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Prediction of Net-Length Distribution for Global
Interconnects in a Heterogeneous System-on-a-Chip

Payman Zarkesh-H&tudent Member, IEEBeffrey A. Davis, and James D. Meindife Fellow, IEEE

Abstract—A system-on-a-chip (SoC) contains several pre-de- I"‘e’“’:"e“ Density Function, i(t)
sighed heterogeneous megacells that have been designed ani 1.0E+4¥

routed optimally. In this paper a new stochastic net-length i - Donath’s Distribution
distribution for global interconnects in a nonhomogeneous SoC 1.0E+34 : - New Distribution

is derived using novel models for netlist, placement, and routing
information. The netlistinformation is rigorously derived based on

heterogeneous Rent's rule, the placement information is modeled LOE+2 g

by assuming a random placement of terminals for a given netin a F N=2303 gates

bounding area, and the routing information is constructed based 1.0E+1 4 ﬁ:s“é’s

on a new model for minimum rectilinear Steiner tree construction fo=28

(MRST). The combination of the three models gives a priori esti-

mation of global net-length distribution in a heterogeneous SoC. 1.0E+0 " '
1 1

Unlike previous models that empirically relate the average length
of the global wires to the chip area, the new distribution provides Interconnect Length, | {gate pitches]

a complete and accurate distribution of net-length for global

interconnects. Through comparison with actual product data, it Fig. 1. Comparison of Davis’ stochastic wiring model [5] to actual data and
is shown that the new stochastic model successfully predicts the Ponath's model.

global net-length distribution of a heterogeneous system.

Index Terms—Global interconnect, heterogeneous Rent's rule, Underlying assumption of his model is based on a well-estab-
netlist model, placement model, routing model, Slip99: system level lished empirical relationship commonly known as Rent’s rule
interconnect, system-on-a-chip. [4]. A more accurate wire-length distribution, compared to the
previous model, has been derived recently by Dava. [5]. In
the new method, the gates are grouped into three distinct but ad-
) o ) ~jacentblocks. By applying the principle of conservation of I/O’s

YSTEM level integration is evolving as a new paradigmy the three-block system and using Rent’s rule, a complete wire

llowing an entire system to be built on a single chip, usingngth distribution is determined. Fig. 1 illustrates the accuracy

pre-designed functional blocks called megacells. The perfeft the new model compared to the previous distribution. The
mance of a system-on-a-chip (SoC) is often determined by ¥yimary assumption of the Davét al. wire-length distribution
terconnect wiring requirements of the system. Morea¥siem  model is that each block consists of a uniform and homogeneous
level wire-length distributioris a key factor in timing anal- colection of gates and therefore this model is suitable only for
ysis, designing, floorplanning, routing of a SoC, and studyingediction of wire-length distributiomwithin the homogeneous
of the wiring resource limit at the global level. The predictiop|ocks in a system. The new model derived in this paper is not
of wire-length distribution at the early stage of the chip deségn gypject to this restriction and applies to a heterogeneous set of
priori estimation) can help the designer to: 1) optimize the intefyegacells.
connect structure to meet the minimum chip size with the max-The prediction of global wiring demand in a nonhomoge-
imum clock frequency [1] and 2) improve the results derivegeous system requires more information about the system such
from CAD tools for layout by providing information such asag netlist, placement, and routing. Kastal. [6] demonstrate a
minimum number of metal levels for wireability [2]. Althoughyiring model for global interconnects under netlist assumptions.
a priori estimation doesn't offer the accuracy of CAD tools, itrhey show that a simple model can relate the average global
provides the above information before the layout design wifgire length to a fraction of chip size. Sorkin [7] presents a sto-
almost no cost. chastic global wiring model, which has the disadvantage of re-

For the firsttime, a real breakthrough in the estimate of a witg,jring even more assumptions about the chip. His conclusion,
length distribution was reported by Donath [3] in 1981. In highough, gives a similar relationship for the average wire length,
paper, Donath discussed, using a hierarchical method, that fl{@ich is roughly one-third of the semi-perimeter of the chip.
wire length distribution should follow a power law function for |t has been previously observed that the overall wire-length
most of the wires until it drops rapidly to zero for long wires. Thgjistripution, at the system level, has a bimodal behavior [8], as

shown in Fig. 2. The distribution has two peaks—the first peak
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0 s b — expression as
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Wire length/Chip diagonal tength T = kN? 1)
wherek andp are the Rent’s coefficient and exponent, respec-
tively. Since a SoC is a heterogeneous network containing dif-
o . ferent varieties of megacells, a new definition of Rent'’s rule for
the lower levels\githin the megacells) are done independently,ciy heterogeneous systems is required. The new heterogeneous
of the higher level etweenthe megacells) in SoC designsrent's rule [12] is rigorously derived in this section. It is shown
However, the models derived in this paper apply to both singiest the same power-law expression as (1) is also valid for het-

