
WN

Lp

+ SF




(1 − s)
[
po(eqV /AokT − 1)+ ḠNτp

(
cosh

WN

Lp
− 1

)] (3.149)

where SF is the surface recombination velocity between the grid lines and Ḡ is the average gener-
ation rate in the emitter region. It is obvious that SF,eff is dependent upon the solar cell operation
point. This is better seen in Table 3.3 where some special cases are illustrated (assuming Lp � WN).

3.4 ADDITIONAL TOPICS

3.4.1 Spectral Response

The spectral response, SR(λ), of a solar cell permits an examination of how photons of different
wavelengths (energy) contribute to the short-circuit current. Just as the collection efficiency can be
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Figure 3.19 Effect of the back-surface field recombination velocity on solar cell performance. All
other parameters are from Table 3.2

Table 3.3 Special cases of SF,eff

No grid (s = 0) SF,eff = SF

Full grid (s = 1) SF,eff → ∞

Dark (G = 0) SF,eff = SF + sDp/WN
1 − s

Short-circuit (V = 0) SF,eff = SF

V large (≈VOC) SF,eff = SF + sDp/WN
1 − s

measured as either an external or internal collection efficiency, so can the spectral response. The
spectral response is defined as the short-circuit current ISC(λ), resulting from a single wavelength
of light normalized by the maximum possible current. The external spectral response is defined as

SRext = ISC(λ)

qAf(λ)
(3.150)

and the internal spectral response as

SRint = ISC(λ)

qA(1 − s)(1 − r(λ))f (λ)(e−α(λ)Wopt − 1)
, (3.151)

where Wopt is the optical thickness of the solar cell (technically, also a function of wavelength).
Experimentally, the external spectral response is measured. The internal spectral response is
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Figure 3.20 Internal spectral response of the silicon solar cell defined in Table 3.2

determined from it, along with the knowledge of the grid shadowing, reflectance, and optical
thickness. Wopt can be greater than the cell thickness if light-trapping methods are used. Such
methods include textured surfaces [26] and back-surface reflectors [27] and are discussed in
Chapters 11 and 12. The short-circuit current can be written in terms of the external spectral
response as

ISC =
∫
λ

SRext(λ)f (λ) dλ. (3.152)

The internal spectral response gives an indication of which sources of recombination are
affecting the cell performance. This is demonstrated in Figure 3.20 where the internal spectral
response of the silicon solar cell described by the parameters of Table 3.2 is shown. Also shown
is the spectral response when SF,eff = 100 cm/s (a well-passivated front surface) and the spectral
response when SBSF = 1 × 107 cm/s (in effect, no BSF). The short-wavelength response improves
dramatically when the front surface is passivated since the absorption coefficient is highest for
short-wavelength (high-energy) photons. Conversely, removing the BSF makes it more likely that
electrons created deep within the base region of the solar cell (those created by the long-wavelength,
low-energy photons) will recombine at the back contact and therefore, the long-wavelength response
is dramatically reduced.

3.4.2 Parasitic Resistance Effects

Equation (3.143) neglects the parasitic series and shunt resistances typically associated with real
solar cells. Incorporating these resistances into the circuit model of Figure 3.15, as shown in
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Figure 3.21, yields

I = I ′
SC − Io1(eq(V+IRS)/kT − 1)− Io2(eq(V+IRS)/2kT − 1)− (V + IRS)

RSh
(3.153)

where I ′
SC is the short-circuit current when there are no parasitic resistances. The effect of these

parasitic resistances on the I –V characteristic is shown in Figures 3.22 and 3.23. As can also be
seen in Equation (3.153), the shunt resistance RSh has no effect on the short-circuit current, but
reduces the open-circuit voltage. Conversely, the series resistance RS has no effect on the open-
circuit voltage, but reduces the short-circuit current. Sources of series resistance include the metal
contacts, particularly the front grid, and the transverse flow of current in the solar cell emitter to
the front grid.

