Session 1: Trends in VLSI

Introduction to VLSI

Interconnect Design

Course Objective

- We will focus on challenges facing Interconnect scaling and will seek solutions and new opportunities.

- There will be no design project, while some simulations will be needed for homework:
 - Spice, FemLab, MATLAB

- There will be a term paper in this course (to be done individually).

- Extra credit for any term paper that contains new idea!

- Most of the material (books, papers) needed for this course will be provided.

- Lecture Notes: combination of slides and discussions
 - Slides will be posted on the class webpage:
 - http://ee.sharif.edu/~sarvari/
Required Text/Reference Material

- Selected research papers from the literature

Trends In Semiconductor/CMOS Market

Semiconductors have become increasingly more important part of world economy

CMOS has become the pervasive technology

In 2000: 0.7% of GWP
Today: 5% of GWP
Intriguing ... but Challenging

Challenges:
- The NRE cost of IC manufacturing (about 2M$ for mask)
- Deep-submicron effects
- Complexity (100 million transistors)
- Power and Energy
- Reliability and Robustness
- Beyond Silicon!

ASSP is an integrated circuit that implements a specific function that appeals to a wide market. As opposed to ASICs that combine a collection of functions and designed by or for one customer.

Interconnect?!

2 Major problems facing Moore’s law:
- Power dissipation
- Interconnects

IBM Cu technology
Connectivity and Complexity

Challenge of System Complexity

NoC Network-on-a-Chip

Traditional communication techniques:
point-to-point connection, busses

The wires occupy much of the area of the chip, and in nanometer CMOS technology, interconnects dominate both performance and dynamic power dissipation, as signal propagation in wires across the chip requires multiple clock cycles

NoC is similar to a modern telecommunications network, using digital bit-packet switching over multiplexed links. An NoC is constructed from multiple point-to-point data links interconnected by switches (a.k.a. routers). NoC links can reduce the complexity of designing wires for predictable speed, power, noise, reliability, etc
Moore's Law, the empirical observation that the transistor density of integrated circuits doubles every 2 years.

Moore: Moore's law has been the name given to everything that changes exponentially. I say, if Gore invented the Internet, I invented the exponential.

The number of transistors shipped in 2003 had reached about 10^{18}. That's about 100 times the number of ants estimated to be in the world.

A chip-making tool levitated images within a tolerance of 1/10,000 the thickness of a human hair — a feat equivalent to driving a car straight for 1000 km while deviating less than one 3.8cm.

It would take you about 25,000 years to turn a light switch on and off 1.5 trillion times, but Intel has developed transistors that can switch on and off that many times each second.
Moore's Law in Perspective

In 1978, a flight between New York and Paris cost around $900 and took 7 hours. If the principles of Moore's Law had been applied to the airline industry the way they have to the semiconductor industry, that flight would now cost about a penny and take less than 1 sec.

The price of a transistor is now about the same as that of one printed newspaper character.

Intel has developed transistors so small that about 200 million of them could fit on the head of each of these pins.

Intel µP Trends

- Intel 4004, first single-chip microprocessor
- November 15, 1971
- Clock rate 740 kHz
- Bus Width 4 bits (multiplexed address/data due to limited pins)
- PMOS
- 2,300 Transistors at 10 μm
- Addressable Memory 640 bytes
- Program Memory 4 KB (4 KB)

- Intel Core i7
- Today
- Clock rate 2.66 GHz - 3.33 GHz
- 64 bit processor
- 4 cores
- 731M Transistors at 45 nm
- Oregon 32 nm plant
- Price 273-552 $
263 mm2 die size
Moore's Law & Die Size

Moore was not always accurate

Projected Wafer in 2000, circa 1975

Die size has grown by 14% to satisfy Moor's law, BUT the growth has almost stopped because of manufacturing and cost issues

The die size of the processor refers to its physical surface area size on the wafer. The first generation Pentium used a 0.8 micron circuit size, and required 296 mm² per chip. The second generation chip had the circuit size reduced to 0.6 microns, and the die size dropped by a full 50% to 148 mm².

Trends in Clock Frequency

Lead microprocessors frequency doubles every 2 years, BUT the growth is slower because of power dissipation issue
Distance between Si atoms = 5.43 Å

of atoms in channel =
35 nm / 0.543 nm = 64 Atoms!

Problem: Uncertainty in transistor behavior and difficult to control variation! Randomly placed dopants in channel

Problem: Electrons can easily jump over the 5 atomic layers! This is known as leakage current
Power Density Problem

Power density too high to keep junction at low temperature.
Power reaching limits of air cooling.