mode and bimodal distributions. erogeneous networks with equivalénandp parameters
Since global net-lengths are usually longer than local nets

within megacells, the overall performance of a chip is often lim-
ited by its global wiring network [9], [10]. It is, therefore, im-
perative to gain thorough understanding of the global wiring re-
guirements for present and projected SoC designs. To enhance Peq =
this understanding, for the first time a stochastic net-length dis-

tribution for global interconnects is derived in this paper. unwherek; andp; are the usual Rent's rule parametetg;; is
like previous models [6], [7] that empirically relate the averagi@€ equivalent number of gates in tite megacell andve:,, =
length of the global wires to the chip size, the new distributio?_i—; Nei-

provides a complete and accurate global net-length distribution
at the very early stage of the design since it utilizes the modéls
for netlist, placement, and routing at the same time. The com-Rent’s rule is a simple power-law relationship between the
plete system level wire-length distribution for a heterogeneongmber of I/O terminals of a logic block and the number of
SoC can be obtained by combining the new global wiring digiates contained in that blogk. Specifically, [4]

tribution with the internal wiring distributions of all megacells, T — LNP ©)

as presented in [5]. ) _
Fig. 3 represents three novel stochastic models for netliifi€rex is the average number of terminals per gate amel-

placement, and routing information that are used to derive tfcts the connectivity of the gates in a homogeneous megacell.

global net-length distribution [11]. The netlistinformation is de£* homogeneous megacell, by definition, is alarge block of iden-

rived based on heterogeneous Rent's rule [12], as shown in Sig@! gates, which is designed to fulfill a specific purpose. For
tion II. Since the stochastic variations are fairly significant 4pStance, in a heterogeneous SoC, there are several blocks of
the global level, a probabilistic method is utilized for the placél®mory, data path, control unit, etc. Each block is considered
ment and routing models. Section 1l introduces the placemett @ megacell. Going further into the hierarchy of the design,
information by assuming a random placement of terminals fofaMegacell may consist of several macrocells. The macrocells
given net. Section IV describes the routing information based aVe different size (in terms of number of gates inside) and they
a new model for minimum rectilinear Steiner tree (MRST) corf£an be repeatedly used in the design. The smallest macrocell is
struction. The combination of the three models gives the glotfafingle gate. The connectivity between the macrocells defines
net-length distribution, as shown in Section V. the complexity of the megacells, which is represented by the
Rent’s rule parameters andp.

Early compelling evidence of Rent’s rule was presented in a
study by Landman and Russo [4], who partitioned various com-

The netlist information defines the connectivity betweeputer logic systems. Fig. 4 is a plot of the average number of
megacells or fan-out distribution of the SoC (i.e., the number pins versus the average number of gates per macrocell for a par-
nets versus fan-out [13]). To predict the number of nets betwetizular logic design [4]. Besides Rent’s rule, there is another im-
megacells, a well-established empirical relationship known pertant relationship between the average number of macrocells
Rent’s rule is used. This relationship correlates the numberarid the average number of gates per macrocell. To illustrate this

Fig. 2. Typical distribution of wire lengths in an integrated system.

)

Heterogeneous Rent’s Rule

Il. STOCHASTIC NETLIST INFORMATION
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Equations (7) and (8) are validated by the obvious result

Number of Gates

. . Ng,, = Ng1 + Nga. ©)]
Fig. 4. Average number of pins versus average number of gates per macrocell, ) ]
after [4]. Likewise, the average number of terminals of Angate

macrocell can be computed for the heterogeneous system. In a
log-log plot of I" versus/V, the best fit to a variety of curves
(i.e., from a heterogeneous set of blocks) results in a weighted
arithmetic average of the logarithm ®ffor each curve
Ml 10gT1 + MQ 10gTQ
M + M, '

Equation (10) demonstrates the geometric average of the
number of terminals. Note that the geometric average is used
here because only the geometric average of a set of power law
functions is a power law function. From (10)

(10)

log1cq =

Fig. 5. Partitioning gates to make macrocells. L
I = [TlMl TQMZ} M1+

relationship, consider a rectangular array\gf gates as seenin
Fig. 5.

