Lumped Approximation

The dimension of the physical circuit is **small** enough so that electromagnetic waves propagate across the circuit "almost" instantaneously.

Rule of Thumb

Lumped Approximation is valid if $d \ll c \cdot \Delta t$

- *d* = largest dimension of the physical circuit
- Δt = smallest signal response time of interest
	- = 1/max. frequency of interest
	- $c = 3 \times 10^8$ *m*/sec

Example : hi-fi set

max. frequency of interest $= 25$ Khz ∴ Lumped approximation holds if 8 3 $3(10^8)$ *m* / s $\bullet \frac{1}{25(10^3)} = 12$ $d \ll 3(10^8)$ m / s \bullet $\frac{1}{25(10^3)} = 12$ Km ≈ 7.5*miles*

∴ Even if the circuit is spread across a football stadium, it satisfies the lumped approximation.

Consequences of Lumped Approximation

- 1. Electrical behavior does not depend on the physical size, shape, and orientation. Only the physical interconnections are relevant. Hence each device can be lumped into a point, as in classical mechanics.
- 2. Voltages and currents at any terminal of the physical circuit are well defined.

Basic Circuit Theory

- **3 Postulates :**
- **1. Lumped Approximation**
- **2. Kirchhoff Current Law (KCL)**
- **3. Kirchhoff Voltage Law (KVL)**

Circuit Theory is applicable if, and only if, the above 3 postulates are satisfied.

Current is a "through" variable

Current is always measured by inserting an **Ammeter through** 1 point of a device terminal or wire.

Assumption 1 **Assumption 1**

- 1. All conductors (zero resistance). All conducting wires are perfect conductors (zero resistance). conducting Wires are perfect
- 2. All circuit interconnections are perfect. All circuit interconnections are perfect.

equivalent to a single terminal. equivalent to a single terminal. Two terminals joined by a wire is Two terminals joined by a wire is

socket is due to a quantum-mechanical contact established when it is plugged into a (perfect insulator) on all sides, the perfect phenomenon called contact established when it is plugged into a (perfect insulator) on all sides, the perfect is due to a quantum-mechanical **tunneling**.

electrical plug has a thin oxide layer electrical Since the 2 metal prongs of an Since the 2 metal prongs of an has a thin oxide layer

Quantum Mechanical Tunneling **Quantum Mechanical Tunneling** makes perfect contacts **makes perfect contacts**

Reference Current Direction and Voltage Polarity

Since the current *i*(*t*) entering an electrical terminal (k) and the voltage $v_{jk}(t)$ across a pair of terminals $\left(\frac{1}{k}\right)$ and $\left(\frac{k}{k}\right)$ in a typical electrical circuit can assume a *positive* value at one instant of time, and a *negative* value at another instant of time, it is necessary to assign **(arbitrarily) a current reference** direction for each terminal current, and an **a pair of voltage polarity reference**, across every pair of terminals.

If the calculated current (resp., voltage) at some instant of time turns out or be a **negative** number, it simply means that the **actual** current (resp., voltage) is **opposite** in direction (resp., polarity) to the arbitrarily assigned reference at that instant of time.

4 possible reference assignments for a 2-terminal device

Reference current direction and reference voltage polarity can be arbitrarily assigned.

2 Among many possible reference assignments

Note: When two terminals whose voltage polarity is being assigned are far apart, we often draw a doubleheaded arrow to identify the associated pair of terminals.

Associated Reference Convention

Although the reference current direction and the voltage polarity can be arbitrarily assigned, for pedagogical reasons, we will agree on the following **associated reference convention**:

Current is assigned entering the positively referenced non-datum terminal.

Voltage is an "across" variable

Voltage is always measured by connecting a **voltmeter across** 2 device terminals or nodes.

Gustav Robert Kirchhoff (1824-1887)

Gaussian Surface

Any **closed surface** that has an **inside** and an **outside** is called a

Gaussian surface.

KCL

Gaussian Surface 1: $i_1 - i_3 + i_8 = 0$

Nodes

Definition

Any terminal (i.e., wires) attached to a device in a circuit where 2 or more terminals are soldered together is called a **node**.

Remarks:

- 1. We can always draw a sufficiently small sphere centered at each node of a circuit such that the sphere is pierced only by the currents entering the node.
- 2. A sphere is the simplest Gaussian surface.

Applying KCL to a small Gaussian surface enclosing each node

5*i*

 \dot{i}_7

Corollary 1 ⇒

 \boldsymbol{i}_2

The algebraic sum of all currents leaving a **node** is zero.

Gaussian Surface 2: $i_3 + i_5 + i_7 = 0$

Gaussian Surface 3:

$$
i_1 - i_3 + i_4 - i_6 + i_8 = 0
$$

Cut set

Definition:

A subset of currents i_a , i_b …, i_m from a **physically connected** circuit forms a **cut set iff** the following 2 conditions are satisfied:

- 1. Cutting (say, with a plier) all "*m*" terminals (wires) would physically **disconnect** the circuit into 2 or more components.
- 2. Cutting only *m-1* terminals (wires) from (the subset of currents would **not** physically disconnect the circuit.