Power = 115 Watts
Supply Voltage = 1.2 V
Supply Current = 115 W / 1.2 V = 96 Amps!

Note:
Fuses used for household appliances = 15 to 40 Amps

Problem:
Current density becomes a serious problem!
This is known as electromigration

Power = 115 Watts
Chip Area = 2.2 cm\(^2\)
Heat Flux = 115 W / 2.2 cm\(^2\) = 50 W/cm\(^2\)!

Notes:
Heat flux in iron = 0.2 W/cm\(^2\)
Heat flux in frying pan = 10 W/cm\(^2\)

Problem:
Heat flux is another serious issue!
Transistor Scaling

Scaling Issues:
- Channel length modulation
- Drain induced barrier lowering
- Punch through
- Sub-threshold current
- Field dependent mobility / Velocity saturation
- Avalanche breakdown and parasitic bipolar action
- Oxide Breakdown
- Interconnect capacitance
- Heat production
- Process variations
- Modeling challenges

\[T_{\text{Delay}} = \frac{C_{\text{Gate}}}{I_{\text{Drive}}} \]
\[= \frac{WL}{T_{\text{ox}}} \frac{V_{DD}}{I_{\text{Drive}}} \]
\[I_{\text{Drive}} = \frac{W}{LT_{\text{ox}}} \left(V_{DD} - V_{Th} \right)^2 \]
\[T_{\text{Delay}} = L^2 \frac{V_{DD}}{(V_{DD} - V_{Th})^2} \]

ITRS

The International Technology Roadmap for Semiconductors is sponsored by the five leading chip manufacturing regions in the world: Europe, Japan, Korea, Taiwan, and the United States

http://www.itrs.net/reports.html
Pitch = w + s
Aspect ratio: AR = t/w
Old processes had AR << 1
Modern processes have AR = 2
Pack in many skinny wires

<table>
<thead>
<tr>
<th>Year of Production</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM (in Pitch (nm))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contacted</td>
<td>80</td>
<td>70</td>
<td>65</td>
<td>60</td>
<td>57</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>MPU/ASIC Metal 1 (in Pitch (nm/Contacted))</td>
<td>90</td>
<td>78</td>
<td>68</td>
<td>59</td>
<td>52</td>
<td>45</td>
<td>40</td>
<td>36</td>
<td>32</td>
</tr>
<tr>
<td>MPU Physical Gate Length (nm)</td>
<td>32</td>
<td>28</td>
<td>25</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>13</td>
</tr>
</tbody>
</table>

Number of metal levels
- 11
- 11
- 11
- 12
- 12
- 12
- 12
- 12
- 13

Total interconnect length (µm) ~ Metal 1 and five intermediate levels, active wiring only [1]

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTI(µm/cm²) x 10^9 excluding global levels [2]</td>
<td>4.9</td>
<td>4.1</td>
<td>3.5</td>
<td>2.9</td>
<td>2.6</td>
<td>2.3</td>
<td>2</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Jmax (A/cm²) ~ intermediate wire (at 105°C)</td>
<td>8.9E+05</td>
<td>1.37E+06</td>
<td>2.08E+06</td>
<td>3.08E+06</td>
<td>3.88E+06</td>
<td>5.15E+06</td>
<td>8.16E+06</td>
<td>8.48E+06</td>
<td>8.08E+06</td>
</tr>
<tr>
<td>Metal 1 wiring pitch (µm)</td>
<td>180</td>
<td>166</td>
<td>136</td>
<td>118</td>
<td>104</td>
<td>90</td>
<td>80</td>
<td>72</td>
<td>64</td>
</tr>
<tr>
<td>Metal 1 A/R (for Cu)</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.9</td>
</tr>
</tbody>
</table>
ITRS Interconnect Technology Requirement

Long Term

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM τ Pitch (nm)</td>
<td>28</td>
<td>25</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>MPU/ASIC Metal 1 τ Pitch (nm)</td>
<td>28</td>
<td>25</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>MPU Physical Gate Length (nm)</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Number of metal levels</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Number of optional levels – ground planes/capacitors</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total interconnect length (microns) – Metal 1 and five intermediate levels, active wiring only [1]</td>
<td>3571</td>
<td>4000</td>
<td>4445</td>
<td>5000</td>
<td>5555</td>
<td>6250</td>
<td>7143</td>
</tr>
<tr>
<td>(\text{I}^{\text{min}} \text{ in length/cm}^2 \times 10^{17}) excluding global levels [2]</td>
<td>1.4</td>
<td>1.3</td>
<td>1.1</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>(\text{I}^{\text{min}} \text{ in intermediate wire (at 105°C)})</td>
<td>\text{1.6E+07}</td>
<td>\text{1.4E+07}</td>
<td>\text{1.4E+07}</td>
<td>\text{1.5E+07}</td>
<td>\text{1.8E+07}</td>
<td>\text{2.2E+07}</td>
<td>\text{2.7E+07}</td>
</tr>
<tr>
<td>Metal 1 wire pitch (nm)</td>
<td>56</td>
<td>59</td>
<td>44</td>
<td>40</td>
<td>36</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td>Metal 1 A/R (for Cu)</td>
<td>1.9</td>
<td>1.9</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

