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Prediction of Net-Length Distribution for Global
Interconnects in a Heterogeneous System-on-a-Chip
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Abstract—A system-on-a-chip (SoC) contains several pre-de-
signed heterogeneous megacells that have been designed and
routed optimally. In this paper a new stochastic net-length
distribution for global interconnects in a nonhomogeneous SoC
is derived using novel models for netlist, placement, and routing
information. The netlist information is rigorously derived based on
heterogeneous Rent’s rule, the placement information is modeled
by assuming a random placement of terminals for a given net in a
bounding area, and the routing information is constructed based
on a new model for minimum rectilinear Steiner tree construction
(MRST). The combination of the three models gives a priori esti-
mation of global net-length distribution in a heterogeneous SoC.
Unlike previous models that empirically relate the average length
of the global wires to the chip area, the new distribution provides
a complete and accurate distribution of net-length for global
interconnects. Through comparison with actual product data, it
is shown that the new stochastic model successfully predicts the
global net-length distribution of a heterogeneous system.

Index Terms—Global interconnect, heterogeneous Rent’s rule,
netlist model, placement model, routing model, Slip99: system level
interconnect, system-on-a-chip.

I. INTRODUCTION

SYSTEM level integration is evolving as a new paradigm,
allowing an entire system to be built on a single chip, using

pre-designed functional blocks called megacells. The perfor-
mance of a system-on-a-chip (SoC) is often determined by in-
terconnect wiring requirements of the system. Moreover,system
level wire-length distributionis a key factor in timing anal-
ysis, designing, floorplanning, routing of a SoC, and studying
of the wiring resource limit at the global level. The prediction
of wire-length distribution at the early stage of the chip design (a
priori estimation) can help the designer to: 1) optimize the inter-
connect structure to meet the minimum chip size with the max-
imum clock frequency [1] and 2) improve the results derived
from CAD tools for layout by providing information such as
minimum number of metal levels for wireability [2]. Although
a priori estimation doesn’t offer the accuracy of CAD tools, it
provides the above information before the layout design with
almost no cost.

For the first time, a real breakthrough in the estimate of a wire
length distribution was reported by Donath [3] in 1981. In his
paper, Donath discussed, using a hierarchical method, that the
wire length distribution should follow a power law function for
most of the wires until it drops rapidly to zero for long wires. The
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Fig. 1. Comparison of Davis’ stochastic wiring model [5] to actual data and
Donath’s model.

underlying assumption of his model is based on a well-estab-
lished empirical relationship commonly known as Rent’s rule
[4]. A more accurate wire-length distribution, compared to the
previous model, has been derived recently by Daviset al.[5]. In
the new method, the gates are grouped into three distinct but ad-
jacent blocks. By applying the principle of conservation of I/O’s
to the three-block system and using Rent’s rule, a complete wire
length distribution is determined. Fig. 1 illustrates the accuracy
of the new model compared to the previous distribution. The
primary assumption of the Daviset al.wire-length distribution
model is that each block consists of a uniform and homogeneous
collection of gates and therefore this model is suitable only for
prediction of wire-length distributionwithin the homogeneous
blocks in a system. The new model derived in this paper is not
subject to this restriction and applies to a heterogeneous set of
megacells.

The prediction of global wiring demand in a nonhomoge-
neous system requires more information about the system such
as netlist, placement, and routing. Karpet al. [6] demonstrate a
wiring model for global interconnects under netlist assumptions.
They show that a simple model can relate the average global
wire length to a fraction of chip size. Sorkin [7] presents a sto-
chastic global wiring model, which has the disadvantage of re-
quiring even more assumptions about the chip. His conclusion,
though, gives a similar relationship for the average wire length,
which is roughly one-third of the semi-perimeter of the chip.