Suppose, for example, the gates in Fig. 5 are grouped into
macrocells containing two gates each. The number of macro-
cellsin this case 8/ /2. In general, ifV gates are grouped into T — (kNleNGZ) NertVas N% (11)
a macrocell, then the number of macrocellais/N. Thus, the erT AN T2 )
average number of macroce{l&/) or population functionis  This equation shows the overall system also obeys Rent's rule

= [(k‘lel)NGl/N(k'Qsz)NGZ/N] (NGI/N>‘1HNG2/N>

1
Na1 arpiNet .Naz prpe Nz | Vo1t Vaz
[kl NPNe ez

M = & 4) Toq = keq NP (12)
, , N with
Now consider a simple 2-block heterogeneous system, as .
shown in Fig. 6. Megacell#1 and megacell#2 are homogeneous e, = (kf‘rclké\’cz) NGit VG2
sub-systems witlV; and N total gates, and; , p1, k2,, and (13)
, : . _ piNg1 +p2Ne:
p2, as Rent’'s parameters, respectively. In order to figgd peq Poq = —F
Ng1+ Nao

and Ng.q, that describe this system as a collective, we use both

relationships (3) and (4). The first one is Rent’s rule Therefore, the overall heterogeneous system can be described

Megacel1 Ty = ky N7 by (12) and (13'). Fig.7 s.hows.the gen'eral case, wheliéferent
{ Megacelf2 Ty = ky N2, (5) megacglls areincludedina smgle; chip. Using the same strategy,
the equivalent Rent’s rule coefficients are calculated as
The second relationship is a population function that de-
scribes the number of macrocells

Megaceltl My = Ngy /N ®) (14)
Megacel§#2 M, = Ngo/N.
For this heterogeneous system, the overall number of macro- Pea = Ne.,
cells with NV gates is simply the sum of the number/étgate \yhere
macrocells in both megacells. Thus, ”
_ _ Ne1 | Ne2  Ngi+ Negz Ng,, = ZNGv‘,- (15)
Meq — Ml + M2 — N + N - N " (7) =1
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S — considering Rent’s rule in a homogeneous system. Substituting

Megaceli#l Rent’s rule in (16) gives

Ngp kp, oy k172(N1 =+ .Z\]Q)pl’2 = k‘lN{)l =+ kQNgZ — T]’nt(172) (19)
Megacell#3 Megacell#2 | - whereky, p1, k2, p2, are the Rent’s rule parameter for mega-
Ny ky Py Nepkpps | cell#1 and megacell#2, respectively, and andp, » are the

heterogeneous Rent’s parameters defined in (18).
Since there are only two megacells in the block, all shared

Megacell#n terminals are used for two terminal nets. Note that in this study,
Ng, k. P, a multi-terminal net is defined in the global level where the con-
nections of the terminals inside a megacell are not of concern.
Thus, the number of two-terminal nei§,..(2) is given by
Fig. 7. System-on-a-chip with different megacells antVc_,, keq, Peq- Npet(2) = M (20)

2
Using (20) for all combinations of two megacells in the whole

Fig. 8 illustrates experimental results of two real chips tha{ stem gives the total number of two-terminal nets (fan-out of
mainly consist of two distinct megacells. Megacell#1 is th

random logic part of the design and megacell#2 is the memory.'Sim”aﬂy, in a block of three megacells shown in Fig. 10(a),

The software partitioning program receives the netlist file thglo number of three-terminal nets can be computed. From the
contains all connectivity data in a hierarchical form, as inpuyap diagram in Fig. 10(b), de Morgan’s law gives
The macrocells in the netlist file are selected from the blocks '

that are already defined by the designer. Then a list of macro- Texe23) =1+ 12+ 15— Tie2) — Taen3)

cells with number of pins and number of gates is constructed. — Tne2,3) + Tae(1,2,3) (21)

The final data points are generated from the average pointsgfereT: , T3, andT}; are the number of terminals of each mega-
the raw data. In the graphs of Fig. 8, the short dash lines agal|, respectively. Tt (1 2y, Time(1,3)> Tine(2,3)> aNd Tine(1,2.3)

the long dash lines are the Rent's curves for memory blockge the number of terminals that are shared between the asso-
and random logic blocks, respectively. The solid line is thgated megacellsly(1,2,3) is the number of terminals of the
equivalent Rent’s rule based on (14) and (15), and circles &ole collection, which is computed by heterogeneous Rent’s
real data derived from the netlist files. Design A is a part gfjle as
an ASIC chip with 37% on-chip SRAM and design B is a _ o
color map design with 90% on-chip memory. As shown, the Toxa2m = ku2a(Nu 4 No + N) (22)

composite Rent's rule successfully describes a heterogene$fi§"e V1, Nz, and N are the number of gates in megacell#1,
collection of megacells. megacell#2, and megacell#3, respectively, angs andp; 2 3