NTRS Roadmap

<table>
<thead>
<tr>
<th>Year Parameter</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2011</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology (nm)</td>
<td>120</td>
<td>110</td>
<td>100</td>
<td>70</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td># of Transistors</td>
<td>95.2M</td>
<td>145M</td>
<td>190M</td>
<td>539M</td>
<td>1529M</td>
<td>4308M</td>
</tr>
<tr>
<td>Clock Frequency</td>
<td>1724 MHz</td>
<td>1857 MHz</td>
<td>2000 MHz</td>
<td>2500 MHz</td>
<td>3000 MHz</td>
<td>3600 MHz</td>
</tr>
<tr>
<td>Chip Area (mm²)</td>
<td>372</td>
<td>372</td>
<td>408</td>
<td>468</td>
<td>536</td>
<td>615</td>
</tr>
<tr>
<td>Wiring Levels</td>
<td>8</td>
<td>8</td>
<td>8-9</td>
<td>9</td>
<td>9-10</td>
<td>10</td>
</tr>
<tr>
<td>Pitch/Li(GJ) (nm)</td>
<td>330/420/890</td>
<td>295/375/820</td>
<td>265/340/560</td>
<td>185/250/390</td>
<td>130/150/275</td>
<td>95/115/190</td>
</tr>
<tr>
<td>A/R (Li/GJ)</td>
<td>1.6/2.2/2.8</td>
<td>1.6/2.3/2.8</td>
<td>1.7/2.4/2.8</td>
<td>1.9/2.5/2.9</td>
<td>2.1/2.7/3.0</td>
<td>2.3/2.9/3.1</td>
</tr>
<tr>
<td>Dielectric Const.</td>
<td>2.2-2.7</td>
<td>2.2-2.7</td>
<td>1.6-2.2</td>
<td>1.5</td>
<td><1.5</td>
<td><1.5</td>
</tr>
</tbody>
</table>
MOS Device Scaling

- Decreasing device sizes reduce parasitic loads making for faster transitions
- Increase variations between devices and across the die
- Shrinking supply voltages increase noise sensitivity and reduce margins
- System performance is limited by noise and clock skew

MOS Device Scaling

- Scaling induces increase in magnitude of device to device variations
- Note particularly large increase in $L_{eff} \Rightarrow$ MOS current
Metal stack over Silicon Reverse-scaled global interconnects:

- Growing interconnect complexity
- Performance critical global interconnects
Interconnect Architecture (Intel 130nm)

Intel 6LM 130nm process with vias shown (connecting layers)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Intel</th>
<th>Cu</th>
<th>Al & Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portion</td>
<td>260</td>
<td>425</td>
<td>43</td>
</tr>
<tr>
<td>Portion</td>
<td>265</td>
<td>520</td>
<td>8</td>
</tr>
<tr>
<td>Metal 1</td>
<td>310</td>
<td>210</td>
<td>1.6</td>
</tr>
<tr>
<td>Metal 2</td>
<td>440</td>
<td>320</td>
<td>1.6</td>
</tr>
<tr>
<td>Metal 3</td>
<td>510</td>
<td>510</td>
<td>1.6</td>
</tr>
<tr>
<td>Metal 4</td>
<td>640</td>
<td>500</td>
<td>1.6</td>
</tr>
<tr>
<td>Metal 5</td>
<td>1120</td>
<td>130</td>
<td>1.6</td>
</tr>
<tr>
<td>Metal 6</td>
<td>1290</td>
<td>1280</td>
<td>1.6</td>
</tr>
</tbody>
</table>

P. Bai et al, IEDM 2004

Real wiring cross section photograph

Interconnect vs. Gate Delay

[Bohr, IEDM '95]

Al 3.0 µΩ cm
Cu 1.7 µΩ cm
SiO2 χ = 4.0
Low χ χ = 2.0
Al & Cu 0.8 µ Thick
Al & Cu Line 43 µ Long
Choice of Metal

- Until 180 nm generation, most wires were aluminum
- Modern processes often use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

<table>
<thead>
<tr>
<th>Metal</th>
<th>Bulk resistivity (mΩ·cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver (Ag)</td>
<td>1.6</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>1.7</td>
</tr>
<tr>
<td>Gold (Au)</td>
<td>2.2</td>
</tr>
<tr>
<td>Aluminum (Al)</td>
<td>2.8</td>
</tr>
<tr>
<td>Tungsten (W)</td>
<td>5.3</td>
</tr>
<tr>
<td>Molybdenum (Mo)</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Delay for Metal 1 and global wiring vs feature size
Interconnect Scaling Scenario

Problem with Interconnects?