I ′SC
RSh

RS +

−

V

I

1 2

Figure 3.21 Solar cell circuit model including the parasitic series and shunt resistances
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Figure 3.22 Effect of series resistance on the current–voltage characteristic of a solar cell
(RSh → ∞)
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Figure 3.23 Effect of shunt resistance on the current–voltage characteristic of a solar cell (RS = 0)

It is often more convenient to rewrite Equation (1.153) as

I = I ′
SC − Io(eq(V+IRS)/AokT − 1)− (V + IRS)

RSh
(3.154)

where Ao is the diode ideality (quality) factor and typically has a value between 1 and 2, with
Ao ≈ 1 for diode dominated by recombination in the quasi-neutral regions and Ao → 2 when
recombination in the depletion region dominates. In solar cells where the recombination in each
region is comparable, Ao is somewhere in between. At short-circuit, Equation (3.154) becomes

ISC = I ′
SC − Io(eqISCRS/AokT − 1)− ISCRS/RSh (3.155)

and at open-circuit, it becomes

0 = I ′
SC − Io(eVOC/AokT − 1)− VOC/RSh. (3.156)

When log(ISC) is plotted versus VOC (where ISC and VOC are obtained over a range of
illumination intensities), there is typically a regime where neither the series nor shunt resistances
are important, as illustrated in Figure 3.24. The slope of this line will yield the diode ideality factor
Ao, while the y-intercept will give Io. In the regime where only series resistance is important,
Equations (3.155) and (3.156) can be combined to give

ISCRS = AokT

q
ln

[
IoeqVOC/AokT − ISC

Io

]
(3.157)

and a plot of ISC versus log[IoeqVOC/AokT − ISC] will then permit RS to be extracted from the slope
of this line. Similarly, in the regime where only RSh is important, Equations (3.155) and (3.156)
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Figure 3.24 Short-circuit current versus open-circuit voltage plot illustrating the effects of series
and shunt resistances

can be combined to give

VOC

RSh
= ISC − IoeqVOC/AokT (3.158)

and RSh can be determined from the slope of the line given by plotting VOC versus [ISC −
IoeqVOC/AokT ]. If the series and shunt resistances are such that there is no regime where they can
be neglected, the parameters can, with patience, be extracted through the process of trial and error.

3.4.3 Temperature Effects

From Equations (3.128) and (3.129), it is apparent that

Io1,n, Io1,p ∝ n2
i (3.159)

and from Equation (3.130) that

Io2 ∝ ni. (3.160)

An increase in the intrinsic carrier concentration increases the dark saturation (recom-
bination) current and results in a decrease in the open-circuit voltage, as can be seen from
Equation (3.145). The dark saturation current contains other temperature-dependent terms (D, τ ,
and S), but the temperature dependence of the intrinsic carrier concentration dominates. The intrin-
sic carrier concentration is given by Equation (3.17), which when combined with Equations (3.12)
and (3.13) yields

ni = 2(m∗
nm

∗
p)

3/4
(

2πkT

h2

)3/2

e−EG/2kT . (3.161)
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The effective masses are generally taken to be weak functions of temperature. The bandgap
decreases with temperature, and its temperature dependence is well modeled by

EG(T ) = EG(0)− aT 2

T + β . (3.162)

where α and β are constants specific to each semiconductor. It is clear that as the temperature
increases, ni increases, and thus recombination increases, and cell performance is impaired. Bandgap
narrowing, referred to earlier, is a reduction in bandgap due to high doping and also serves to
increase ni and impair solar cell performance.