It has been previously observed that the overall wire-length
distribution, at the system level, has a bimodal behavior [8], as
shown in Fig. 2. The distribution has two peaks—the first peak
representing internal megacell interconnects, and the second
representing global interconnects that provide communication
between megacells. The reason for the bimodal behavior in
wire length distribution is that the placement and routing of
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Fig. 2. Typical distribution of wire lengths in an integrated system.

the lower levels (within the megacells) are done independently
of the higher level (betweenthe megacells) in SoC designs.
However, the models derived in this paper apply to both single
mode and bimodal distributions.

Since global net-lengths are usually longer than local nets
within megacells, the overall performance of a chip is often lim-
ited by its global wiring network [9], [10]. It is, therefore, im-
perative to gain thorough understanding of the global wiring re-
quirements for present and projected SoC designs. To enhance
this understanding, for the first time a stochastic net-length dis-
tribution for global interconnects is derived in this paper. Un-
like previous models [6], [7] that empirically relate the average
length of the global wires to the chip size, the new distribution
provides a complete and accurate global net-length distribution
at the very early stage of the design since it utilizes the models
for netlist, placement, and routing at the same time. The com-
plete system level wire-length distribution for a heterogeneous
SoC can be obtained by combining the new global wiring dis-
tribution with the internal wiring distributions of all megacells,
as presented in [5].

Fig. 3 represents three novel stochastic models for netlist,
placement, and routing information that are used to derive the
global net-length distribution [11]. The netlist information is de-
rived based on heterogeneous Rent’s rule [12], as shown in Sec-
tion II. Since the stochastic variations are fairly significant at
the global level, a probabilistic method is utilized for the place-
ment and routing models. Section III introduces the placement
information by assuming a random placement of terminals for a
given net. Section IV describes the routing information based on
a new model for minimum rectilinear Steiner tree (MRST) con-
struction. The combination of the three models gives the global
net-length distribution, as shown in Section V.

II. STOCHASTIC NETLIST INFORMATION

The netlist information defines the connectivity between
megacells or fan-out distribution of the SoC (i.e., the number of
nets versus fan-out [13]). To predict the number of nets between
megacells, a well-established empirical relationship known as
Rent’s rule is used. This relationship correlates the number of

Fig. 3. Global net-length model structure.

I/O terminals to the number of gates in a homogeneous
logic network. This correlation is given by a simple power-law
expression as

(1)

where and are the Rent’s coefficient and exponent, respec-
tively. Since a SoC is a heterogeneous network containing dif-
ferent varieties of megacells, a new definition of Rent’s rule for
such heterogeneous systems is required. The new heterogeneous
Rent’s rule [12] is rigorously derived in this section. It is shown
that the same power-law expression as (1) is also valid for het-
erogeneous networks with equivalentand parameters

(2)

where and are the usual Rent’s rule parameters, is
the equivalent number of gates in theth megacell and

.

A. Heterogeneous Rent’s Rule

Rent’s rule is a simple power-law relationship between the
number of I/O terminals of a logic block and the number of
gates contained in that block. Specifically, [4]

(3)

where is the average number of terminals per gate andre-
flects the connectivity of the gates in a homogeneous megacell.
A homogeneous megacell, by definition, is a large block of iden-
tical gates, which is designed to fulfill a specific purpose. For
instance, in a heterogeneous SoC, there are several blocks of
memory, data path, control unit, etc. Each block is considered
as a megacell. Going further into the hierarchy of the design,
a megacell may consist of several macrocells. The macrocells
have different size (in terms of number of gates inside) and they
can be repeatedly used in the design. The smallest macrocell is
a single gate. The connectivity between the macrocells defines
the complexity of the megacells, which is represented by the
Rent’s rule parametersand .

Early compelling evidence of Rent’s rule was presented in a
study by Landman and Russo [4], who partitioned various com-
puter logic systems. Fig. 4 is a plot of the average number of
pins versus the average number of gates per macrocell for a par-
ticular logic design [4]. Besides Rent’s rule, there is another im-
portant relationship between the average number of macrocells
and the average number of gates per macrocell. To illustrate this
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Fig. 4. Average number of pins versus average number of gates per macrocell,
after [4].