<table>
<thead>
<tr>
<th>Technology generation</th>
<th>1μm</th>
<th>100nm</th>
<th>35nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOSFET switching delay (ps)</td>
<td>∼20</td>
<td>∼5</td>
<td>∼2.5</td>
</tr>
<tr>
<td>Interconnect AC response time, L=1mm (ps)</td>
<td>∼1</td>
<td>∼30</td>
<td>∼250</td>
</tr>
<tr>
<td>MOSFET switching energy (fJ)</td>
<td>∼30</td>
<td>∼2</td>
<td>∼0.1</td>
</tr>
<tr>
<td>Interconnect switching energy (fJ)</td>
<td>∼40</td>
<td>∼10</td>
<td>∼3</td>
</tr>
</tbody>
</table>

Calculations made by considering bulk resistivity of Cu.

Copper Resistivity

Resistivity of Cu increases with scaling.
Interconnect Resistance

Barrier/Liner is usually another metal preventing Copper to diffuse into Si or SiO$_2$

- Diffusion barrier reduces wire’s cross-section
- Cu over polish (dishing) reduces it’s thickness

Wire Capacitance

- Wire has capacitance per unit length to neighbors and layers above and below
 \[C_{\text{total}} = C_{\text{top}} + C_{\text{bot}} + 2C_{\text{adj}} \]

- Parallel plate equation: \[C = \varepsilon A/d \]
 Wires are not parallel plates, but obey trends
 Increasing area (W, t) increases capacitance
 Increasing distance (s, h) decreases capacitance plus a fringe term

- Dielectric constant
 \[\varepsilon = k\varepsilon_0 \]
 \[\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm} \]
 \[k = 3.9 \text{ for SiO}_2 \]
 Processes are starting to use low-k dielectrics
 \[k = 3 \text{ (or less) as dielectrics use air pockets} \]
Extraction of interconnect capacitance in modern VLSI technology is complicated because of:

- Non-homogenous dielectric (etch stop, barrier liner, etc.)
- Complex pattern of neighboring interconnects (need 3D modeling)

- Sometimes, the overhead layers increases the effective K value
- Overhead layers are hard to scale but needs to be controlled

Should we model wires as full transmission line? (no)

Unless we intentionally make inductance important: very wide wires
Or we are designing the clock grid

Transmission line effects can be ignored if the wire is:

- Very short, when signal transition is slower than the roundtrip delay
 \[t_s > 2L\sqrt{\frac{1}{c}} \]
- Very long, when it becomes too lossy (resistance is more than 2Zo)
 \[rL > 2\sqrt{\frac{1}{c}} \]}
Extraction of on-chip inductance is very challenging
- Hard to define return path (unless we use partial inductance technique)
- Require a huge amount of netlist data (10x more than RC netlist data size)

Simulation of on-chip inductance is also challenging
- Requires a lot more computation for delay calculation
- Available techniques have limited accuracy for large circuit structures

Fortunately, it is not required to include inductance for whole chip analysis
Rent's Rule: Underlying assumption for system-level modeling

\[T = kN^p \]

k and p are empirical constants such that:

- \(k \) = average # of pins
- \(p \) = connectivity factor
Delay Estimation Techniques

- SPICE Simulation
 - Very slow – not practical for chip level analysis
 - Good for specific nets such as clocks or critical path

- Asymptotic Waveform Evaluation (AWE)
 - Is an industry standard for delay estimation
 - Uses moment matching to determine a set of low frequency dominant poles that approximate the transient response

- Elmore Delay Analysis
 - Uses only the first moment (dominant pole)
 - Can be used for first order approximation in a complicated RC tree

\[\tau_{Di} = \sum_{k=1}^{N} R_{ki} C_k \]
\[= R_1 C_1 + (R_1 + R_2) C_2 + \cdots + (R_1 + \cdots + R_N) C_N \]
Delay of Long Interconnect

