CHAPTER

ONE
KIRCHHOFF'S LAWS

As an electrical engineer, one needs to analyze and design circuits. Electric
circuits are present almost everywhere, in home computers, television and hi-fi
sets, electric power networks, transcontinental telecommunication systems,
etc. Circuits in these applications vary a great deal in nature and in the ways
they are analyzed and designed. The purpose of this book is to give an
introductory treatment of circuit theory which covers considerable breadth and
depth. This differs from a traditional introductory course on circuits, which is
restricted to “‘linear” circuits and covers mainly circuits containing the classical
RLC elements,

The first chapter deals with the fundamental postulates of lumped-circuit
theory, namely, Kirchhoff's faws. Naturally, we need to explain the word
“lumped” first. It is also important to understand the concept of “modeling.”
For example, in circuit theory we first model a “physical circuit” made of
electric devices by a “circuit” which is an interconnection of circuit elements.
Since Kirchhoff’s laws hold for any lumped circuit, the discussion can be
dissociated with the electrical properties of circuit elements, which will be
treated in the succeeding chapters.

A key concept introduced in this chapter is the representation of a circuit
by a graph. This allows us to deal with multiterminal devices in the same way
as we would with a conventional two-terminal device. In addition, it enables us
to give a formal treatment of Kirchhoff’s laws and a related fundamental
theorem, Tellegen’s theorem.

1 THE DISCIPLINE OF CIRCUIT THEORY

Circuit theory is the fundamental engineering discipline that pervades all
electrical engineering. For the present, by physical circuit we mean any
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2 LINEAR AND NONLINEAR CIRCUITS

interconnection of (physical) electric devices. Familiar examples of electric
devices are resistors, coils, condensers, diodes, transistors, operational am-
plifiers (op amps), batteries, transformers, electric motors, electric generators,
ete. :

The goal of circuit theory is to predicr the electrical behavior of physical
circuits. The purpose of these predictions is to improve their design: in
particular, to decrease their cost and improve their performance under all
conditions of operation (e.g., temperature effects, aging effects, possible fault
conditions, etc.),

Circuit theory is an engineering discipline whose domain of application is
extremely broad. For example, the size of the circuits varies enormously: from
large-scale integrated circuits which include hundreds of thousands of com-
ponents and which fit on a fingernail to circuits found in radios, TV sets,
electronic instruments, small and large computers, and finaily, to telecom-
munications circuits and power networks that span continents. The voltages
encountered in the study of circuits vary from the microvolt (uV) [e.g., in noise
studies of precision instruments—to megavolts {MV) of power networks]. The
currents vary from femtoamperes (1fA =10"" A) [e.g., in electrometers—to
megaamperes (MA)] encountered in studies of power networks under fault
conditions. The frequencies encountered in circuit theory vary from zero
frequency [direct current (dc) conditions] to tens of gigahertz (1 GHz = 10° Hz)
encountered in microwave circuits, The power levels vary greatly from 107"
watts (W) for the incoming signal to a sensitive receiver (e.g., faint radio
signals from distant galaxies) to electric generators producing 10° W = 1000
megawatts (MW).

Circuit theory focuses on the electrical behavior of circuits. For example, it
does not concern itself with thermal, mechanical, or chemical effects. Its aim is
to predict and explain the (terminal) voltages and (terminal) currents measured
at the device rerminals. Tt does not concern itself with the physical phenomena
occurring inside the device (e.g., in a transistor or in a motor). These
considerations are covered in device physics courses and in electrical machinery
courses.

The goal of circuit theory is to make quantitative and qualitative predic-
tions on the electrical behavior of circuits; consequently the tools of circuit
theory will be mathematical, and the concepts and resulis pertaining to circuits
will be expressed in terms of circuit equations and circuit variables, each with
an obvious operational interpretation.