Remarks:

- 1. Given any cut set $\{i_a, i_b, \ldots, i_m\}$, we can always draw a **Gaussian surface** pierced only by $\{i_a, i_b, ..., i_m\}$.
- 2. Once a Gaussian surface is chosen, we define the direction of each current entering the surface to be the **positive** orientation of the cut set.
- 3. A cut set with an assumed **positive** orientation is said to be an **oriented** cut set.

 $\{i_2,i_4,i_5,i_8\}$ is a cut set because

- 1. It cuts the circuit into 2 parts.
- 2. Any 3 out of 4 currents in the set will not cut the circuit.

 $\{i_1, i_3, i_4, , i_5, i_8\}$ is not a cut set because the smaller subset $\{i_2, i_4, i_5, i_8\}$ can already cut the circuit into 2 parts.

KCL

Gaussian surface defining a **cut set**

Applying KCL to a Gaussian surface associated with a cut set

Corollary 2 ⇒

The algebraic sum of all currents in a **cut set** relative to its assigned positive orientation is zero.

Applying KCL to a Gaussian surface enclosing each device \implies

$$
-i_1 + i_2 = 0
$$

$$
i_3 - i_4 + i_5 = 0
$$

$$
i_6 + i_7 = 0
$$

Node-to-datum and Branch voltages

In order for **work** to occur, the **test charge** has to be moved over some distance. So **voltage always involves two positions**, a starting point and an ending point.

To avoid ambiguity, we must always specify a voltage **across** 2 points in a circuit, called **nodes**, unless one of the 2 nodes is the circuit **ground** node, called the **datum node**. Such a voltage is called a *node-to-datum* voltage, and will always be denoted by *e***^j** .

Any other voltage is called a **branch voltage**, and will be denoted by *v***^j** .

The **voltage** $v_{jk}(t)$ between *any* 2 **nodes** $\left(j$ and $\left(\frac{k}{\epsilon}\right)$ is equal to the difference between the 2 associated node-to-datum voltages e_i and e_k , for all

times *t*.

$$
v_{jk}(t) = e_j(t) - e_k(t)
$$

KVL

Corollary 1

(around **closed node sequences**)

Algebraic sum of **all voltages** around any **closed node sequence** in any connected circuit is equal to **zero** at all times *t*.

Consider Loop formed by closed node sequence

$$
\textcircled{1}\rightarrow\textcircled{2}\rightarrow\textcircled{5}\rightarrow\textcircled{1}:
$$

$$
-v_3 + v_8 + v_6
$$

 $= -(e_2-e_1)+(e_2-e_5)+(e_5-e_1)$ $= 0$

KVL around closed node sequence

$$
\textcircled{1}\rightarrow\textcircled{3}\rightarrow\textcircled{2}\rightarrow\textcircled{1}:
$$

$$
v_4 - v_5 + v_6 = 0
$$

Loop

Definition

A closed node sequence (n_a, n_b, \ldots, n_b) n_m) is called a **loop** iff, there is a 2terminal circuit element connecting each consecutive pair of nodes (n_k, n_{k+1}) , where n_k is any node in the sequence.

KVL

Corollary 2 **(around loops)**

Algebraic sum of **all** voltages around any **loop** in a connected circuit is equal to **zero** at all times *t*.

$$
v_1 - v_2 - v_3 = 0
$$

KVL around loop formed by the 3 devices

$$
D_1 \rightarrow D_2 \rightarrow D_3 \rightarrow D_1 :
$$

\n
$$
v_1 - v_2 - v_3
$$

\n
$$
= (e_6 - e_5) - (e_1 - e_5) - (e_6 - e_1) = 0
$$

Basic Nonplanar Graph 1

It is impossible to redraw this circuit without intersecting wires. Hence, we can not define meshes in this circuit.

Basic Nonplanar Graph 2

It is impossible to redraw this circuit without intersecting wires. Hence, we can not define meshes in this circuit.

How to test for Planar *G*

Kuratowski's Theorem

A **necessary** and **sufficient condition** for *G* to be a **planar graph** is that it does not contain either **Basic Nonplanar** *G***raph 1** or **Basic Nonplanar** *G***raph 2**, as a subgraph.

Remark

We can define **meshes** in a circuit iff its associated graph is planar

Definition: Planar Graph *G*

A graph *G* is said to be **planar** iff *G* can be **redrawn** on a plane with *no intersecting branches except at the nodes*.

Mesh

Any loop formed by branches of a circuit is called a **mesh** iff the loop encloses **no other** branches, or wires in its interior.

A **Mesh** is like a **window**.

There are 4 **meshes** in this circuit.

Every mesh is a loop, but **NOT all loops are meshes**!