Lumped Approximation

The dimension of the physical circuit is **small** enough so that electromagnetic waves propagate across the circuit "almost" instantaneously.

Rule of Thumb

Lumped Approximation is valid if

 $d \ll c \cdot \Delta t$

d =largest dimension of the physical circuit

 $\Delta t = \text{smallest signal response time of interest}$

= 1/max. frequency of interest

 $c = 3 \times 10^8 \ m/\text{sec}$

Example: hi-fi set

max. frequency of interest = 25 Khz

.. Lumped approximation holds if

$$d \ll 3(10^8)m/s \bullet \frac{1}{25(10^3)} = 12 \text{ Km}$$

$$\approx 7.5 \text{miles}$$

∴ Even if the circuit is spread across a football stadium, it satisfies the lumped approximation.

Consequences of Lumped Approximation

- 1. Electrical behavior does not depend on the physical size, shape, and orientation. Only the physical interconnections are relevant. Hence each device can be lumped into a point, as in classical mechanics.
- 2. Voltages and currents at any terminal of the physical circuit are well defined.

Basic Circuit Theory

3 Postulates:

- 1. Lumped Approximation
- 2. Kirchhoff Current Law (KCL)
- 3. Kirchhoff Voltage Law (KVL)

Circuit Theory is applicable if, and only if, the above 3 postulates are satisfied.

Current is a "through" variable

Current is always measured by inserting an Ammeter through 1 point of a device terminal or wire.

Assumption 1

- 1. All conductors (zero resistance). conducting wires are perfect
- 2. All circuit interconnections are perfect.

Consequence

equivalent to a single terminal. Two terminals joined by a wire is

Quantum Mechanical Tunneling makes perfect contacts

socket is due to a quantum-mechanical contact established when it is plugged into a electrical plug has a thin oxide layer (perfect insulator) on all sides, the perfect Since the 2 metal prongs of an

phenomenon called tunneling.

Reference Current Direction and Voltage Polarity

Since the current i(t) entering an electrical terminal k and the voltage $v_{jk}(t)$ across a pair of terminals (j) and (k) in a typical electrical circuit can assume a **positive** value at one instant of time, and a **negative** value at another instant of time, it is necessary to assign (**arbitrarily**) a **current reference** direction for each terminal current, and an a pair of voltage **polarity reference**, across every pair of terminals.

If the calculated current (resp., voltage) at some instant of time turns out or be a **negative** number, it simply means that the **actual** current (resp., voltage) is **opposite** in direction (resp., polarity) to the arbitrarily assigned reference at that instant of time.

4 possible reference assignments for a 2-terminal device

Reference current direction and reference voltage polarity can be arbitrarily assigned.

2 Among many possible reference assignments

Note: When two terminals whose voltage polarity is being assigned are far apart, we often draw a double-headed arrow to identify the associated pair of terminals.

Associated Reference Convention

Although the reference current direction and the voltage polarity can be arbitrarily assigned, for pedagogical reasons, we will agree on the following associated reference convention:

Current is assigned entering the positively referenced non-datum terminal.

Voltage is an "across" variable

Voltage is always measured by connecting a voltmeter across 2 device terminals or nodes.

Gustav Robert Kirchhoff (1824-1887)

Gaussian Surface

Any closed surface that has an inside and an outside is called a

Gaussian surface.

Gaussian Surface 1: $i_1 - i_3 + i_8 = 0$

Nodes

Definition

Any terminal (i.e., wires) attached to a device in a circuit where 2 or more terminals are soldered together is called a **node**.

Remarks:

- 1. We can always draw a sufficiently small sphere centered at each node of a circuit such that the sphere is pierced only by the currents entering the node.
- 2. A sphere is the simplest Gaussian surface.

Applying KCL to a small Gaussian surface enclosing each node

\Rightarrow Corollary 1

The algebraic sum of all currents leaving a **node** is zero.

Gaussian Surface 2: $i_3 + i_5 + i_7 = 0$

Gaussian Surface 3:

$$i_1 - i_3 + i_4 - i_6 + i_8 = 0$$

Cut set

Definition:

A subset of currents i_a , i_b ..., i_m from a **physically connected** circuit forms a **cut set iff** the following 2 conditions are satisfied:

- 1. Cutting (say, with a plier) all "m" terminals (wires) would physically **disconnect** the circuit into 2 or more components.
- 2. Cutting only *m-1* terminals (wires) from (the subset of currents would **not** physically disconnect the circuit.

Remarks:

- 1. Given any cut set $\{i_a, i_b, ..., i_m\}$, we can always draw a **Gaussian surface** pierced **only** by $\{i_a, i_b, ..., i_m\}$.
- 2. Once a Gaussian surface is chosen, we define the direction of each current entering the surface to be the **positive** orientation of the cut set.
- 3. A cut set with an assumed **positive** orientation is said to be an **oriented** cut set.

Positive orientation

Gaussian Surface enclosing a cut set

$\{i_2, i_4, i_5, i_8\}$ is a cut set because

- 1. It cuts the circuit into 2 parts.
- 2. Any 3 out of 4 currents in the set will not cut the circuit.