2 LUMPED-CIRCUIT APPROXIMATION

Throughout this book we shall consider only lumped circuits. For a physical
circuit to be considered lumped. its physical dimension must be small enough
so that, for the problem at hand, electromagnetic waves propagate across the
circuit virtually instantaneously. Consider the following two examples:
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Example 1 Consider a small computer circuit on a chip whose extent is,
say, 1 millimeter (mm); let the shortest signal time of interest be 0.1
nanosecond [ of a nanosecond (ns) = 107" of a second (s)]. Electromag-
netic waves travel at the velocity of light, i.e., 3 x 10° meters per second
(m/s); to travel 1 mm, the time elapsed is 107" m/(3 x 10° m/s) = 3.3 x
107" s =0.0033 ns. Therefore the propagation time in comparison with
the shortest signal time of interest is negligible. More generally, let d be
the largest dimension of the circuit, Af the shortest time of interest, and ¢
the velocity of light. If 4 < ¢ - Az, then the circuit may be considered to be
lumped.

Example 2 Consider an audio circuit: The highest frequency of interest is,
say, f=25kHz. For eclectromagnetic waves, this corresponds to a
wavelength  of . A=c/f=C3x10°m/s)/(25%x10"s ) =12%x10"m=
12 km = 7.5 miles. So even if the circuit is spread across a football stadium,
the size of the circuit is very small compared to the shortest wavelength of
interest A. More generally, if d <€ A, the circuit may be considered to be
lumped.

When these conditions are satisfied, electromagnetic theory proves' and
experiments show that the [umped-circuit approximation holds; namely,
throughout the physical circuit the current i(¢) through any device terminal and
the voltage difference v(¢) across any pair of terminals, at any time ¢, are
well-defined. A circuit that satisfies these conditions is called a lumped circuit.

From an electromagnetic theory point of view, a lumped circuit reduces to
a point since it is based on the approximation that electromagnetic waves
propagate through the circuit instantaneously. For this reason, in lumped-
circuit theory, the respective locations of the elements of the circuit will not
affect the behavior of the circuit. The approximation of a physical circuit by a
lumped circuit is analogous to the modeling of a rigid body as a particle: In
doing so, all the data relating to the extent (shape, size, orientation, etc.) of
the body are ignored by the theory.

Thus, lumped-circuit theory is related to the more general electromagnetic
theory by an approximation (propagation effects are neglected). This is
analogous to the relation of classical mechanics to the more exact relativistic
mechanics: Classical mechanics delivers excellent predictions provided the
velocities are much smaller than the velocity of light. Similarly, when the above
conditions hold, lumped-circuit theory delivers excellent predictions of physical
circuit behavior.

In situations where lumped approximation is not valid, the physical
dimensions of the circuit must be considered. To distinguish such circuits from

"R. M. Fano, L. J. Chu, and R. M. Adler. Electromagnetic Fields, Energy and Forces. John
Wiley and Sons, New York. 1960.
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lumped circuits we call them distributed circuits. Typical examples of distri-
buted circuits are circuits made of waveguides and transmission lines. In
distributed circuits the current and voltage variables would depend not only on
time, but also on space variables such as length and width. We need elec-
tromagnetic theory for predictions of the behavior of distributed circuits and
for analysis and design. In this book we restrict our treatment to lumped
circuits.

3 ELECTRIC CIRCUITS, MODELS, AND CIRCUIT ELEMENTS

By electric device we mean the physical object in the laboratory or in the
factory, for example, the coil, the capacitor, the battery, the diode, the
transistor, the motor, etc. Physical circuits are obtained by connecting electric
devices by wires. Most of the time, these wires will be assumed to be perfectly
conducting. We think of these electric devices in terms of idealized models like
the resistor (v = Ri), the inductor (v = L di/dr), the capacitor (i = C dv/dt),
etc., that you have studied in physics.

Note that these idealized models are precisely defined; to distinguish them
from electric devices we call them circuit elerments. 1t is important to distinguish
between a coil made of a fine wire wrapped around a ferrite torus——an efectric
device—and its model as an inductor, or as a resistor in series with an
inductor—a circuit element, or a combination of circuit elements.

