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Blind Source Separation (BSS)

Source signals s1, s2, …, sM

Source vector: s=(s1, s2, …, sM)T

Observation vector: x=(x1, x2, …, xN)T

Mixing system → x = As

Goal → Finding a separating matrix y = Bx

A B 
s x y

Mixing matrix Separating matrix 
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Blind Source Separation (cont.)

Assumption: 
N=M (#sensors = #sources), or N >=M (#sensors >= #sources)

A is full-rank (invertible)

prior information: Statistical “Independence” of sources

Main idea: Find “B” to obtain “independent” outputs (⇒
Independent Component Analysis=ICA)

A B 
s x y

Mixing matrix Separating matrix 
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Blind Source Separation (cont.)

A B 
s x y

Mixing matrix Separating matrix 

Separability Theorem [Comon 1994,Darmois 1953]: If at most 
1 source is Gaussian: statistical independence of outputs ⇒
source separation (⇒ ICA: a method for BSS)

Indeterminacies: permutation, scale

A = [a1, a2, …, aM] , x=As ⇒

x = s1 a1 + s2 a2 + … + sM aM
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Geometrical Interpretation
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Statistical Independence of s1 and s2  ⇒ rectangular scatter plot of (s1,s2)
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Sparse Sources
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Note: The sources may be not sparse in time, but sparse in another domain 
(frequency, time-frequency, time-scale)
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Sparse sources (cont.)

3 sparse sources, 2 sensors
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Estimating the mixing matrix

A = [a1, a2, a3] ⇒

x = s1 a1 + s2 a2 + s3 a3

⇒ Mixing matrix is easily 
identified for sparse
sources
Scale & Permutation 
indeterminacy
||ai||=1
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Restoration of the sources

How to find the sources, after having found the 
mixing matrix (A)?

1
11 12 13 11 1 12 2 13 3 11

2
21 22 23 21 1 22 2 23 3 22

3

s
a a a a s a s a s xx

s or
a a a a s a s a s xx

s

⎡ ⎤
+ + =⎡ ⎤ ⎧⎡ ⎤⎢ ⎥ = ⎨⎢ ⎥ ⎢ ⎥⎢ ⎥ + + =⎣ ⎦⎣ ⎦ ⎩⎢ ⎥⎣ ⎦

2 equations, 3 unknowns ⇒ infinitely many solutions!

Underdertermined SCA, underdetermined system of equations
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Identification vs Separation

Case  #Sources <= #Sensors:  (determined or 
overdtermined)

Identifying A ⇒ source Separation

Underdetermined case: #Sources > #Sensors
Two different problems:

Identifying the mixing matrix (relatively easy)
Restoring the sources (difficult)
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Is it possible?

A is known, at eash instant (n0), we should solve un 
underdetermined linear system of equations:

Infinite number of solutions s(n0) → Is it possible to recover 
the sources?

11 1 0 12 2 0 13 3 0 1 0
0 0

21 1 0 22 2 0 23 3 0 2 0

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
a s n a s n a s n x n

n n or
a s n a s n a s n x n

+ + =⎧
= ⎨ + + =⎩

As x
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‘Sparse’ solution

si(n) sparse in time ⇒ The vector s(n0) is most likely 
a ‘sparse vector’

A.s(n0) = x(n0) has infinitely many solutions, but not 
all of them are sparse!

Idea: For restoring the sources, take the sparsest 
solution (most likely solution)
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Example (2 equations, 4 unknowns)
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The idea of solving underdetermined SCA

A s(n) = x(n) , n=0,1,…,T

Step 1 (identification): Estimate A (relatively easy)

Step 2 (source restoration): At each instant n0, find the 
sparsest solution of 

A s(n0) = x(n0), n0=0,…,T

Main question: HOW to find the sparsest solution of an 
Underdetermined System of Linear Equations
(USLE)?
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Another application of USLE: Atomic decomposition 
over an overcompelete dictionary

Decomposing a signal x, as a linear combination of a set of 
fixed signals (atoms)

Terminology:
Atoms: ϕ i , i=1,…,M
Dictionary: {ϕ 1 , ϕ 2 ,…, ϕ M}

1

1

1 1

1

1 1

(1) (1)(1)
(2) (2)Time (2)
(3) (3)(3)

( ) ( )( )

M

M

M M

M

M M

x
x
x

N Nx N

ϕ ϕ
ϕ ϕ

α αϕ ϕ

ϕ ϕ
α ϕ α ϕ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ = + +
⎢ ⎥ ⎢ ⎥⎢ ⎥↓ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= + +x

L

M MM

L
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Atomic decomposition (cont.)