are the heterogeneous Rent's parameters given by

B. Derivation of Netlist Information 3 _ (lsN‘ 1o . N NN
. , 1,23 = \h1 *ha *hg 23
Using the heterpgeneous Rent’s _rule, the number of nets pe- _ p1Ny 4 paNo + p3N; (23)
tween megacells is computed. For instance, suppose there is a D123 = N+ N+ Ns

block of two megacells shown in Fig. 9(a), whefe andT>  sypstituting Rent's rule in (21) gives (24), shown at the bottom

represent the number of terminals of megacell#1 and megathe next page, WherB .1 2y, Tini(1,3), N0 (2,3) are de-
cell#2 respectively. Using the Venn diagram of Fig. 9(b) and ged similarly from (19)

Morgan'’s law of set theory, it can be proven that Tiae(r2) = ki NPE + by NE2 — ky o( Ny 4 Np)Pr2
Texi(1,2) = 11 + 12 — Tiae(1,2)- (16) Tine(1,3) = kN7 + ks — Ky a(Ny + Na)Pv= - (25)
Ting(2,3) = kNS> + k3N — ko 3(Ng + N3)P=s.
From (24) and (25) the number of three-terminal nets,
a]ZYnet(Zs), is given by

Here, I1,(1,2) is the number of internal terminals that are shared
between the two megacells aff@,.(; 2 is the number of ex-
ternal terminals of the whole collection of gates, which is ¢

culated by heterogeneous Rent’s rule as Npet(3) = % (26)
Tixe(1,2) = k1,2(N1 + No)P2 (17) Using (26) for all combinations of three megacells in the

hereN. and V. h ber of , 141 hole system gives the total number of three-terminal nets
where Ny and [V, are the number of gates in megace an\g{an—out of 2). Equations (26) and (24) show that the number of
megacell#2, respectively, arid » andp; » are the heteroge-

Rent ) b three-terminal nets is computed recursively from the number
neous Rent's parameters given by of all possible combinations of two-terminal nets. Similarly, in

1 .
- (kNl .sz)W the general case withy., megacells, the number of-ter-
1,2 L 2 (18) minal nets is computed recursively by examining all possible
PLo= niV +p2N2_ combinations o, 3, ..., m out of Ny, megacells.
’ N1+ N Assuming thatVyie, > 10, which is satisfied in current and

Equation (16) is illustrated by examining the number of pinfsiture microprocessor designs [10], then a closed-form expres-
of Fig. 9(a). Equations (17) and (18) can also be validated Bion for the number ofn-terminal nets can be derived [13].
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Fig. 8. Experimental results. (a) Data of design A. (b) Data of design B.
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Fig. 9. Example of a collection of two megacells. (a) Block diagram representation. (b) Venn diagram representation.

The approximate expression for the numberosferminal nets, [ll. STOCHASTIC PLACEMENT INFORMATION
Nuet(m), is . } } The placement problem for a SoC is a key factor for achieving
Nowe (1) ~ K Nyteg((m — 1P~ —mP™H) (27) designs with minimum global wire length. Therefore, it is im-

) net m portant to note that the global wire length depends on the place-
wherek andg are the equivalent megacell Rent’s rule paraméaent tool’s efficiency. In this section, a new model is derived
ters that are given by for the placement information which defines the bounding area

of the nets.
k= e N A. Definition of Placement Efficiency
(28)

In order to derive the placement model, a new parameter
for placement efficiency, is defined. For instance, consider
the three cases for a placement of four megacells, as shown in

Note that the underlying assumption for derivation of (28) iBig. 11(b). In this example, the megacells must be connected
that the heterogeneous Rent’s rule is valid throughout the whdlg a four-terminal net. Therefore, the best placentept =
design, from the gate level up to the megacell level. Howevéno%) of the megacells is right next to each other, as shown
since the Rent's parameters at the higher level of hierarchy, deFig. 11(a). The worst cagey, = 0%) is placement of mega-
fined as region Il [4], may not be the same as the Rent’s parancells at the corners of the chip area, as shown in Fig. 11(c).
ters at the lower levels, more accurate netlist information resultsFig. 12 shows the linear interpolation of block bounding area
from equating: andp to the Rent’s parameters in the region Iversus placement efficiency as defined by Fig. 11. In this figure,
if they are available. In the absence of the topology of the globg) is the placement efficiencyly., is the average area of a
Rent’s parameters in region Il, (28) gives the first order approregacellyn is the number of megacells which are connected by
imation for the Rent’s coefficient and exponent of the systema net, andVv,, is the total number of megacells in the design. For

k1 23(N1 + Ny 4 Ng)Pr22
= ki N + ko NG + EaNS® — Ting1,2) — Tine1,3) — Tine2,3) + Tinec1,2,3) (24)
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Fig. 10. Example of a collection of three megacells. (a) Block diagram representation. (b) Venn diagram representation.