Every model is an approximation. Depending on the application or the
problem under consideration, the same physical device may be approximated
by several different models. Each of these models is an interconnection of
(idealized) circuit elements. For example, we will encounter several different
models for the operational amplifier (op amp).

Any interconnection of circuit elements is called a circuit. Thus a circuit is
an interconnection of (idealized) models of the corresponding physical devices.
The relation between physical circuits and circuits is illustrated in Fig. 3.1. If
the (theoretical) predictions based on analysis of the circuit do not agree with
the measurements, the cause of the disagreement may lie at any step of the
process (e.g., errongous measurement, faulty analysis, etc.). One frequent
cause is a poor choice of model, e.g., using a low-frequency model outside of
its frequency range of validity, or a linear model outside its amplitude range of
validity.

Our subject is circuit theory, consequently we consider the models of the
electric devices constituting the physical circuit as given at the outset; our goal
is to develop methods to predict the behavior of the circuit. Note that we say
“circuit,” not *‘physical circuit”: Past experience, however, does give us the

* Analogously, in classical mechanics a communications satellite circling the earth may be
modeled as a particle, or a rigid body, or an elastic body depending on the problem being studied.
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Figure 3.1 Illustration of the relation between physical circuits and circuits, between physical
devices and circuit elements, and between laboratory measurements and circuit analysis.

confidence that given any physical circuit we can model it by a circuit which
will adequately predict its behavior.

In Fig. 3.2a we show a physical circuit made up of electric devices: a
generator, resistor, transistor, battery, transformer, and load. To analyze the
physical circuit, we first model it with the circuit shown in Fig. 3.2b, which is
an interconnection of circuit efements: voltage sources, resistors, a capacitor,
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Figure 3.2 (a2) Physical circuit
made of electric devices and ()
its circuit model made of circuit
elements.
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coupled inductors, and a transistor represented by their usual symbols. The
electrical properties of some of the two-terminal elements (voltage sources and
resistors) will be discussed in Chap. 2, and that of the multiterminal elements
(transistor and ideal transformer) will be treated in Chap. 3.

When electric devices are interconnected, we use conducting wires to tie
the terminals together as shown in Fig. 3.2a. When circuit elements are
interconnected, we delete the conducting wires and merge the terminals to
obtain the circuit in Fig. 3.2b. A node is any junction in a circuit where
terminals are joined together or any isolated terminal of a circuit element,
which is not connected. The circuit in Fig. 3.2b has eight nodes (marked with
heavy dots). With the introduction of the concept of a node, we are ready to
formally treat the subject of interconnection and state the two fundamental
postulates of circuit theory, namely, Kirchhoff's veltage law and Kirchhoff's
current law. '

4 KIRCHHOFF’S LAWS

In lumped circuits, the voltage between any two nodes and the current flowing
into any element through a node are well-defined.’ Since the acrual direction of
current flow and the actual polarity of voltage difference in a circuit can vary
from one instant to another, it is generally impossible to specify in advance the
actuaf current direction and voltage polarity in a given circuit. Just as in
classical mechanics where it is essential to set up a “frame of reference” from
which the actual instantaneous positions of a system of particles can be
uniquely specified, so too must we set up an “electrical frame of reference” in
a circuit in order that currents and voltages may be unambiguously measured.

4.1 Reference Directions

To set up an electrical reference frame, we assign arbitrarily a reference
direction to each current variable by an arrow, and a reference pelarity to each
voltage variable by a pair of plus (+) and minus (—) signs, as illustrated in Fig.
4.1 for two-terminal, three-terminal, and n-terminal elements.”

On each terminal lead we indicate an arrow called the current reference
direction. 1t plays a crucial role. Consider Fig. 4.1a. If at some time ¢,,
i,(t,)=2 A, it means that, at time r,, a current of 2 A flows out of the
two-terminal element of Fig. 4.1a by node @. If, at some later time ¢,,

* We assume that the circuit is connected; the definition of “connectedness™ will be given later.