- Delay of gate driving a long wire governed by RC time constants

- For long wires, this delay quickly becomes untenable
 In a 65nm process, wire delay looks like 2-3*(gate delay)/mm2

\[D = \text{constant} \times \sqrt{\text{gate delay} \times \text{RwCw}} \]

Delay Reduction in Long Wires

- For slow long wires we use repeaters
 Gain stages that break up the wire and "refresh" the signal
 Inverters are the simplest gain stage

- Delay of a repeated line is linear in total length, not quadratic
 Delay is the geometric mean of the wire delay and the gate delay
 \[D = \text{constant} \times \sqrt{\text{gate delay} \times \text{RwCw}} \]
Noise: Power Supply

Resistive Voltage Drop and Simultaneous Switching Noise

Common Mode Supply Noise and Differential-Mode Supply Noise
\[\Delta V_L = L(di/dt) \rightarrow \text{Switching Noise (Dominant at Package Level)} \]
\[V = IR \rightarrow \text{Very Dominant Noise for on chip power networks} \]

Ground Bounce \rightarrow \text{Ground noise}

Power Bounce \rightarrow \text{Noise Glitch on Power Line}
When Ground Bounce and Power Bounce are in Phase (Common Mode Noise) they will not effect the local logical cells but will degrade the signaling between distant Tx and Rx.
When Ground Bounce and Power Bounce are out of phase (Differential Mode Noise), they adversely effect the local logical cells causing jitter in timing circuits.

Noise: Cross-Talk

Noise Caused by one signal, A, being coupled into another signal, B, is called Crosstalk.

Crosstalk may occur over many paths,

a) Inductive Crosstalk and Capacitive crosstalk
 When the interconnects are routed close to each other, signals on the line crosstalk to each other via near field electromagnetic coupling.

b) Substrate Crosstalk
 Common substrate will serve as a channel for signal coupling when interconnects are placed far apart. Such a noise source is called Substrate Crosstalk.

c) Power/Ground Crosstalk
 Signals can effect one another via a shared power supply and ground

d) Return Signal Crosstalk
 When a pair of signals share a return path that has a finite impedance, a transition on one signal induces a voltage across the shared return impedance that appears as a noise on the other signal.
Interconnect Noise

- Wires are skinny and tall and have lots of sidewall capacitance. Aspect ratios at 2.2 now and are projected to scale up to 3-3.5. We will have to live with some coupled noise.

- Traditional estimates use a simple capacitive divider:

\[V_{\text{noise}} = \frac{C_{\text{adj}}}{C_{\text{adj}} + C_{\text{top}} + C_{\text{bot}}} \]

But this is pessimistic, because the "victim" is usually driven, too.

- In reality, you must account for both victim and attacker drivers:

\[V_{\text{noise}} = \frac{C_{\text{adj}}}{C_{\text{adj}} + C_{\text{top}} + C_{\text{bot}}} \cdot \frac{1}{1 + \frac{C_{\text{adj}}}{C_{\text{adj}}/2}} \approx 75\% \]

Solution?

To avoid cross talk noise:

- Prevent parallel lines.
- Shielding.

\[V'_{\text{adj}} = \frac{V_{\text{adj}}}{2} \]

\[\text{Shielded (GNZ)} \]
Electromigration

- Electromigration: Electrons smack into lattice, displacing atoms
 Caused by unidirectional current flow
 Wires with bidirectional current is "selfhealing"
 Copper's MTTF is 5x better than Aluminum's

- Highest at vias, where the current crowds from the vias

- Calculate max DC current, which depends on total capacitance
 Rule is "max current per wire cross section" (e.g., 1mA/\mu m^2)

Replacing Wires?

Optical interconnect
- Bandwidth
- Power
- Delay
Replacing Wire?

- Sumio Iijima of NEC in 1991

CNT properties

Electrical:
- Ballistic conduction over distances of order 1 micron (~\(10^{-4}\) Ω·cm).
- ‘Metals’ with low resistivities, Semiconductors with high mobilities
- Conductivity a strong function of adsorbates or reactants.

Mechanical:
- High elastic modulus (high stiffness) (~1 to 5 TPa vs. ~0.2 for steel).
- Very high tensile strength (~10 to 100 GPa vs. ~1 for steel).

Thermal:
- High room temperature thermal conductivity (~2000W/mK vs. ~400W/mK for copper).

Electrical Stability:
- Maximum current density (~\(10^9\) A/cm² vs. <10⁷ A/cm² for Cu).

Chemical Stability:
- C binding energy in graphene ~12 eV vs. Cu at a Cu surface ~ 4eV.