Fig. 5. Partitioning gates to make macrocells.

relationship, consider a rectangular array of gates as seen in
Fig. 5.

Suppose, for example, the gates in Fig. 5 are grouped into
macrocells containing two gates each. The number of macro-
cells in this case is . In general, if gates are grouped into
a macrocell, then the number of macrocells is . Thus, the
average number of macrocells or population function is

(4)

Now consider a simple 2-block heterogeneous system, as
shown in Fig. 6. Megacell#1 and megacell#2 are homogeneous
sub-systems with and total gates, and , and

, as Rent’s parameters, respectively. In order to find
and , that describe this system as a collective, we use both
relationships (3) and (4). The first one is Rent’s rule

Megacell
Megacell

(5)

The second relationship is a population function that de-
scribes the number of macrocells

Megacell
Megacell

(6)

For this heterogeneous system, the overall number of macro-
cells with gates is simply the sum of the number of-gate
macrocells in both megacells. Thus,

(7)

Fig. 6. Simple 2-block heterogeneous system with equivalentN ; k ; p .

For the overall system, we can write

(8)

Equations (7) and (8) are validated by the obvious result

(9)

Likewise, the average number of terminals of an-gate
macrocell can be computed for the heterogeneous system. In a
log-log plot of versus , the best fit to a variety of curves
(i.e., from a heterogeneous set of blocks) results in a weighted
arithmetic average of the logarithm offor each curve

(10)

Equation (10) demonstrates the geometric average of the
number of terminals. Note that the geometric average is used
here because only the geometric average of a set of power law
functions is a power law function. From (10)

(11)

This equation shows the overall system also obeys Rent’s rule

(12)

with

(13)

Therefore, the overall heterogeneous system can be described
by (12) and (13). Fig. 7 shows the general case, wheredifferent
megacells are included in a single chip. Using the same strategy,
the equivalent Rent’s rule coefficients are calculated as

(14)

where

(15)
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Fig. 7. System-on-a-chip withn different megacells andN ; k ; p .

Fig. 8 illustrates experimental results of two real chips that
mainly consist of two distinct megacells. Megacell#1 is the
random logic part of the design and megacell#2 is the memory.
The software partitioning program receives the netlist file that
contains all connectivity data in a hierarchical form, as input.
The macrocells in the netlist file are selected from the blocks
that are already defined by the designer. Then a list of macro-
cells with number of pins and number of gates is constructed.
The final data points are generated from the average points of
the raw data. In the graphs of Fig. 8, the short dash lines and
the long dash lines are the Rent’s curves for memory blocks
and random logic blocks, respectively. The solid line is the
equivalent Rent’s rule based on (14) and (15), and circles are
real data derived from the netlist files. Design A is a part of
an ASIC chip with 37% on-chip SRAM and design B is a
color map design with 90% on-chip memory. As shown, the
composite Rent’s rule successfully describes a heterogeneous
collection of megacells.

B. Derivation of Netlist Information

Using the heterogeneous Rent’s rule, the number of nets be-
tween megacells is computed. For instance, suppose there is a
block of two megacells shown in Fig. 9(a), where and
represent the number of terminals of megacell#1 and mega-
cell#2 respectively. Using the Venn diagram of Fig. 9(b) and de
Morgan’s law of set theory, it can be proven that

(16)

Here, is the number of internal terminals that are shared
between the two megacells and is the number of ex-
ternal terminals of the whole collection of gates, which is cal-
culated by heterogeneous Rent’s rule as

(17)

where and are the number of gates in megacell#1 and
megacell#2, respectively, and and are the heteroge-
neous Rent’s parameters given by

(18)

Equation (16) is illustrated by examining the number of pins
of Fig. 9(a). Equations (17) and (18) can also be validated by

considering Rent’s rule in a homogeneous system. Substituting
Rent’s rule in (16) gives

(19)

where are the Rent’s rule parameter for mega-
cell#1 and megacell#2, respectively, and and are the
heterogeneous Rent’s parameters defined in (18).