* An example of a six-terminal element is the filter at the output of an audio amplifier: It
directs the high frequencies to the tweeter and the low frequencies to the woofer. (Later we shall
see that such a filter may also be viewed as a three-port.)
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Figure 4.1 Illustration of reference directions using two-, three-, and n-terminal elements.

i,(t,) = —25mA, it means that, at time t,, a current of 25 mA flows info the
two-terminal element by node @.

The point is that the current reference direction together with the sign of
i{t) determines the actual direction of the flow of electric charges.

On Fig. 4.1 we assign + and — signs to pairs of terminals, e.g., in Fig. 4.1
the pair @, @ and the pair ®, @. These signs indicate the voltage reference
direction. Consider Fig. 4.1a. If, at some time ¢, v,(t,) = 3 millivolts (mV), it
means that, at time #,, the electric potential of terminal @ is 3 mV larger than
the electric potential of terminal &. Similarly, considering Fig. 4.1c, if at time
t,, v, {r,) = =320V, it means that the electric potential of terminal (&) is, at time
t;, 320V smaller than the electric potential of terminal (».

Exercise Write down the physical meaning of the following statements in
Fig, 4.1c: i, (1)) =—-2mA, i,{t;)) =4 A, —v (t;,)=5V.

4.2 Kirchhoff’s Voltage Law (KVL)

Given any connected lumped circuit having # nodes, we may choose (arbitrari-
ly) one of these nodes as a datuin node, i.e., as a reference for measuring
electric potentials. By connected, we mean that any node can be reached from
any other node in the circuit by traversing a path through the circuit elements,
Note that the circuit in Fig. 3.2b is not connected. With respect to the chosen
datum node, we define n —1 node-fo-datum voltages as shown in Fig. 4.2.
Since the circuit is a connected lumped circuit, these n —1 node-to-datum
voltages are well-defined and, in principle, physically measurable quantities.
Henceforth, we shall label them ¢, e,, ..., €,_,, and dispense with the + and
— signs indicating the voltage reference direction. Note that e, = 0 since node
(@) is the chosen datum node.

Let v,_, denote the voltage difference between node () and node (@ (see
Fig. 4.2). Kirchhoff's voltage law states:
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Figure 4.2 Labeling node-to-datum voltages for a circuit with # nodes,

KVL For all lumped connected circuits, for all choices of datum
node, for all times ¢, for all pairs of nodes &) and (),

ve(8) = e, (1) = e(r)

Remark Clearly,
v (£) = e,(t) — e, (8) = —v,_,(1) (4.1)

Example The connected circuit in Fig. 4.3 is made of five 2-terminal
elements and one 3-terminal element labeled T. There are five nodes,
labeled (O through ®. Choosing (arbitrarily) node & as datum, we define
the four node-to-datum voltages, ¢,. €,, e;, and e,. Therefore by KVL, we
may write the following seven equations"' (for convenience, we drop the
dependence on 1):

Figure 4.3 A connected circuit with five

nodes.

T In view of Eq. (4.1) there are altogether two out of five, ie., €3 = 10 nontrivial equations
which can be written.
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Note that v, ; and v, _, are the voltages across the two-terminal elements
B and A, respectively; v,_,, v,_5, and v,_, are the voltages across the
node pairs @, @; @, ®; and ®, @ of the three-terminal element T,
respectively.

If we add the last three equations in (4.2), we find that

Vyos T Upy T U5.5,=0

Let us consider the closed node sequence ®-@-®-®@. It is closed
because the sequence starts and ends at the same node &@. Thus for this
particular closed node sequence, the sum of the voltages is equal to
Zero.

Let us consider a different closed node sequence O-@-@-®-®-
@©. From the first five equations of (4.2) and using Eq. (4.1), we find
that

Uity st o, o, s+, =0

The closed node sequence O-@-@-@-E-@ is identified as a loop in
the circuit, i.e., it is a closed path starting from any node, traversing
through rwo-terminal elements, and ending at the same node. The closed
node sequence @-@-®-® is not a loop, neither is the closed node

sequence @-@-G-0@.