(@ (b) (©

Fig. 11. Placement efficiency model. (a) 100% placement efficiency. (b) 60% placement efficiency. (c) 0% placement efficiency.

Ax“ Using (29), the placement efficiencies for the three cases, (a),
N3 (b), and (c), in Fig. 11 are 100%, 60%, and 0%, respectively.

e The placement efficiency depends on CAD tools and it is

computed by examining the floor plan results from the auto-

placer tool over the entire netlist. Therefore, the average place-
i ment efficiency of the entire design is computed by averaging
- from (29)
e | _ Block Bounding Area
2l =2 1 Total Chip Area

: M = Nnet . Z 1— m(i) (30)
> ‘€ Entire N
0% 100% M, Netlist

_ _ _ ' _ wherelN,,. is the total number of nets in the design. An example
Flg_._ 12. Linear interpolation of block bounding area versus placememc computing the average placement efficiency is contained in
efficiency. Section 1I-B

the case ofy, = 100%, the bounding area of the blocks is equaé AISO. from (2.9)’ the expression for computing the block
to the total area of the megacells in a net which, on average, %undmg area 1s B

mAneg. FOr the case of, = 0%, the block bounding area is  Block Bounding Area= Ayieg[mm, + Np(1 —17,)]. (31)
equal to the chip sizeéN,, - Aueg) regardless of the numberTherefore , the bounding area dimension can be computed as

of megacells. In the worst case, related blocks can be placed at . -
the corners of chip at the furthest allowable distance. The linear a=b= \/Al\'ieg[mnp + N (1 = 1p)] (32)
interpolation shown in Fig. 12 can be modeled as where & and b are the block bounding dimensions of
1 _ Block Bounding Area megacells which are connected by a net. Furthermore, the net
Ty = Total Cnt"p Area (29) bounding area is computed by assuming random placement
=% of the terminals of the net in the block bounding area. Fig. 13

wherem is the number of megacells which are connected Ishows an example of a net with nine terminals which are
the net andV,, is the total number of megacells in the desigmlaced randomly (with uniform distribution) all over théock
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« Fig. 15. Example of calculation of placement efficiency.

Fig. 13. Block bounding areaand net bounding areaassuming random of a design, it can also be used as a cost function for placement
placement of terminals. optimization algorithms in CAD tools. Therefore, in this part
R an example of computing the placement efficiency for a simple
Al=—2 case is investigated.

"l I‘_ m+1 Suppose that there is a chip with nine megacells, as shown
in Fig. 15. Each megacell is assumed to occupy one unit area.
‘ Hence, the chip area is nine units. For the given netlist shown
!

a

Y

in Table I, the block bounding area of each combination of con-
nected megacells can be calculated for the case of placement de-
picted in Fig. 15. Using (29), the placement efficiency of each
Fig. 14. Distribution of image of terminals in theaxis assuming uniform Net is computed. The average placement efficiency of the entire
probability density function. netlist is computed by averaging the placement efficiency from
(30), which gives

-l
[

\

A

a

bounding areaa and b. In this figure, (@) and (b), which 1_ Block Bounding Area
represent the maximum spreading of the terminals, giva¢he 1 Total Chip Area
bounding area =N Z _ 1 m@)

The complete probability density function (pdf) of the net QORI N
bounding area versus block bounding area has been simulated _ 1 % 59 — 63% (36)
by using the random walk technique which is described in Sec- 94 '

tion IV. Although there is no analytical closed-form equation for Similarly, the average placement efficiency can be computed
the complete probability density function of net bounding ardar a typical design created by any CAD tool under test.
in general, the average of the pdf can be calculated by a simple
closed form-equation. IV. STOCHASTIC ROUTING INFORMATION

In order to derive this closed-form equation, first consider the
projection of the terminals in Fig. 13 onto the horizontal axis,
shown in Fig. 14. The distance between two adjacent projecti
points, on average, is given by

It is well-known that the routing problem is an NP-hard

oblem [14]. This means that, the exact solution for the general
Rse is impossible or hard to achieve. Several methods have

been introduced in CAD tools such as the MRST [15], Rip-up

Al= 2% (33) and Reroute [16] and lterative Deletion [17]. In this paper,

m+1 we use the MRST to derive a model for routing information,

Since there are: — 1 pieces ofAl, the average net boundingsince it is the most popular method to achieve minimum wire
area on the horizontal axis is length for global interconnects. There are several models for
m-—1 MRST net-length estimation such as the work of Chung and

a=(m—1)-Al=_— +1 (34) Hwang [18], Cheng [19], and Beardwoetlal. [20]. Although

Similarly, on the vertical axis it can be shown that these models give a good estimation for the length of the

m—1 . multi-terminal nets with large number of terminals, they are
= ri b (35) not accurate enough for two- or three-terminal nets. Since most

wherea andb are the net bounding area dimensions. Using (3 etlist information model), an accurate model for a wide range

(34), and (35), the average net bounding area versus the numier f inals i rod in thi K
of terminals of auet(m) is computed. number of terminals is required in this work.

