Try to simulate circuits using SPICE (if possible) and compare the results with your answers. The extra problems are stared (*) and need not to be handed in. Assume all capacitances are big enough.

1. For the circuits shown below, a) Find the bias points; b) Find R_{in}, R_{out}, A_v. If not mentioned, assume that:

 $\beta = 200, \left|V_{BE(on)}\right| = 0.7^\circ, \left|V_{CE(sat)}\right| = 0.2^\circ, V_A = 100^\circ$

 (a) \Rightarrow

 (b) Two cases: considering/neglecting C_2

 (c) $I = 20mA$
2. For the circuit shown below ($\beta = 100, |V_{BE(on)}| = 0.7V, |V_{CE(sat)}| = 0.2V, V_A = 50V$), determine: transistor bias current/voltages; Differential/common mode voltage gains; Differential/common mode input resistances; Output resistance; Common mode rejection ratio; Output voltage swing.

3. For the circuit shown below ($\beta = 200, |V_{BE(on)}| = 0.7V, |V_{CE(sat)}| = 0.2V, V_A = 50V$):
 a) Find transistor bias points.
 b) Find $A_{vdd}, A_{vcc}, R_{ind}, R_{inc}$
 c) if 2 transistors are not matched ($I_{s1} = 0.1P^A, I_{s2} = 0.15P^A$), find bias points; Find new value for R_{E2} such that $I_{c1} = I_{c2}$.
 d) if $R_{C1} = 0$, and 2 transistors are matched find bias points; Find new value for R_{E2} such that $I_{c1} = I_{c2}$.
 e) repeat b) for the conditions in c)