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Blind Source Separation (BSS)

Source signals s,, S, ..., Sy,

Source vector: s=(s, S,, ..., Sy)'
Observation vector: X=(X,, X5, ..., X\)'
Mixing system — x = As

S X y
—>» A +—> B —>

< Mixing matrix —»>L&— Separating matrix _>

Goal — Finding a separating matrix y = Bx
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Blind Source Separation (cont.)

S X y
—>» A +—> B —>

% Mixing matrix —)e Separating matrix —)

Assumption:

o N=M (#sensors = #sources), or N >=M (#sensors >= #sources)
o As full-rank (invertible)

prior information: Statistical “Independence” of sources

Main idea: Find “B” to obtain “independent” outputs (=
Independent Component Analysis=ICA)
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Blind Source Separation (cont.)

S X y
—> A —> B —>

% Mixing matrix —)e Separating matrix —)

Separability Theorem [Comon 1994,Darmois 1953]: If at most
1 source is Gaussian: statistical independence of outputs =
source separation (= ICA: a method for BSS)

Indeterminacies: permutation, scale

A=la,, a, ..., ay]l , Xx=As =

X=s,a,tS,a,+...+syay
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Geometrical Interpretation
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Statistical Independence of s1 and s2 = rectangular scatter plot of (s1,s2)
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Sparse Sources
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Sparse sources (cont.)

3 sparse sources, 2 Sensors

Sparsity = Source Separation,
with more sensors than
sources?
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Estimating the mixing matrix

A=la, a a] =

X=s,a,+S,a,+S;a,

= Mixing matrix is easily
identified for sparse 4l
sources

Scale & Permutation Y
indeterminacy .

llayl[=1
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Restoration of the sources

How to find the sources, after having found the
mixing matrix (A)?

dy, &, a3 s | = {)ﬁ} or { 1S T 8,5, T35, = X
, | =
| Ay Ay B3 X Ay;S) 85, T8,35; = X,

2 equations, 3 unknowns = infinitely many solutions!

Underdertermined SCA, underdetermined system of equations
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Identification vs Separation

Case #Sources <= #3Sensors: (determined or
overdtermined)

|ldentifying A = source Separation

Underdetermined case: #Sources > #Sensors

Two different problems:
|dentifying the mixing matrix (relatively easy)
Restoring the sources (difficult)
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Is 1t possibler

A is known, at eash instant (n,), we should solve un
underdetermined linear system of equations:

As(no) = x(no) or { ailsl(no) 8,5, (no) + 31353(n0) = xl(no)
a2181(n0) +a,,S, (no) + a,,5, (no) =X, (no)

Infinite number of solutions s(n,) — Is it possible to recover
the sources?
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‘Sparse’ solution

s/(n) sparse in time = The vector s(n,) is most likely
a ‘sparse vector’

A.s(ny) = X(n,) has infinitely many solutions, but not
all of them are sparse!

|dea: For restoring the sources, take the sparsest
solution (most likely solution)
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Example <2 equations, 4 unknowns>
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The idea of solving underdetermined SCA
A s(n)=x(n), n=0,1,..., T
Step 1 (identification): Estimate A (relatively easy)

Step 2 (source restoration): At each instant n,, find the
sparsest solution of

A s(ny) = X(n,), n,=0,...,T

Main question: HOW to find the sparsest solution of an
Underdetermined System of Linear Equations
(USLE)?
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Another application of USLE: Atomic decomposition
over an overcompelete dictionary

Decomposing a signal x, as a linear combination of a set of
fixed signals (atoms)

RN YN o (@) |
Time| x(2) ¢ (2) Py (2)
X(3) |= @, (91(3) Tty | Py (3)
J : : :
| X(N) | o (N) | ou (N)
X =a @ +o 4 ay Oy
Terminology:

Atoms: ¢, ,i=1,..., M
Dictionary: {¢, , ¢, ,.--, Qmt
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Atomic decomposition (cont.)