The open-circuit current expression, Equation (3.145), can be rearranged and the temperature
dependence explicitly included to give

ISC ≈ Io1eqVOC/kT ≈ BT ζ e−EG(0)/kT eqVOC/kT (3.163)

where B is a temperature-independent constant and T ζ e−EG(0)/kT accounts for the temperature
dependence of the saturation current. The short-circuit current is relatively unaffected by temper-
ature under typical operating conditions, so by differentiating with respect to T , the temperature
dependence of the open-circuit voltage can be expressed as [22]

dVOC

dT
= −

1

q
EG(0)− VOC + ζ kT

q

T
(3.164)

which for silicon at 300 K corresponds to about −2.3 mV/ ◦C. Equation (3.163) can be rearranged
as follows:

VOC(T ) = 1

q
EG(0)− kT

q
ln

(
BT ζ

ISC

)
. (3.165)

VOC varies roughly linearly with temperature and an extrapolation of VOC to T = 0 is the bandgap
voltage since limT→0[T ln T ] = 0.

The reason this is so important is that modules typically operate at 20–40 ◦C above ambi-
ent, depending on the module design and sunlight intensity. Typical Si modules have a negative
temperature coefficient of power output of −0.4 to −0.5% relative per ◦C, largely due to the tem-
perature dependence of VOC as indicated in Equation 3.165. The effect of temperature on module
performance is discussed further in Chapters 18 and 19.

3.4.4 Concentrator Solar Cells

Operating solar cells under concentrated illumination offers two main advantages. The first is
that since fewer solar cells are required to collect the sunlight falling on a given area, their cost of
manufacture can be higher than that for cells designed for unconcentrated illumination, and they are
therefore presumably of higher quality (efficiency). The second is that operation under concentrated
illumination offers an advantage in the solar cell efficiency. If sunlight is concentrated by a factor
of X (X suns illumination), the short-circuit at that concentration is

IXsuns
SC = XI 1sun

SC . (3.166)

This is assuming that the semiconductor parameters are unaffected by the illumination level and that
the cell temperature is the same at both levels of illumination – not necessarily valid assumptions,
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especially at very large X. However, these assumptions will allow the demonstration of the potential
efficiency of concentrator solar cells. Substituting Equation (3.166) into Equation (3.135) gives

η = FF XsunsV Xsuns
OC IXsuns

SC

PXsuns
in

= FF XsunsV Xsuns
OC XI 1sun

SC

XP 1sun
in

= FF XsunsV Xsuns
OC I 1sun

SC

P 1sun
in

(3.167)

From Equation (3.132),

V Xsuns
OC = V 1sun

OC + kT

q
ln X. (3.168)

FF is a function of VOC (Equation 3.143), so

ηXsuns = η1sun
(

FFXsuns

FF1sun

)1 +
kT

q
ln X

V 1sun
OC


 . (3.169)

Both factors multiplying the 1 sun efficiency increase as the illumination concentration
increases. Therefore, the efficiency of concentrator cells increases as the illumination concentration
increases. For a silicon solar cell with V 1sun

OC = 0.72V, the efficiency at 1000 suns can potentially
be more than 25% higher than its 1 sun value.

Of course, there are many obstacles to achieving this. Concentrator cells must be cooled,
since an increase in operating temperature reduces VOC, and hence the cell efficiency. In real
devices, the FF Xsuns eventually decreases with increasing solar cell current due to parasitic series
resistance. Concentrator solar cells are discussed in more detail in Chapter 10.

3.4.5 High-level Injection

In high-level injection, the excess carrier concentrations greatly exceed the doping in the base region,
so ∆p ≈ ∆n ≈ n ≈ p if the carriers are moving generally in the same direction. This occurs with
back-contact solar cells, such as the silicon point-contact solar cell [28], which is illustrated in
Figure 3.25. Since both electrical contacts are on the back, there is no grid shadowing. These cells
are typically used in concentrator application and high-level injection conditions pervade. Assuming
high-level injection, a simple analysis is possible.