Positive orientation

Gaussian Surface enclosing a cut set

 $\{i_2, i_3, i_4, i_5, i_8\}$ is not a cut set because the smaller subset $\{i_2, i_4, i_5, i_8\}$ can already cut the circuit into 2 parts.

Gaussian surface defining a cut set

Applying KCL to a Gaussian surface associated with a cut set

⇒ Corollary 2

The algebraic sum of all currents in a cut set relative to its assigned positive orientation is zero.

Applying KCL to a Gaussian surface enclosing each device ⇒

$$-i_1 + i_2 = 0$$

$$i_3 - i_4 + i_5 = 0$$

$$i_6 + i_7 = 0$$

Node-to-datum and Branch voltages

In order for work to occur, the test charge has to be moved over some distance. So voltage always involves two positions, a starting point and an ending point.

To avoid ambiguity, we must always specify a voltage **across** 2 points in a circuit, called **nodes**, unless one of the 2 nodes is the circuit **ground** node, called the **datum node**. Such a voltage is called a *node-to-datum* voltage, and will always be denoted by e_j .

Any other voltage is called a **branch** voltage, and will be denoted by v_j .

Kirchhoff Voltage Law KVL

The **voltage** $v_{jk}(t)$ between *any* 2 **nodes** j

and k is equal to the difference between the 2 associated node-to-datum voltages e_j and e_k , for all times t.

$$v_{jk}(t) = e_j(t) - e_k(t)$$

KVL

Corollary 1

(around closed node sequences)

Algebraic sum of all voltages around any closed node sequence in any connected circuit is equal to zero at all times *t*.

KVL
$$\Rightarrow$$
 $v_1 = e_1 - e_3$ $v_5 = e_4 - e_3$ $v_2 = e_2 - e_4$ $v_6 = e_5 - e_1 = -e_1$ $v_3 = e_2 - e_1$ $v_7 = e_4 - e_5 = e_4$ $v_4 = e_2 - e_3$ $v_8 = e_2 - e_5 = e_2$

Consider Loop formed by closed node sequence

$$1 \rightarrow 2 \rightarrow 5 \rightarrow 1 :$$

$$-v_3 + v_8 + v_6$$

$$= -(e_2 - e_1) + (e_2 - e_5) + (e_5 - e_1)$$

$$=0$$

$$v_1 = e_6 - e_5 = -e_5, \ v_4 = e_2 - e_5$$
 $v_2 = e_1 - e_5, \ v_5 = e_5 - e_2$
 $v_3 = e_6 - e_1 = -e_1, \ v_6 = e_2 - e_4$

KVL

 $v_1 = e_2 - e_1$

$$v_{2} = e_{1} - e_{4} = e_{1}$$

$$v_{3} = e_{3} - e_{2}$$

$$v_{4} = e_{3} - e_{4} = e_{3}$$

$$v_{1} + v_{2} - v_{4} + v_{3}$$

$$= (e_{2} - e_{1}) + (e_{1} - e_{4}) - (e_{3} - e_{4}) + (e_{3} - e_{2})$$

$$= 0$$

KVL around closed node sequence

$$\boxed{1 \rightarrow \boxed{3} \rightarrow \boxed{2} \rightarrow \boxed{1} \quad 3$$

$$v_4 - v_5 + v_6 = 0$$

Loop

Definition

A closed node sequence $(n_a, n_b, ..., n_m)$ is called a **loop** iff, there is a 2-terminal circuit element connecting each consecutive pair of nodes

 (n_k, n_{k+1}) , where n_k is any node in the sequence.

KVL

Corollary 2 (around loops)

Algebraic sum of all voltages around any loop in a connected circuit is equal to **zero** at all times *t*.

KVL around loop

$$\boxed{6} \rightarrow \boxed{5} \rightarrow \boxed{1} \rightarrow \boxed{6}$$

$$v_1 - v_2 - v_3 = 0$$

KVL around loop formed by the 3 devices

$$D_1 \rightarrow D_2 \rightarrow D_3 \rightarrow D_1$$
:
 $v_1 - v_2 - v_3$
 $= (e_6 - e_5) - (e_1 - e_5) - (e_6 - e_1) = 0$

Basic Nonplanar Graph 1

It is impossible to redraw this circuit without intersecting wires.

Hence, we can not define meshes in this circuit.

Basic Nonplanar Graph 2

It is impossible to redraw this circuit without intersecting wires.

Hence, we can not define meshes in this circuit.

How to test for Planar G

Kuratowski's Theorem

A necessary and sufficient condition for *G* to be a planar graph is that it does not contain either Basic Nonplanar *G*raph 1 or Basic Nonplanar *G*raph 2, as a subgraph.

Remark

We can define meshes in a circuit iff its associated graph is planar

Definition: Planar Graph G

A graph G is said to be **planar** iff G can be **redrawn** on a plane with **no** intersecting branches except at the nodes.

Mesh

Any loop formed by branches of a circuit is called a mesh iff the loop encloses no other branches, or wires in its interior.

A Mesh is like a window.

There are 4 meshes in this circuit.

Every mesh is a loop, but NOT all loops are meshes!