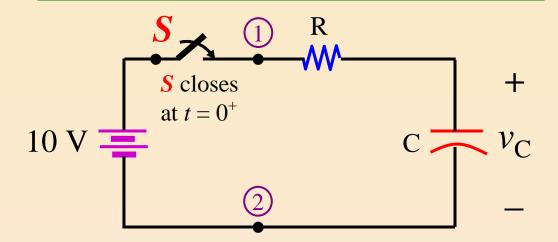
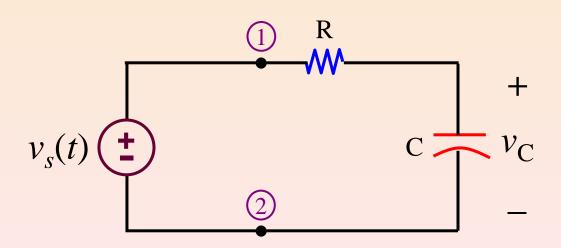
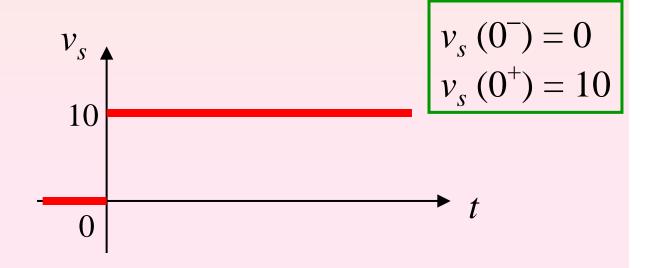
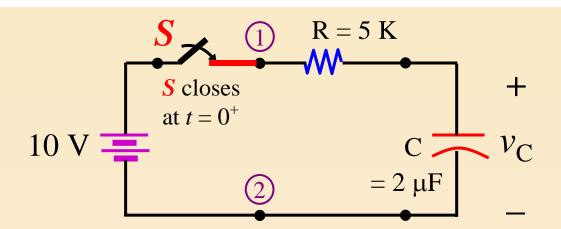
Two Equivalent Representations

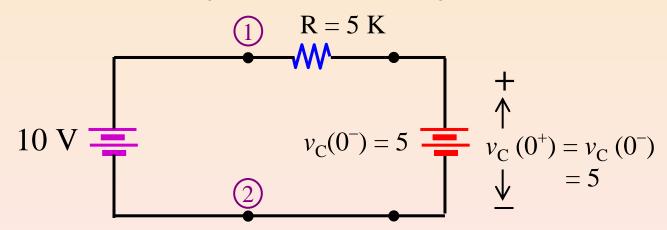




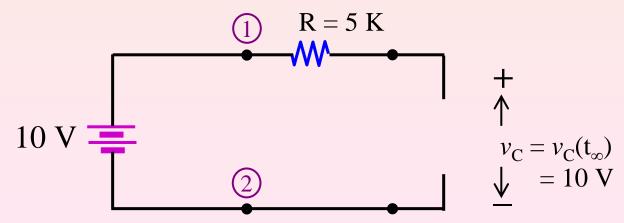




Step 1 Find $v_C(0^+)$: Replace C by battery with voltage = $v_C(0^-)$, then calculate $v_C(0^+)$.



Step 2 Find $v_C(t_\infty)$: Replace C by *open* circuit, then calculate $v_C = v_C(t_\infty)$.



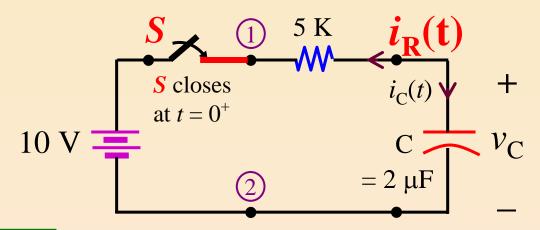
Step 3 | Calculate the *time constant*

$$\tau = R C$$

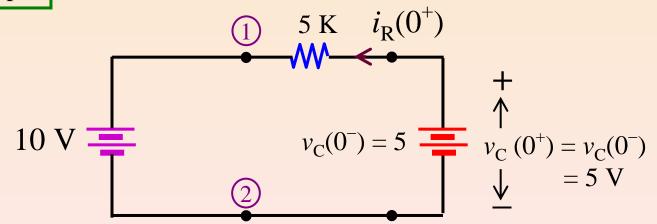
Fundamental Behavior of 1st-order Circuits

The *voltage* $v_{jk}(t)$ between any pair of nodes (j) and (k), and the *current* $i_0(t)$ at any terminal of any *linear resistive circuit* is always an *exponential waveform*, except for the trivial circuit consisting of a *current source* (resp., *voltage source*) connected across a capacitor (resp., inductor), whose solution is a linear "ramp" function.