Fig. 16(a) shows an example of a six-terminal net based on
MRST. A rule of thumb to calculate the net-length is known as

the half perimeter model [21] that approximates the net length

Placement efficiency is a parameter that defines a CAD t00}3 the half perimeter of the net bounding area. For example, in
capability to place megacells such that it requires the minimufs net shown in Fig. 16, the length is estimated as
wire-length for the global wiring networks. A perfect placement

LHP =a+b (37)

with 100% placement efficiency means that all connected mega-
cells are placed in the nearest neighborhood of each other. Smt®rea andb are the net bounding area dimensions ang is
the placement efficiency is a criterion to reflect the compactnetbe estimated net length using the half perimeter model. It can

Z%the nets in a design are two- or three-terminal nets (refer to
0

B. An Example of Placement Efficiency
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TABLE |
AN EXAMPLE OF COMPUTING THE PLACEMENT EFFICIENCY

m Connected Number | Block Boundipg Block Bounding Area - _m_ 1 me()
Megacells of nets %rea Total Chip Area .
[Unit area]
2 1,2 10 2 1-2/9=7/9 7/9 100%
2 1,6 14 6 1-6/9 = 1/3 7/9 43%
2 2,5 12 2 1-2/9 = 7/9 7/9 100%
2 4,8 18 4 1-4/9 = 5/9 7/9 71%
2 3,7 9 9 1-9/9 =0 7/9 0%
3 1,2,5 7 4 1-4/9 = 5/9 2/3 83%
3 2,7,8 5 6 1-6/9 = 1/3 2/3 50%
3 4,5,7 8 4 1-4/9 = 5/9 2/3 83%
4 6,7,8,9 3 6 1-6/9 = 1/3 5/9 60%
4 1,3,5,8 4 9 1-9/9 =0 5/9 0%
4 5,7,8,9 2 6 1-6/9 = 1/3 5/9 60%
6 1,2,4,5,6,7 1 9 1-9/9 =0 1/3 0%
8 | 1,234,5,6,78 1 9 1-9/9=0 1/9 0%
® 0.015
1 o1 -
b b . -
m=6 . m=6
- 0.010
-« 2 —- - = >

(@) (b)

Fig. 16. Example of a six-terminal net, based on MRST. (a) The comple
net structure using MRST. (b) The segments representing the net bounding ¢
dimensions.

0.005

Probabliity density function [1/mm]

be easily shown that the half perimeter model always undert
timates the net length fon-terminal nets whem» > 3. Sup-

pose the net in Fig. 16(a) is divided into segments as shown

Fig. 16(b). The total sum of the length of dashed line and dott g 20 @ 60 80 100
line segments in the net bounding area is equal to the length _. Wirelength [mm]

a and b, respectively. Therefore, the actual wire length of th
MRST net is the half perimeter length + b) plus the solid line
segments

I‘—aﬁg. 17. Example of net-length probability density function.

illustrates the average net length versus the number of terminals
Larst = 8L + (a +b) (38) of tth net for two different bounding area dimension$@®k 10
mm? and10 x 20 mn?.

wheres L represents the length of the additional segments which! order to find a closed-form expression for the average

is a function of the number of terminals and the bounding ardRST net-length, suppose that there israrterminal MRST

dimensions. Alsé L depends on the placement of the terminal§€t bounded with a square of siz¢a = b = d). The net-length
Here we assume the terminals are placed randomly wifhProportional to thel, because scaling the bounding dimen-

uniform probability density function over the entire boundin%?n would scale the net-length with the same weight of scaling.