Returning to Equations (3.77) and (3.78), it can be seen that in high-level injection, the elec-
tric field can be eliminated (it is not necessarily zero), resulting in the ambipolar diffusion equation

Da
d2p

dx2
− p

τn + τp = −G(x), (3.170)

where the ambipolar diffusion coefficient is given by

Da = 2DnDp
Dn +Dp . (3.171)

In silicon, where Dn/Dp ≈ 3 over a wide range of doping, the ambipolar diffusion coeffi-
cient is Da ≈ 3/2Dp ≈ 1/2Dn and, if we also assume τp ≈ τn, the ambipolar diffusion length is

La ≈
√

3Lp ≈ Ln. (3.172)

Thus, the increased high-injection lifetime (see Equation 3.40) offsets the reduced ambipolar
diffusion coefficient.
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Figure 3.25 Schematic of a back-contact solar cell

It is crucial that the front surface of a back-contacted cell be well passivated, so we will
assume that SF = 0. We will further assume that optical generation is uniform throughout the base
region. At open-circuit, with these assumptions, d2p/dx2 = 0 and therefore

VOC = 2kT

q
ln

[
G(τn + τp)

ni

]
. (3.173)

The short-circuit current (with p � 0 at the back of the cell) is

ISC = qALaG sinh(WB/La) (3.174)

which, when La � WB, becomes

ISC = qAWBG. (3.175)

3.4.6 p-i-n Solar Cells and Voltage-dependent Collection

The p-i-n solar cell takes advantage of the fact that in many semiconductor materials, especially
direct bandgap semiconductors (i.e. large absorption coefficient), most of the electron–hole pairs
are created very near the surface. If an intrinsic (undoped) layer is placed between the (very thin)
n and p regions, the depletion region thickness is the most significant fraction of the total solar
cell thickness, as illustrated in Figure 3.26. Carrier collection is now aided by the electric field in
the depletion region, which helps offset the low lifetimes in some materials, such as amorphous
silicon (see Chapter 12). The I –V characteristic of a p-i-n solar cell can be described with minor
modifications to the previously derived expressions. The most significant modification is to Equation
(3.130) where the depletion width is now written as

WD = χN +WI + χP (3.176)
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Figure 3.26 Band diagram of a p-i -n solar cell illustrating field-enhanced collection

where WI is the thickness of the intrinsic layer. Since χN and χP are very thin, short-base approx-
imations are in order for Equations (3.128) and (3.129). Also, there is no BSF (SBSF → ∞).

As mentioned above, the electric field in the depletion region of p-i -n solar cells aids in the
collection of carriers. This is referred to as voltage-dependent collection (VDC) and is an important
effect in any solar cell in which there is significant photogeneration in the depletion region, as
is the case in most thin film solar cells. At the maximum power point and at open-circuit, the
electric field in the depletion region is lower than at short-circuit, which leads to a lower FF and
VOC than might otherwise be expected. An excellent analysis of VDC in CdTe/CdS solar cells is
given in [23].

3.4.7 Heterojunction Solar Cells

Reducing the recombination losses in the emitter will improve the efficiency of the solar cell. This
can be accomplished by reducing the junction area [19]. Another way is by using a wider bandgap
material for the emitter of the solar cell, as shown in Figure 3.27 for an n+p solar cell. Ideally,
minority-carriers in each region are collected by the junction to become majority-carriers in the
opposite region. Majority-carriers injected into the opposite region that become minority-carriers
are a source of recombination and reduce the efficiency of the solar cell.

The larger barrier presented to holes by the wider bandgap emitter of a heterojunction solar
cell substantially reduces the number of holes injected into the emitter, thus reducing recombination
in the emitter and improving the efficiency of the solar cell. The arrows in Figure 3.27 illustrate
this point. This can also be seen analytically from Equation (3.128), the emitter component of the
dark saturation current, which is reproduced below with ni = ni,emitter

Io1,p = qAn
2
i,emitter

ND

Dp

Lp

{
Dp/Lp sinh[(WN − xN)/Lp] + SF,eff cosh[(WN − xN/Lp]

Dp/Lp cosh[(WN − xN)/Lp] + SF,eff sinh[(WN − xN/Lp]

}
(3.177)

Recall from Equation (3.17) that

ni,emitter =
√
NCNVe−EG,emitter/2kT . (3.178)
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Figure 3.27 Band diagram of a heterojunction solar cell

The intrinsic carrier concentration ni,emitter is much smaller for a wider bandgap emitter, thus
reducing the emitter component of the dark saturation current and therefore the net recombination
in the emitter region.