Exercise Show that for the closed node sequence @—-3®-®-@ the sum
of the voltages, v,_;, v5_,, and v,_, is equal to zero,

We can state KVL in terms of closed node sequences:

KVL (closed node sequences) For all lumped connected circuits,
for alf closed node sequences, for all times ¢, the algebraic sum of
all node-to-node voltages around the chosen closed node se-
quence is equal to zero.
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Theorem KVL in terms of node voltages is equivalent to KVL in terms of
closed node sequences.

PROOF

1. We assume that KVL in terms of node voltages holds. Consider any
closed node sequence, say (@-@&-(©-@-@. and write the algebraic
sum of all voltages around that sequence.

Voo + Ub*c' + Uc—n! + Ud—a
By KVL in terms of node voltages this sum can be expressed as
(ea - eb) + (eh - ec) + (ec - ed) ax (Ed - ea) = 0
so the first statement implies the second.
2. Now assume that KVL in terms of closed node sequences is true.
Consider any closed node sequence, say ®-@~@)-@ then

Woss T e il (4.3)

Choosing (arbitrarily) (9 as the datum node, we have v,_, = e, and
v,_, = —e, by definition of the node-to-datum voltages, Therefore from

Eq. (4.3), we obtain

v €

=¢, —e€
=4 P q
So KVL in terms of closed node sequences implies KVL in terms of
node voltages. L

Remark For any given connected circuit with n nodes, let us choose
(arbitrarily) node (r) as the datum node; then the n — 1 node-to-datum
voltages e, e,, .. ., e,_, specify uniquely and unambiguously the voltage
v;_ from any node () to any other node (&) in the circuit. This fact is of
crucial importance in circuit theory and is the key concept in node analysis
of Chap. 5.

4.3 Kirchhoff’s Current Law (KCL)

A fundamental law of physics asserts that electric charge is conserved: There is
no known experiment in which a net electric charge is either created or
destroyed. Kirchhoff’s current law (KCL) expresses this fundamental law in the
context of lumped circuits.

To express KCL we shall use gaussian surfaces. A gaussian surface is by
definition a two-sided “balloon-like” closed surface. Since it is two-sided, it has
an “inside” and an “outside.” To express the fact that the sum of the charges
inside the gaussian surface & is constant, we shall require that at all times, the
algebraic sum of all the currents leaving the surface & is equal to zero. Let us
choose & so that it cuts only the connecting wires which connect the circuit
elements as shown in Fig. 4.4. In the circuit, we have shown a four-terminal
element: an operational amplifier, which is connected to the rest of the circuit
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Figure 4.4 An op-amp circuit illustrating gaussian surfaces and KCL.,

at nodes @, @, ®. and ®. The properties of the op amp will be treated in
Chap. 4. In the figure we draw six gaussian surfaces: &,, &,, ..., %,. We will
use these surfaces to illustrate Kirchhoff's current law:

KCL For all lumped circuits, for all gaussian surfaces %, for all
times t, the algebraic sum of all the currents leaving the gaussian
surface & at time ¢ is equal to zero.

For &,, KCL states:
i) +i(ty=0  forall ¢

Note that %, contains only node (O in its “inside”; thus a node may be
considered as a special case of a gaussian surface, i.e., the surface is shrunk to
a point.
For &,, KCL states:
—i (B +i(H)=0 or L ()= i,(1)

Note that &, encloses the two-terminal element, namely, the battery. Thus we
make the conclusion that for a mwo-terminal element, the current entering the
element from one node at any time 7 is equal to the current leaving the element
from the other node at ¢.

For &,, KCL states:

L+ i+ +i(=0
For &,, KCL states:
E(f) -+ () H4,(0) + ilt) =i (8 < i (5 — i (t)=10
For &, KCL states:

L) —ip®) —i(t)—i,(e)=0
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Note that these are the four currents pertaining to the op amp. Thus choosing a
gaussian surface which encloses any n-terminal element, we state that the
algebraic sum of the currents leaving or entering the n-terminal element is
equal to zero at all times ¢, This fact will be used in the next section when we
discuss r-terminal elements.