area. Then, the probability density function of net length cai'us the net length can be represented by

be computed by the random walk technique. An example of the Larsr = f(m) - d (39)

net-length pdf for the case of a 30-terminal net over the block

bounding area of0 x 20 mm? is shown in Fig. 17. As shown, where f is a function of the number of net terminats, and

the net-length pdf has an average of 61.1 mm and a standdrd the net bounding area dimension, abgrsr is the net-

deviation of 3.98 mm. length of the MRST net. Now suppose that the area is divided
The random walk simulation has been performed for varioursto four equal pieces with dimensionsdf2 by d/2, as shown

numbers of terminals over different bounding area dimensiomsFig. 19. Assuming uniform distribution of terminals, there

in order to find a simple and closed-form equation for the aarem /4 terminals in each piece, which means that the length

erage net length of an MRST net. In the simulation the MRSAf the net in each piece By psr = f(m/4) - (d/2). For a

is constructed using a heuristic algorithm shown in [22]. Fig. M&ry large value ofn, the length of broken segments, due to
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150 wherec, 3, and~ are the fitting parameters which have been
B SN S— computed asx ~ 1.1,8 = 2.0, and~ =~ 0.5, the first term,
__OEuaD(10mm  10mm) (-mY — B)(a-b/a+b),is arepresentation & in (38),m
L....& Exact et (10mm " 20mm) | is the number of terminals of the net, ancandb are the net

- A,yi’“’b bounding area dimensions.
E 100
& XA,A/A’_
3 e
£
3 _KA" |0~ V. COMPLETE STOCHASTIC GLOBAL NET-LENGTH
& Weogs
S / | -0 DISTRIBUTION
& =l
3% o The complete global net-length distribution is derived by
,o/"" combining all three distinct information bases: netlist, place-
/" ment, and routing.
The netlistinformation calculates the number of nets for each
fan-out by using heterogeneous Rent's rule. The placement in-
o m m p % e formation gives the pdf of the net bounding area dimensions that
# of Nodes are computed by the random walk technique. Using the routing

information, the net bounding area dimensions are translated to
Fig. 18. Average net length versus the number of terminals f(d®) the net length, assuming MRST construction for the net.
compared to exact data from computer simulations. The complete global net-length distribution is the summation
of net-length pdf multiplied by the corresponding number of
Fr—]_l_ nets for all fan-outs. Equations (32), (34), (35), and (42) can
FT be used to compute the average of the net-length pdf for each

. fan-out.
_J‘Fji.__ A real RISC microprocessor [23] has been modeled as an
example to verify the new model derived here. The chip size is
iET_ ‘:r 16.6 x 17.8 mm? with 20 different megacells. Table Il shows the

'_TJ Rent’'s parameters and the number of gates in the megacells. The

Rent’'s parameters are computed based on some extracted data
< d «—d2—  from actual designs, as shown in [12]. Moreover, the tabulated
Lygsr =f(m)-d Lo = f(m/4)-(d/2) Rent’s parameters for different structures such as random logic,

memory, data path, are found in [24]. Based on the type of the
Fig. 19. Derivation of the form of MRST net-length function based on nehegacells in Table Il, Rent’s rule parameters are selected. For
partitioning. instance, the Rent exponents for memory, data path and random
logic are 0.2, 0.47, and 0.6, respectively.
this dividing, can be ignored compare to the total net length. equations (32), (34), (35), and (42) give the average net

Therefore,Lyirst = 4Lj\irsT, Which gives length for each fan-out which is depicted in Table Ill, assuming
a placement efficiency of 80%. In the absence of detailed

fm)-d=4-f(m/4)-(d/2) placement data to compute the placement efficiency in this

f(m)/2= f(m/4). (40) example, the value of 80% is selected for the placement

efficiency because it gives the best fit to the data. Note that

The only solution of (40) isf(m) = « - m”, wherey = 0.5  for the other circuits that are laid out with the same placement
precisely, andv can be any number. In the general case Whej}ogram the placement efficiency can be approximated with the
m is small, by considering the length of broken segments, td8@me value of 80%. However, the value of 80% for placement
general solution of the same equation as described above iSefﬁCienCy is only for this particular placement program and it
can be different for other placement tools.

The second column of Table Il gives the total number of
nets for the fan-out specified in column one. Column three gives
t{%ee average net bounding area from the placement information
"equation and the fourth column gives the average net length
from the routing information using the average net bounding
computed in the second column. The total net length is com-
puted by multiplying the average net length by the number of
ﬁts for each fan-out. Table 11l shows that the total number of
obal nets is 6381, the average global net length is 9.11 mm,

and the total global net length is 58.1 m. Note that, based on
a-b [23], the total number of global nets is about 6000, which sup-
b +(a+0) (42) ports the prediction of the netlist information presented here.

f(m)=a-m?—p (41)

whereq, 3, and~ are computed by curve fitting.