Since there are only two megacells in the block, all shared
terminals are used for two terminal nets. Note that in this study,
a multi-terminal net is defined in the global level where the con-
nections of the terminals inside a megacell are not of concern.
Thus, the number of two-terminal nets is given by

(20)

Using (20) for all combinations of two megacells in the whole
system gives the total number of two-terminal nets (fan-out of
1).

Similarly, in a block of three megacells shown in Fig. 10(a),
the number of three-terminal nets can be computed. From the
Venn diagram in Fig. 10(b), de Morgan’s law gives

(21)

where and are the number of terminals of each mega-
cell, respectively. and
are the number of terminals that are shared between the asso-
ciated megacells. is the number of terminals of the
whole collection, which is computed by heterogeneous Rent’s
rule as

(22)

where and are the number of gates in megacell#1,
megacell#2, and megacell#3, respectively, and and
are the heterogeneous Rent’s parameters given by

(23)

Substituting Rent’s rule in (21) gives (24), shown at the bottom
of the next page, where and are de-
rived similarly from (19)

(25)

From (24) and (25) the number of three-terminal nets,
, is given by

(26)

Using (26) for all combinations of three megacells in the
whole system gives the total number of three-terminal nets
(fan-out of 2). Equations (26) and (24) show that the number of
three-terminal nets is computed recursively from the number
of all possible combinations of two-terminal nets. Similarly, in
the general case with megacells, the number of -ter-
minal nets is computed recursively by examining all possible
combinations of out of megacells.

Assuming that , which is satisfied in current and
future microprocessor designs [10], then a closed-form expres-
sion for the number of -terminal nets can be derived [13].
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(a) (b)

Fig. 8. Experimental results. (a) Data of design A. (b) Data of design B.

(a) (b)

Fig. 9. Example of a collection of two megacells. (a) Block diagram representation. (b) Venn diagram representation.

The approximate expression for the number of-terminal nets,
, is

(27)

where and are the equivalent megacell Rent’s rule parame-
ters that are given by

(28)

Note that the underlying assumption for derivation of (28) is
that the heterogeneous Rent’s rule is valid throughout the whole
design, from the gate level up to the megacell level. However,
since the Rent’s parameters at the higher level of hierarchy, de-
fined as region II [4], may not be the same as the Rent’s parame-
ters at the lower levels, more accurate netlist information results
from equating and to the Rent’s parameters in the region II
if they are available. In the absence of the topology of the global
Rent’s parameters in region II, (28) gives the first order approx-
imation for the Rent’s coefficient and exponent of the system.

III. STOCHASTIC PLACEMENT INFORMATION

The placement problem for a SoC is a key factor for achieving
designs with minimum global wire length. Therefore, it is im-
portant to note that the global wire length depends on the place-
ment tool’s efficiency. In this section, a new model is derived
for the placement information which defines the bounding area
of the nets.

A. Definition of Placement Efficiency

In order to derive the placement model, a new parameter
for placement efficiency is defined. For instance, consider
the three cases for a placement of four megacells, as shown in
Fig. 11(b). In this example, the megacells must be connected
by a four-terminal net. Therefore, the best placement

% of the megacells is right next to each other, as shown
in Fig. 11(a). The worst case % is placement of mega-
cells at the corners of the chip area, as shown in Fig. 11(c).

Fig. 12 shows the linear interpolation of block bounding area
versus placement efficiency as defined by Fig. 11. In this figure,

is the placement efficiency, is the average area of a
megacell, is the number of megacells which are connected by
a net, and is the total number of megacells in the design. For

(24)
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(a) (b)

Fig. 10. Example of a collection of three megacells. (a) Block diagram representation. (b) Venn diagram representation.

(a) (b) (c)

Fig. 11. Placement efficiency model. (a) 100% placement efficiency. (b) 60% placement efficiency. (c) 0% placement efficiency.