M=N → Complete dictionary → Unique set of 
coefficients
Examples: Dirac dictionary, Fourier Dictionary

1

1

1 1

1

1 1

(1) (1)(1)
(2) (2)Time (2)
(3) (3)(3)

( ) ( )( )
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M M

M
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ϕ ϕ
α ϕ α ϕ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
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⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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L
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n

n k
ϕ
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= ⎨ ≠⎩

Dirac Dictionary:
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Atomic decomposition (cont.)

M=N → Complete dictionary → Unique set of 
coefficients
Examples: Dirac dictionary, Fourier Dictionary

1

1

1 1

1
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Atomic decomposition (cont.)

1 1 m mα ϕ α ϕ= + +x L

Matrix Form:

If just a few number of coefficient are non-zero ⇒ The underlying structure 
is very well revealed

Example. 
signal has just a few non-zero samples in time → its decomposition over the Dirac dictionary 
reveals it
Signals composed of a few pure frequencies → its decomposition over the Fourier dictionary 
reveals it
How about a signals which is the sum of a pure frequency and a dirac?

1

1,..., m

m

α
ϕ ϕ

α

⎡ ⎤
⎢ ⎥⎡ ⎤= =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

x ΦαM
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Atomic decomposition (cont.)

Solution: consider a larger dictionary, containing both Dirac
and Fourier atoms

M>N → Overcomplete dictionary. 

Problem: Non-uniqueness of α (→ USLE)

However: we are looking for sparse solution

1

1 1 1,...,m m m

m

α
α ϕ α ϕ ϕ ϕ

α

⎡ ⎤
⎢ ⎥⎡ ⎤= + + = =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

x ΦαL M



٢١/39

Sparse solution of USLE

Underdetermined SCA
Atomic Decomposition

on over-complete dictionaries

Findind sparsest solution of
USLE
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Uniqueness of sparse solution

x=As,  n equations, m unknowns, m>n

Question: Is the sparse solution unique?

Theorem (Donoho 2004): if there is a solution 
s with less than n/2 non-zero components, 
then it is unique with probability 1 (that is, for 
almost all A’s).
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How to find the sparsest solution

A.s = x, n equations, m unknowns, m>n
Goal: Finding the sparsest solution
Note: at least m-n sources are zero.

Direct method:
Set m-n (arbitrary) sources equal to zero
Solve the remaining system of n equations and n unknowns
Do above for all possible choices, and take sparsest answer.

Another name: Minimum L0 norm method
L0 norm of s = number of non-zero components = Σ|si|0
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Example

s1=s2=0   ⇒ s=(0, 0, 1.5, 2.5)T ⇒ L0=2
s1=s3=0   ⇒ s=(0, 2, 0, 0)T         ⇒ L0=1
s1=s4=0   ⇒ s=(0, 2, 0, 0)T ⇒ L0=1
s2=s3=0   ⇒ s=(2, 0, 0, 2)T ⇒ L0=2
s2=s4=0   ⇒ s=(10, 0, -6, 0)T ⇒ L0=2
s3=s4=0   ⇒ s=(0, 2, 0, 0)T ⇒ L0=2

⇒ Minimum L0 norm solution → s=(0, 2, 0, 0)T

1

2

3

4

1 2 1 1 4
1 1 2 2 2

different answers to be tested
4

6
2

s
s
s
s

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥− − −⎣ ⎦ ⎣ ⎦
⎢ ⎥

⎛ ⎞
=⎜ ⎟

⎝

⎢ ⎥⎣ ⎦

⎠



٢٥/39

Drawbacks of minimal norm L0

Highly (unacceptably) sensitive to noise
Need for a combinatorial search:

Example. m=50, n=30,

diffetent cases should be tested separately
m
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

1350
5 10 cases should be tested.