For the case of a rectangular (nonsquare) bounding area
simulation results shows that for the case e b, the value of
6L in (38) is proportional ta:. Similarly for the case of > b,
the value ofé L is proportional tab. The only symmetric func-
tion that gives the best fit to the simulations datalig(a + b).
Therefore, the form of the equation for the average net—lengg
of an MRST net is given by

Loy = (a-m" — )

a—+
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TABLE I
RENT'S PARAMETERS OF MEGACELLS

Megacell’s Name k N p. Megacell’s Name k N p
Instruction Cache 4.12 | 380,000 | 0.20 I Instr. Fetch Address | 3.20 | 16,500 | 0.60
Instruction Cache Tags | 3.80 | 18,000 | 0.47 { Instr. Fetch Data Path | 3.20 | 13,800 | 0.60
Data Cache 4.12 | 350,000 | 0.20 || Instr. Fetch Control | 3.20 | 9,500 | 0.60
Data Cache Tags 3.80 | 25500 | 0.47 Address Queue 3.20 | 22,000 | 0.60
TLB 380 | 22400 | 035 Inst Decode & Reg. | 3.20 | 45,300 | 0.60
Ren.
Secondary Cache Ctrl. | 3.20 | 15,700 | 0.60 Integer Data Path 3.20 [ 43,800 | 0.60
External Interface 3.20 | 18,400 | 0.60 Integer Queue 3.20 | 19,700 { 0.60
Sys. Interface Buffers | 3.20 | 22,600 | 0.60 [ Floating PointData | 3.20 | 32,600 | 0.60
Path
Free List 320 | 9,800 | 0.60 | Floating Point Queue | 3.20 | 51,000 [ 0.60
Graduation unit 3.20 | 26,300 | 0.60 Floating Point 3.20 | 19,300 | 0.60
Multiplier
TABLE Il I nterconnecDistributionEstimator” (GLIDE). In this program,
NETLIST, PLACEMENT, AND ROUTING INFORMATION the netlist information is computed based on the heterogeneous
Global | Netlist Info. | Placement Info. | Routing Info. Total Net Rent's rule. Then’ the_ placement and routlng mformafuon for
Fan out | Total No, of | Average Net | Average Net Length every fan-out are obtained from the random walk technique de-
Nets Bounding Area Length scribed in Section IV.
1 3632 3.03x3.03 mm? 5.173 mm 18788 mm I . .
3 1184 486xa 86 mm? | 9.068mm | 10736 mm The complete model of global net-length distribution used in
3 561 6.18x618mm? | 1236 mm | 6933.9 mm GLIDE is verified through comparison with actual data. Fig. 20
4 318 7.24x7.24 mm 15.33 mm 4874.9 mm H H fotri
z 550 S iagiammt T 110 mm 1 3620.0 om shqws the_ comparison of the predl_cted global net-length distri-
6 134 8.93x8.93 mm? | 20.74 mm 2779.1 mm bution using GLIDE and very basic parameters of Table Il to
7 94 9.64x9.64 mm* 23.27 mm 2187.3 mm ; ; ;
5 % T T BT T e the actual data takgn from_ [23]. As seenin Fig. 2101, the predlcted
9 50 10.9x10.9mm? | 2813 mm | 1406.5 mm global net-length distribution describes a real wiring histogram
11 28 12.0x12.0 mm? 32.78 mm 917.96 mm
12 2 12,5x12.5mm? | 35.03mm | 770.66 mm
13 16 13.0x13.0 mm? 37.32 mm 597.12 mm
14 12 13.4x13.4 mm? 39.34 mm 527.15 mm V1. CONCLUSION
15 9 13.9x13.9 mm? 41.70 mm 375.30 mm R P .
= = s T 878 mm 628 mm A priori _global net-length distribution for_a heteroge_neous
17 4 14.7x14.7 mm?_| _45.88 mm 183.52 mm SoC is derived based on the three stochastic modelsaftist
18 3 15.1x151 mm2 | 48.00mm | 144.00 mm ingi i isti i .
5 3 e 15030 placgmentandroutmg information. The netlist |nformat|on de
Toto Tl - - 58106.8 mm termines the number of nets for each fan-out by using the hetero-
geneous Rent’s rule. The placement information gives the prob-
600 g ——— — ability density function of the net bounding area dimensions
[ * ] that are computed by the random walk technique. Using the
w0 i /«—\ TS Dunibation for Fan—ouwt=L 23, routing information, the net bounding area dimensions are trans-
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Fig. 20. Complete global net-length distribution compared to real data.

The complete estimation method of global net-length dis-

lated to the netlength, assuming MRST construction for the net.
The complete global net-length distribution discussed here has
been implemented in a C program callé€sl“oball nterconnect
Distribution Estimator” (GLIDE). The new net-length distribu-
tion model used in GLIDE, is verified through comparison with
actual data from a commercial RISC microprocessor.
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