1. Prove the following relations:
 i) \[\int_V \nabla f \, dv = \oint_S f \, d\mathbf{s} \] (hint: let \(\mathbf{A} = \mathbf{c} f \) in divergence theorem, \(\mathbf{c} \) is constant)
 ii) \[\int_V (\nabla \times \mathbf{v}) \, dv = -\oint_S \mathbf{v} \times d\mathbf{s} \] (hint: replace \(\mathbf{v} \) by \(\mathbf{v} \times \mathbf{c} \) in the divergence theorem)
 iii) \[\int_S \nabla f \, d\mathbf{s} = \oint_C f \, d\mathbf{l} \] (hint: let \(\mathbf{A} = \mathbf{c} f \) in Stokes theorem).

2. Show that the vector \(\mathbf{A} = (6xy + z^3) \mathbf{x} + (3x^2z - y) \mathbf{y} + (3xyz^2) \mathbf{z} \) is conservative. Find the potential function, \(\phi \), such that \(\mathbf{A} = \nabla \phi \).

3. Compute the line integral of \(\oint \mathbf{v} \cdot d\mathbf{l} \) along the triangular path below. Check the answer using the Stokes theorem.
 \[\mathbf{v} = 6\mathbf{x} + yz^2 \mathbf{y} + (3y + z) \mathbf{z} \]

4. Show that the Stokes theorem holds for the field vector \(\mathbf{A} = r \phi \) when the closed path is the circle \(\rho = a, z = 0 \), and open surface is:
 i) The disk \(0 < \rho < a, z = 0 \).
 ii) The lower hemisphere \(r = a, \pi/2 < \theta < \pi \).

5. The integral \(\mathbf{A} = \int_S d\mathbf{s} \) is called the vector area of surface \(S \):
 i) find the vector area of a hemispherical bowl of radius \(R \).
 ii) show that \(\mathbf{A} = 0 \), for any closed surface.
 iii) show that \(\mathbf{A} \) is same for all surfaces sharing the same boundary.

6. Assume that \(\mathbf{A} = \frac{\cos^2 \varphi}{r^2} \mathbf{r} \)
 i) check the divergence theorem for the region, \(1 < r < 2 \).
 ii) check the divergence theorem for a hemisphere with \(R = 2 \). Explain that why it doesn’t hold here.

7. Test the Stokes theorem for the function \(\mathbf{v}(\rho, \varphi, z) \) on the shaded area shown on the next page.
 \[\mathbf{v} = (\rho^2 \cos^2 \varphi \sin \varphi + 2\rho z \sin^2 \varphi) \hat{\rho} + (\rho z \sin 2\varphi - \rho^2 \cos \varphi \sin^2 \varphi) \hat{\varphi} + 3\rho z \cos \varphi \hat{z} \]
8. prove the following equations in the Cartesian coordinates:

i) $\nabla.(f \vec{A}) = f\nabla.\vec{A} + \vec{A}.\nabla f$

ii) $\nabla \times (f \vec{A}) = f\nabla \times \vec{A} + \nabla f \times \vec{A}$

iii) $\nabla \times (\nabla \times \vec{A}) = \nabla(\nabla.\vec{A}) - \nabla^2 \vec{A}$