30
⎛ ⎞

≈ ×⎜ ⎟
⎝ ⎠
On our computer: Time for solving a 30 by 30 system of equation=2x10-4

Total time ≈ (5x1013)(2x10-4) ≈ 300 years! → Non-tractable

0
0 0

( ) Minimize s.t.i
i

P s= =∑s x As
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A few faster methods

Method of Frames (MoF) [Daubechies, 1989]

Matching Pursuit [Mallat & Zhang, 1993]

Basis Pursuit (minimal L1 norm → Linear 
Programming) [Chen, Donoho, Saunders, 1995]

Our method (IDE)
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Method of Frames (Daubechies, 1989)

Take the minimum norm 2 (energy) solution:

Solution: pseudo inverse:

Different view points resulting in the same answer:

Linear LS inverse

Linear MMSE Estimator

MAP estimator under a Gaussian prior

2
2 2

( ) Minimize s.t.i
i

P s= =∑s x As

( ) 1
ˆ T T

MoF

−
=s A AA x

ˆ ,
LS

= ≈s Bx BA I

( )2~ 0, sN σs I
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Drawback of MoF

It is a ‘linear’ method: s=Bx
⇒ s will be an n-dim subspace of m-dim space

Example: 
3 sources, 2 sensors:

⇒ Never can produce 
original sources
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Matching Pursuit (MP) [Mallat & Zhang, 1993]
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Properties of MP

Advantage:
Very Fast

Drawback
A very ‘greedy’ algorithm 
→ Error in a stage, can 
never be corrected →
Not necessarily a sparse 
solution

x
a1

a2
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Minimum L1 norm or Basis Pursuit [Chen, Donoho, Saunders, 1995]

Minimum norm L1 solution:

MAP estimator under a Laplacian prior

Recent theoretical support (Donoho, 2004):
For ‘most’ ‘large’ underdetermined systems of linear 
equations, the minimal L1 norm solution is also the sparsest 
solution

1 1
( ) Minimize s.t.i

i
P s= =∑s x As
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Minimal L1 norm (cont.)

Minimal L1 norm solution may be found by 
Linear Programming (LP)

Fast algorithms for LP:
Simplex
Interior Point method

1 1
( ) Minimize s.t.i

i
P s= =∑s x As
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Minimal L1 norm (cont.)

Advantages:
Very good practical results
Theoretical support

Drawback:
Tractable, but still very time-consuming
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Iterative Detection-Estmation (IDE)- Our method

Main Idea:
Step 1 (Detection): Detect which sources are ‘active’, and which 
are ‘non-active’
Step 2 (Estimation): Knowing active sources, estimate their 
values

Problem: Detection the activity status of a source, 
requires the values of all other sources!

Our proposition: Iterative Detection-Estimation

Activity Detection → Value Estimation
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IDE (cont.)

Detection Step (resulted from binary hypothesis 
testing, with a Mixture of Gaussian source model):

Estimation Step:

ˆ ˆ( , )

ˆ ˆ ˆ( , ) ( )

m
T

i i j j
j i

T

g s

or

ε
≠

⎛ ⎞
= − >⎜ ⎟

⎝ ⎠

= − +

∑x s a x a

g x s A x As s

2

2

(IDE-s) minimize s.t.

(IDE-x) Let , and minimize
inactive

i
i I

inactive act act

s
∈

=

= −

∑ x As

s 0 x A s
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IDE (cont.)
m=1024, n=0.4m=409
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IDE (Simulation Results)

m=1024, n=0.4m=409

IDE-x is about two order of magnitudes faster than LP 
method.
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IDE (Simulation Results)

m=100, n=0.6m, Averaged SNRs (on 1000 simulations)
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Speed/Complexity comparision
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Conclusion and Perspectives
Two problems of Underdetermined SCA:

Identifying mixing matrix
Restoring sources

Two applications of finding sparse solution of USLE’s:
Source restoration in underdetermined SCA
Atomic Decomposition on over-complete dictionaries

5 methods:
Minimum L0 norm (→Combinatorial search)
Method of Frames
Minimum L1 norm or Basis Pursuit (→Linear Programming)
Matching Pursuit
Iterative Detection-Estimation (IDE)

Perspectives:
Better activity detection (removing thresholds?)
Applications in other domains
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Thank you very much for your attention