Problem : Calculate $i_R(t)$ under the same setting.

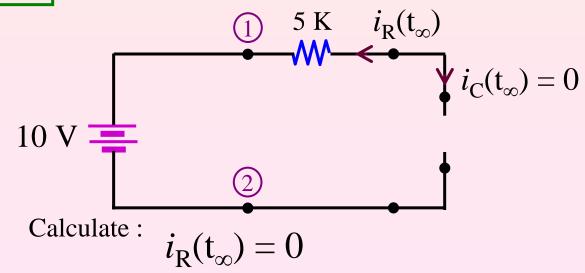


Step 1 Calculate $i_R(0^+)$: Replace C by a 5 V battery:



Calculate:
$$i_R(0^+) = \frac{5-10}{5K} = -1mA$$

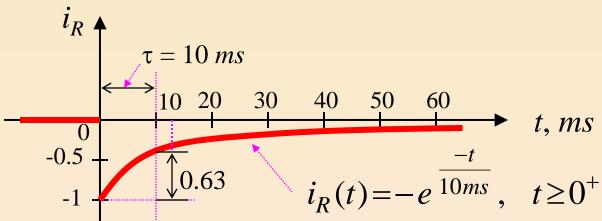
Step 2 Calculate $i_R(t_\infty)$: Replace C by *open* circuit:



Step 3

Calculate time constant

$$\tau = R \ C = (5 \times 10^3) \ (2 \times 10^{-6}) = 10 \ ms$$



Verification of solution

$$i_{C}(t) = i_{C}$$

$$-i_{R}(t) \xrightarrow{1} 0.5$$

$$0 \xrightarrow{10 \ 20} 30 \xrightarrow{40 \ 50} 60$$

$$t, ms$$

$$v_{C}(t) = v_{C}(0^{-}) + \frac{1}{C} \int_{0^{+}}^{t} e^{\frac{-t}{10 \times 10^{-3}} dt}$$

$$= 5 + \frac{1}{2 \times 10^{-3}} \int_{0^{+}}^{t} e^{\frac{-t}{10 \times 10^{-3}} dt}$$

$$= 5 + \left[-5e^{\frac{-t}{10 \times 10^{-3}}} + 5 \right]$$

$$= 10 - 5e^{\frac{-t}{10 \times 10^{-3}}}, \ t \ge 0^{+}$$

Step 3

Calculate time constant

Verification

Let us calculate:

$$i_{C}(t) = -i_{R}(t) = e^{\frac{-t}{10ms}}$$

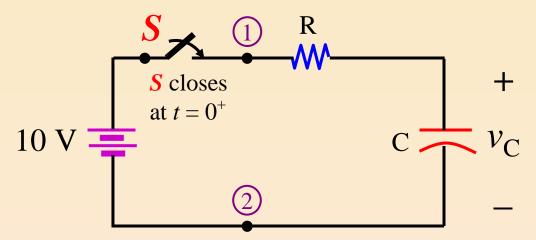
$$v_{C}(t) = v_{C}(0^{-}) + \frac{1}{C} \int_{0^{+}}^{t} i_{C}(\tau) d\tau$$

$$= 5 + \frac{1}{2 \times 10^{-3}} \int_{0^{+}}^{t} e^{\frac{-t}{10 \times 10^{-3}}} dt$$

$$= 5 + \left[-5e^{\frac{-t}{10 \times 10^{-3}}} + 5 \right]$$

$$= 10 - 5e^{-\frac{t}{\tau}}, \ t \ge 0^{+}$$

Finding Solutions by Inspection



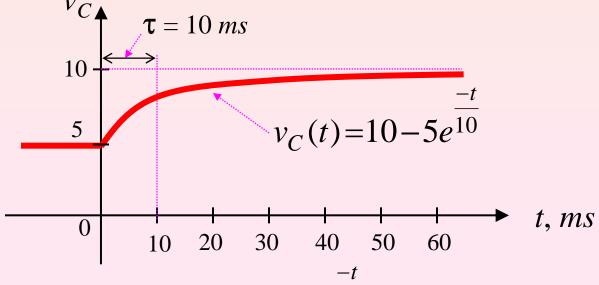
Problem

Assume $v_C(0^-) = 5$ V, where $t = 0^-$ denotes the time just before switch S made contact with resistor R.