Fig. 12. Linear interpolation of block bounding area versus placement
efficiency.

the case of %, the bounding area of the blocks is equal
to the total area of the megacells in a net which, on average, is

. For the case of %, the block bounding area is
equal to the chip size regardless of the number
of megacells. In the worst case, related blocks can be placed at
the corners of chip at the furthest allowable distance. The linear
interpolation shown in Fig. 12 can be modeled as

Block Bounding Area
Total Chip Area

(29)

where is the number of megacells which are connected by
the net and is the total number of megacells in the design.

Using (29), the placement efficiencies for the three cases, (a),
(b), and (c), in Fig. 11 are 100%, 60%, and 0%, respectively.

The placement efficiency depends on CAD tools and it is
computed by examining the floor plan results from the auto-
placer tool over the entire netlist. Therefore, the average place-
ment efficiency of the entire design is computed by averaging
from (29)

Block Bounding Area
Total Chip Area

(30)

where is the total number of nets in the design. An example
of computing the average placement efficiency is contained in
Section III-B.

Also from (29), the expression for computing the block
bounding area is

Block Bounding Area (31)

Therefore , the bounding area dimension can be computed as

(32)

where and are the block bounding dimensions of
megacells which are connected by a net. Furthermore, the net
bounding area is computed by assuming random placement
of the terminals of the net in the block bounding area. Fig. 13
shows an example of a net with nine terminals which are
placed randomly (with uniform distribution) all over theblock
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Fig. 13. Block bounding areaand net bounding areaassuming random
placement of terminals.

Fig. 14. Distribution of image of terminals in thex axis assuming uniform
probability density function.

bounding area and . In this figure, (a) and (b), which
represent the maximum spreading of the terminals, give thenet
bounding area.

The complete probability density function (pdf) of the net
bounding area versus block bounding area has been simulated
by using the random walk technique which is described in Sec-
tion IV. Although there is no analytical closed-form equation for
the complete probability density function of net bounding area
in general, the average of the pdf can be calculated by a simple
closed form-equation.

In order to derive this closed-form equation, first consider the
projection of the terminals in Fig. 13 onto the horizontal axis, as
shown in Fig. 14. The distance between two adjacent projection
points, on average, is given by

(33)

Since there are pieces of , the average net bounding
area on the horizontal axis is

(34)

Similarly, on the vertical axis it can be shown that

(35)

where and are the net bounding area dimensions. Using (32),
(34), and (35), the average net bounding area versus the number
of terminals of a is computed.

B. An Example of Placement Efficiency

Placement efficiency is a parameter that defines a CAD tool’s
capability to place megacells such that it requires the minimum
wire-length for the global wiring networks. A perfect placement
with 100% placement efficiency means that all connected mega-
cells are placed in the nearest neighborhood of each other. Since
the placement efficiency is a criterion to reflect the compactness

Fig. 15. Example of calculation of placement efficiency.

of a design, it can also be used as a cost function for placement
optimization algorithms in CAD tools. Therefore, in this part
an example of computing the placement efficiency for a simple
case is investigated.

Suppose that there is a chip with nine megacells, as shown
in Fig. 15. Each megacell is assumed to occupy one unit area.
Hence, the chip area is nine units. For the given netlist shown
in Table I, the block bounding area of each combination of con-
nected megacells can be calculated for the case of placement de-
picted in Fig. 15. Using (29), the placement efficiency of each
net is computed. The average placement efficiency of the entire
netlist is computed by averaging the placement efficiency from
(30), which gives

Block Bounding Area
Total Chip Area

% (36)

Similarly, the average placement efficiency can be computed
for a typical design created by any CAD tool under test.