@)
Time| x(2)
X(3) |=¢
ol
| X(N)_
X =

I @, (1) ]
@ (2)
@ (3)

o (N) |
@

+-ta,,

+-+ a,

I ou (D) ]

Py (2)
P (3)

| oy (N) |

P

M=N — Complete dictionary — Unique set of

coefficients

Examples: Dirac dictionary, Fourier Dictionary

Dirac Dictionary:

1 n=Kk
Qk(n):{ )

0 n=xk
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Atomic decomposition (cont.)

- x(1) D) ]
Time| x(2) @ (2)
XQ3) |=a| »(3)
\! : :
| X(N)J  Le(N)
X =o @

I Py (1)
Py (2)
+etay | ou(3)

Tt Oy Py

M=N — Complete dictionary — Unique set of

coefficients

Examples: Dirac dictionary, Fourier Dictionary

o

Fourier Dictionary:

2k 2k

1, eN, eN" .

.
Zk”(Nl))
, e°"

| oy (N) |
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Atomic decomposition (cont.)

X=a, @+ +a, o,

a

x:[gl,...,gm] . |=Da
o

m

Matrix Form:

If just a few number of coefficient are non-zero = The underlying structure
is very well revealed

Example.

o signal has just a few non-zero samples in time — its decomposition over the Dirac dictionary
reveals it

o Signals composed of a few pure frequencies — its decomposition over the Fourier dictionary
reveals it

o How about a signals which is the sum of a pure frequency and a dirac?
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Atomic decomposition (cont.)

X=o, ¢+ +a, @, :[Ql""’gm} = Da

Solution: consider a larger dictionary, containing both Dirac
and Fourier atoms

M>N — Overcomplete dictionary.
Problem: Non-uniqueness of a (— USLE)

However: we are looking for sparse solution
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Sparse solution of USL!

Atomic Decomposition

Underdetermined SCA on over-complete dictionaries

Findind sparsest solution of
USLE
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Uniqueness ot sparse solution

X=AsS, n equations, m unknowns, m>n
Question: Is the sparse solution unique?

Theorem (Donoho 2004): if there is a solution
s with less than n/2 non-zero components,
then it is unique with probability 1 (that is, for
almost all A’s).
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How to find the sparsest solution

A.s = X, n equations, m unknowns, m>n
Goal: Finding the sparsest solution
Note: at least m-n sources are zero.

Direct method:

o Set m-n (arbitrary) sources equal to zero

o Solve the remaining system of n equations and n unknowns
o Do above for all possible choices, and take sparsest answer.

Another name: Minimum L° norm method
a L% norm of s = number of non-zero components = X|s;|°
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Example
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@] =6 different answers to be tested
s1=s2=0 = s=(0, 0, 1.5, 2.5)T = L0=2
s1=s3=0 = s=(0, 2,0, 0)" = .0=1
s1=s4=0 = s=(0,2,0,0)T = 9=1
s2=s3=0 = s=(2,0,0,2)T = | 0=2
s2=s4=0 = s=(10,0,-6,0)" = L9=2
s3=s4=0 = s=(0,2,0,0)" = L%=2

= Minimum L° norm solution - s=(0, 2, 0, 0)T
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Drawbacks of minimal norm L
(P,) Minimize [s| =>|s|" st x=As

Highly (unacceptably) sensitive to noise
Need for a combinatorial search:

m
(nj diffetent cases should be tested separately
Example. m=50, n=30,

50
(30) ~5x10" cases should be tested.