An additional advantage of a heterojunction solar cell is that incident photons with energy
less than the emitter bandgap energy (and higher than the base region bandgap) will be absorbed
in the base region of the solar cell rather than near the front surface where recombination can be
high (as would be the case in a homojunction). Heterojunction solar cells are discussed in more
detail in Chapters 8, 13, and 14.

3.4.8 Detailed Numerical Modeling

While analytic solutions such as those discussed thus far in this chapter provide an intuitive under-
standing of solar cell performance and are therefore very important, they are limited in their
accuracy due to the many simplifying assumptions that must be made in order to obtain them. It is
rather straightforward to solve the semiconductor equations numerically without the need to make
so many simplifications. Several computer codes have been written that solve the semiconductor
equations for the explicit purpose of modeling solar cells: PC-1D [29], AMPS [30], ADEPT [31],
and its predecessors [32, 33], for example.

The basic design of these computer programs is very similar. The semiconductor equations
(three coupled nonlinear partial differential equations) are cast in a normalized form [34] to simplify
the calculations. Finite difference or finite element methods are then used to discretize the equations
on a mesh (grid), resulting in a set of three coupled nonlinear difference equations. Using appro-
priately discretized boundary conditions, these equations are solved iteratively using a generalized
Newton method to obtain the carrier concentrations and electric potential at each mesh point. Each
Newton iteration involves the solution of a very large matrix equation of order 3N , where N is the
number of mesh points. One-dimensional simulations typically utilize on the order of 1000 mesh
points, so the matrix is 3000 × 3000. In 2D, the minimum mesh is typically at least 100 × 100,
so N = 104 and the matrix is of order 3 × 104 and contains 9 × 108 elements. Fortunately, the
matrices are sparse and can be solved using considerably less computer memory than one would
expect at first glance.
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Numerical simulation allows analysis of solar cell designs and operating conditions for
which simple analytic expressions are inadequate. The necessity of ignoring the spatial variation of
parameters is eliminated and more accurate representations of the solar cell are possible. In particu-
lar, nonuniform doping, heterojunction solar cells (the bandgap varies spatially), amorphous silicon
solar cells (complex trapping/recombination mechanisms, field-assisted collection), and concentrator
solar cells (high-level injection, 2D/3D effects) can all be modeled with more precision.

3.5 SUMMARY

It has been the objective of this chapter to give the reader a basic understanding of the physical
principles that underlie the operation of solar cells. Toward that end, the fundamental physical
characteristics of solar cell materials that permit the conversion of light into electricity have been
reviewed. These characteristics include the ability of semiconductors to absorb photons by con-
ferring that energy to carriers of electrical current and the ability of semiconductor materials to
conduct electricity.

The basic operating principles of the solar cell (a carefully designed pn-junction diode)
were derived from the (simplified) equations describing the dynamics of holes and electrons in
semiconductors. This led to the definition of the solar cell figures of merit – the open-circuit voltage
(VOC), the short-circuit current (ISC), the fill factor (FF ), and the cell efficiency (η). The two key
factors determining solar cell efficiency – electron–hole pair generation and recombination – were
identified and discussed. In particular, the need to minimize all sources of recombination in the
solar cells was demonstrated through examples.

The importance of matching the bandgap of the solar cell material to the solar spectrum was
also discussed and it was shown that silicon, with a bandgap of 1.12 eV, is a reasonably good match
to the solar spectrum. The effects of parasitic resistances and temperature on solar cell performance
were examined and, finally, some advanced cell concepts were briefly introduced. Many of these
topics will be expanded upon in the following chapters of this handbook.
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