IV. STOCHASTIC ROUTING INFORMATION

It is well-known that the routing problem is an NP-hard
problem [14]. This means that, the exact solution for the general
case is impossible or hard to achieve. Several methods have
been introduced in CAD tools such as the MRST [15], Rip-up
and Reroute [16] and Iterative Deletion [17]. In this paper,
we use the MRST to derive a model for routing information,
since it is the most popular method to achieve minimum wire
length for global interconnects. There are several models for
MRST net-length estimation such as the work of Chung and
Hwang [18], Cheng [19], and Beardwoodet al. [20]. Although
these models give a good estimation for the length of the
multi-terminal nets with large number of terminals, they are
not accurate enough for two- or three-terminal nets. Since most
of the nets in a design are two- or three-terminal nets (refer to
netlist information model), an accurate model for a wide range
of number of terminals is required in this work.

Fig. 16(a) shows an example of a six-terminal net based on
MRST. A rule of thumb to calculate the net-length is known as
the half perimeter model [21] that approximates the net length
by the half perimeter of the net bounding area. For example, in
the net shown in Fig. 16, the length is estimated as

(37)

where and are the net bounding area dimensions and is
the estimated net length using the half perimeter model. It can
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TABLE I
AN EXAMPLE OF COMPUTING THE PLACEMENT EFFICIENCY

(a) (b)

Fig. 16. Example of a six-terminal net, based on MRST. (a) The complete
net structure using MRST. (b) The segments representing the net bounding area
dimensions.

be easily shown that the half perimeter model always underes-
timates the net length for -terminal nets when . Sup-
pose the net in Fig. 16(a) is divided into segments as shown in
Fig. 16(b). The total sum of the length of dashed line and dotted
line segments in the net bounding area is equal to the length of

and , respectively. Therefore, the actual wire length of the
MRST net is the half perimeter length plus the solid line
segments

(38)

where represents the length of the additional segments which
is a function of the number of terminals and the bounding area
dimensions. Also depends on the placement of the terminals.

Here we assume the terminals are placed randomly with
uniform probability density function over the entire bounding
area. Then, the probability density function of net length can
be computed by the random walk technique. An example of the
net-length pdf for the case of a 30-terminal net over the block
bounding area of mm is shown in Fig. 17. As shown,
the net-length pdf has an average of 61.1 mm and a standard
deviation of 3.98 mm.

The random walk simulation has been performed for various
numbers of terminals over different bounding area dimensions
in order to find a simple and closed-form equation for the av-
erage net length of an MRST net. In the simulation the MRST
is constructed using a heuristic algorithm shown in [22]. Fig. 18

Fig. 17. Example of net-length probability density function.

illustrates the average net length versus the number of terminals
of the net for two different bounding area dimensions of
mm and mm .

In order to find a closed-form expression for the average
MRST net-length, suppose that there is an-terminal MRST
net bounded with a square of size . The net-length
is proportional to the , because scaling the bounding dimen-
sion would scale the net-length with the same weight of scaling.
Thus the net length can be represented by

(39)

where is a function of the number of net terminals,, and
is the net bounding area dimension, and is the net-

length of the MRST net. Now suppose that the area is divided
into four equal pieces with dimensions of by , as shown
in Fig. 19. Assuming uniform distribution of terminals, there
are terminals in each piece, which means that the length
of the net in each piece is . For a
very large value of , the length of broken segments, due to
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Fig. 18. Average net length versus the number of terminals from(42)
compared to exact data from computer simulations.

Fig. 19. Derivation of the form of MRST net-length function based on net
partitioning.

this dividing, can be ignored compare to the total net length.
Therefore, , which gives

(40)

The only solution of (40) is , where
precisely, and can be any number. In the general case when

is small, by considering the length of broken segments, the
general solution of the same equation as described above is

(41)

where , and are computed by curve fitting.
For the case of a rectangular (nonsquare) bounding area, the

simulation results shows that for the case of , the value of
in (38) is proportional to . Similarly for the case of ,

the value of is proportional to . The only symmetric func-
tion that gives the best fit to the simulations data is .
Therefore, the form of the equation for the average net-length
of an MRST net is given by

(42)

where , and are the fitting parameters which have been
computed as and , the first term,

, is a representation of in (38),
is the number of terminals of the net, andand are the net
bounding area dimensions.