On our computer: Time for solving a 30 by 30 system of equation=2x10-4

Total time ~ (5x1013)(2x10-4) ~ 300 years! — Non-tractable
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A few faster methods

Method of Frames (MoF) paubechies, 1989]

Matching Pursuit [Mallat & Zhang, 1993]

Basis Pursuit (minimal L1 norm — Linear
Prog ramming) [Chen, Donoho, Saunders, 1995]

Our method (IDE)
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Method of Frames (Daubechies, 1989)

Take the minimum norm 2 (energy) solution:
(P,) Minimize [s| =>|s[* st x=As
Solution: pseudo inverse: |
Svor =AT (AAT) x
Different view points resulting in the same answer:

LS

o Linear LS inverse s=Bx, BA~I
o Linear MMSE Estimator

o MAP estimator under a Gaussian prior s~N (0,051)
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Drawback of MoF

It is a ‘linear’ method: s=Bx
s will be an n-dim subspace of m-dim space

Example: A

3 sources, 2 sensors:

= Never can produce
original sources
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‘ MatChlﬂg Pur Sult <MP> [Mallat & Zhang, 1993]
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Properties ot MP

Advantage:
o Very Fast X

Drawback

o A very ‘greedy’ algorithm
— Error in a stage, can
never be corrected —
Not necessarily a sparse
solution
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Minimum L! norm or Basis Pursuit [Chen, Donoho, Saunders, 1995]

Minimum norm L1 solution:

(P) Minimize |s|, =) |s| st x=As

MAP estimator under a Laplacian prior

Recent theoretical support (Donoho, 2004):

For ‘most’ ‘large’ underdetermined systems of linear
equations, the minimal L' norm solution is also the sparsest
solution
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Minimal L! norm (conz.)

(P) Minimize |s|, =) |s| st x=As

Minimal L' norm solution may be found by
Linear Programming (LP)

Fast algorithms for LP:
o Simplex
o Interior Point method
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Minimal L! norm (conz.)

Advantages:

0 Very good practical results
o Theoretical support

Drawback:
o Tractable, but still very time-consuming
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[terative Detection-Estmation (IDE)- Our method

Main Idea:

o Step 1 (Detection): Detect which sources are ‘active’, and which
are ‘non-active’

o Step 2 (Estimation): Knowing active sources, estimate their
values

Problem: Detection the activity status of a source,
requires the values of all other sources!

Our proposition: lterative Detection-Estimation

—> Activity Detection —» Value Estimation ——
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IDE (cont.)

Detection Step (resulted from binary hypothesis
testing, with a Mixture of Gaussian source model):

m
al (X—Z§jaj]

j#i

0. (x,8) = > £

or g(x,8)=|AT (x—AS)+|
Estimation Step:

(IDE-s) minimize ) s’ st. x=As

1€ linactive

(IDE-x)  Let s, =0, and minimize |x—A,s

inactive act ”2
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E (cont)

m=1024, n=0.4m=409
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IDE (Simulation Results)

m=1024, n=0.4m=409

algorithm total CPU time MSE SNR (dB)

IDP-s (6 itrs.) 1.88 ¢ 00 1.39e -5 30.28
IDP-x (6 itrs.) 1.12e -1 1.95e -5 28.80
LP (interior-pt) 1.23e 42 3.51e—-5 26.25
LP (Simplex) 5.45e+3 3.51le—5 26.25
MP (10 itrs.) 1.54e—1 9.77e¢ -3 1.80
MP (100 itrs.) 1.58 e 00 1.26 e —3 10.70
MP (1000 itrs.) 8.71e00 1.54e -3 9.82
MOF 1.38e —1 8.59¢ -3 2.36

IDE-x is about two order of magnitudes faster than LP

method.



‘ IDE (Simulation Results)

m=100, n=0.6m, Averaged SNRs (on 1000 simulations)
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‘ Speed/Complexity comparision

L CPU time (sec.) .’
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Conclusion and Perspectives

Two problems of Underdetermined SCA:

o ldentifying mixing matrix

o Restoring sources

Two applications of finding sparse solution of USLE’s:
o Source restoration in underdetermined SCA

o Atomic Decomposition on over-complete dictionaries

5 methods:

2 Minimum LO norm (—Combinatorial search)

Method of Frames

Minimum L1 norm or Basis Pursuit (—Linear Programming)
Matching Pursuit

lterative Detection-Estimation (IDE)

Perspectives:

o Better activity detection (removing thresholds?)

o  Applications in other domains

O 0O 0 O

£€4/39



Thank you very much for your attention
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