Logic Course Assignment #5

1- Construct a 5 to 32 decoder using four 3 to 8 decoders with enables, and a 2 to 4 decoder.

2- Design a 4-input priority encoder.

3- Design a 4 to 16 decoder using logic gates. The inputs are A, B, C, D and the outputs are active low /y₀, /y₁, ..., /y₁₅. The decoder should have one active high enable line, E.

4- Design a 5 to 32 decoder using only 3 to 8 decoder modules. Assume that each 3 to 8 decoder has one active-low enable input /E₁, and one active-high enable input, E₂.

5- Design a 32 to 1 multiplexer using:
 a) only 74151 modules (check the books and data sheets for specifications),
 b) two 74150 modules and one 4 to 1 multiplexer,
 c) two 74150 modules and one NAND gate.

6- Construct a 16x1 multiplexer with two 8x1 and one 2x1 multiplexers. Use block diagrams.

7- Realize the following functions using a 4 to 1 multiplexer module:
 (a) \(f₁(a, b, c) = \Sigma m(2, 4, 5, 7) \)
 (b) \(f₂(a, b, c) = \Pi M(0, 6, 7) \)
 (c) \(f₃(a, b, c) = (a + b')(b' + c) \)

8- Given the following circuit, with the decoder having active-low outputs as shown, find the expression for \(f(w, x, y, z) \) in SOP form.