V. COMPLETE STOCHASTIC GLOBAL NET-LENGTH

DISTRIBUTION

The complete global net-length distribution is derived by
combining all three distinct information bases: netlist, place-
ment, and routing.

The netlist information calculates the number of nets for each
fan-out by using heterogeneous Rent’s rule. The placement in-
formation gives the pdf of the net bounding area dimensions that
are computed by the random walk technique. Using the routing
information, the net bounding area dimensions are translated to
the net length, assuming MRST construction for the net.

The complete global net-length distribution is the summation
of net-length pdf multiplied by the corresponding number of
nets for all fan-outs. Equations (32), (34), (35), and (42) can
be used to compute the average of the net-length pdf for each
fan-out.

A real RISC microprocessor [23] has been modeled as an
example to verify the new model derived here. The chip size is

mm with 20 different megacells. Table II shows the
Rent’s parameters and the number of gates in the megacells. The
Rent’s parameters are computed based on some extracted data
from actual designs, as shown in [12]. Moreover, the tabulated
Rent’s parameters for different structures such as random logic,
memory, data path, are found in [24]. Based on the type of the
megacells in Table II, Rent’s rule parameters are selected. For
instance, the Rent exponents for memory, data path and random
logic are 0.2, 0.47, and 0.6, respectively.

Equations (32), (34), (35), and (42) give the average net
length for each fan-out which is depicted in Table III, assuming
a placement efficiency of 80%. In the absence of detailed
placement data to compute the placement efficiency in this
example, the value of 80% is selected for the placement
efficiency because it gives the best fit to the data. Note that
for the other circuits that are laid out with the same placement
program the placement efficiency can be approximated with the
same value of 80%. However, the value of 80% for placement
efficiency is only for this particular placement program and it
can be different for other placement tools.

The second column of Table III gives the total number of
nets for the fan-out specified in column one. Column three gives
the average net bounding area from the placement information
equation and the fourth column gives the average net length
from the routing information using the average net bounding
computed in the second column. The total net length is com-
puted by multiplying the average net length by the number of
nets for each fan-out. Table III shows that the total number of
global nets is 6381, the average global net length is 9.11 mm,
and the total global net length is 58.1 m. Note that, based on
[23], the total number of global nets is about 6000, which sup-
ports the prediction of the netlist information presented here.
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TABLE II
RENT’S PARAMETERS OFMEGACELLS

TABLE III
NETLIST, PLACEMENT, AND ROUTING INFORMATION

Fig. 20. Complete global net-length distribution compared to real data.

The complete estimation method of global net-length dis-
tribution based on the three models of netlist, placement and
routing has been implemented in a C program called “GLobal

InterconnectDistributionEstimator” (GLIDE). In this program,
the netlist information is computed based on the heterogeneous
Rent’s rule. Then, the placement and routing information for
every fan-out are obtained from the random walk technique de-
scribed in Section IV.

The complete model of global net-length distribution used in
GLIDE is verified through comparison with actual data. Fig. 20
shows the comparison of the predicted global net-length distri-
bution using GLIDE and very basic parameters of Table II to
the actual data taken from [23]. As seen in Fig. 20, the predicted
global net-length distribution describes a real wiring histogram
with a good accuracy.

VI. CONCLUSION

A priori global net-length distribution for a heterogeneous
SoC is derived based on the three stochastic models fornetlist,
placement, androuting information. The netlist information de-
termines the number of nets for each fan-out by using the hetero-
geneous Rent’s rule. The placement information gives the prob-
ability density function of the net bounding area dimensions
that are computed by the random walk technique. Using the
routing information, the net bounding area dimensions are trans-
lated to the net length, assuming MRST construction for the net.
The complete global net-length distribution discussed here has
been implemented in a C program called “GLobalInterconnect
DistributionEstimator” (GLIDE). The new net-length distribu-
tion model used in GLIDE, is verified through comparison with
actual data from a commercial RISC microprocessor.
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