Sketch $v_C(t)$ for $t \ge 0^+$, where $t = 0^+$ denotes the instant switch S made contact with resistor R.

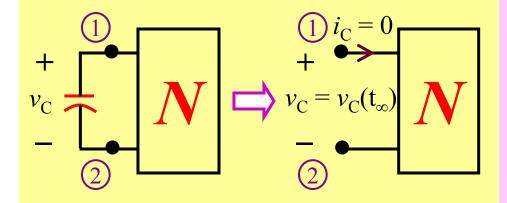
Solution
$$v_{\rm C}(0^+) = v_{\rm C}(0^-) = 5 \text{ V}, \quad v_{\rm C}(t_{\infty}) = 10 \text{ V}$$

$$\mathbf{T} = R \ C = 5(10^3) \ [2(10^{-6})] = 10 \ ms$$



Calculate: $v_C(t) = 10 - 5e^{\frac{-t}{10}}, t \ge 0^+$

How to Find $v_{\rm C}(t_{\infty})$?



Step 1:

Open capacitor

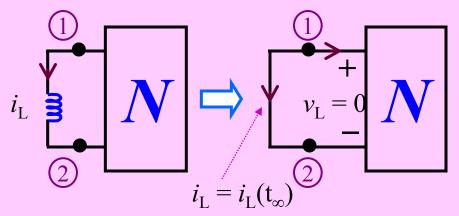
Step 2:

Calculate: $v_{\rm C}|_{\rm Open\ capacitor}$

Then

$$v_C(t_\infty) = v_C \mid_{\text{Open capacitor}}$$

How to Find $i_{\rm L}(t_{\infty})$?



Step 1:

Short capacitor

Step 2:

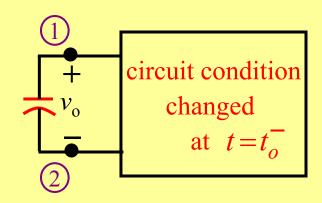
Calculate : $i_{\rm L}|_{\rm Short\ inductor}$

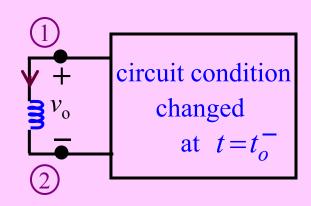
Then

$$i_L(t_\infty) = i_L \mid_{\text{Short inductor}}$$

How to Find $v_c(t_o^+)$?

How to Find $i_L(t_o^+)$?





Step 1:

Calculate : $v_C(t_o^-)$

Step 2:

Step 1:

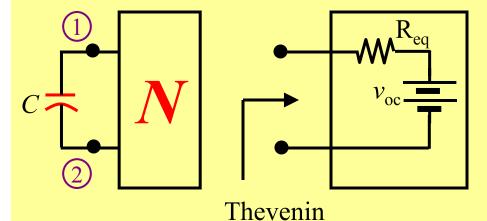
Calculate : $i_L(t_o^-)$

Step 2:

$$v_C(t_o^+) = v_C(t_o^-)$$

$$|i_L(t_o^+) = i_L(t_o^-)|$$

How to Find $\tau = R C$?



Step 1:

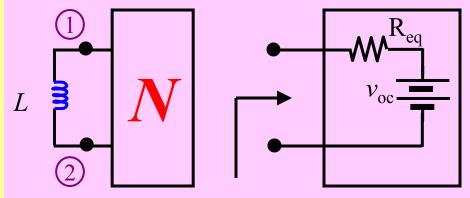
equivalent circuit

Find *Thevenin* equivalent circuit of N.

Step 2:

$$\tau = R_{\rm eq} C$$

How to Find $\tau = GL = \frac{L}{R}$?



Step 1:

Thevenin equivalent circuit

Find *Thevenin (or Norton)* equivalent circuit of N.

Step 2:

$$\tau = \frac{L}{R_{\text{eq}}}$$

Substitution Theorem

Let N be a circuit made of a nonlinear resistive one-port N_R terminated in an arbitrary one-port N_L , as shown in Fig. (a).

- 1. If N has a *unique* solution $v = \hat{v}(t)$ for all t, then N_L may be substituted by a voltage source $\hat{v}(t)$ without affecting the branch voltage and branch current solution inside N_R , provided the substituted circuit N_v in Fig. (b) has a *unique* solution for all t.
- 2. If N has a *unique* solution $i = \hat{i}(t)$ for all t, then N_L may be substituted by a current source $\hat{i}(t)$ without affecting the branch voltage and branch current solution inside N_R , provided the substituted circuit N_i in Fig. (c) has a *unique* solution for all t.