For ¥, we have

—ip() - i3(f) - in(t) = is(f) —i,(1)=0

Note that &, contains only the datum node ®.
We state KCL for nodes:

KCL (node law) For all lumped circuits, for all times ¢, the
algebraic sum of the currents leaving any node is equal to zero.

RemMark Although a node is a special case of a gaussian surface, KCL for
nodes is far more useful than the general statement in terms of gaussian
surfaces. Equations written for nodes from the node law are subsets of the
equations written for gaussian surfaces of a given circuit. Yet as we shall
see in Sec. 6, KCL equations for nodes lead easily to simple analytic
formulation of KCL and are the key idea in the node analysis of Chap. 5.

4.4 Three Important Remarks

1. KVL and KCL are the two fundamental postulates of lumped-circuit theory.

2. KVL and KCL hold irrespective of the nature of the elements constituting
the circuit. Hence, we may say that Kirchhoff’s laws reflect the interconnec-
tion properties of the circuit.

3. KVL and KCL always lead to homogeneous linear algebraic equations with
constant real coefficients, 0, 1, and —1, if written in the fashion given in this
section.

5 FROM CIRCUITS TO GRAPHS

The interconnection properties of a circuit can best be exhibited by way of a
graph, called a circuit graph. In this section, we will demonstrate how a graph
can be obtained from a circait. The graph retains all the interconnection
properties of the circuit but suppresses the information on the circuit elements.
Therefore, as far as KVL and KCL are concerned, the circuit graph is all that

we need.
A graph % is specified by a set of nodes {0, ®, ..., (®} together with a
set of branches {B,, B,,..., B,}. If each branch is given an orientation,

indicated by an arrow on the branch, we call the graph directed, or, simply, a
digraph. In Fig. 5.1, we show a connected digraph with five nodes and seven
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Figure 5.1 A digraph with five nodes and seven
branches.

branches, i.e., n = 5 and & = 7. The arrows on the branches are used to denote
the reference directions of the currents.

5.1 The Element Graph: Branch Currents, Branch Voltages,
and the Associated Reference Directions

A two-terminal element, shown in Fig. 5.2, can be represented by a graph
with two nodes and one branch. This graph is called the element graph of the
two-terminal element. By KCL, the current / flowing from node @ into the
clement is cqual to the current leaving the element by node &. We therefore
represent a two-terminal element by a digraph with the arrow on the branch
indicating the reference direction of the current a shown in Fig. 5.2b. By doing
50 we have suppressed the circuit element; and, as such. the current i is called
the branch current of the two-terminal element.

The voltage across the element is the voltage v between the node-pair (D,
@ shown in Fig. 5.2a. The voltage v is called the branch voltage of the
two-terminal element. The reference direction is specified by the + and ~— signs
associated with node-pair 0, @. Thus the branch voltage v(s) > 0 if and only if,
at time ¢, the potential of node @ is larger than that of node @. Similarly, the
branch current i(t) >0 if and only if, at time 7, the current enters the element
by node @ and leaves it by node @. When, for the two-terminal elements
shown, the current and voltage reference directions are chosen as in Fig. 5.2a,
we say that we have choscn associated reference directions for that two-
terminal element,

More precisely, the associated reference directions are defined as follows:
Suppose that the voltage reference direction is chosen; then the current

O+ @
0

- i
@ @ Figure 5.2 («) A two-terminal element and (&) its digraph
() 6] representation.
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reference direction is always selected so that the arrow is directed from the +
sign toward the — sign through the element. Or, if the reference direction for
the current is chosen, the voltage reference direction is specified with the +
sign at the node where the current enters the element. This is the convention
we will follow throughout, giving us the distinct advantage of not having to
mark the signs for the voltage reference direction any more. Therefore in Fig.
5.2b, we show only the arrow on the digraph.

Associated reference directions have a very useful property, namely, they
make the accounting of power flow quite easy. For the two-terminal element of
Fig. 5.2:

A .
p(1) 2 v(n)i(r) (5.1)
= power delivered at time ¢ fo the two-terminal
element by the remainder of the circuit to

which it is connected

If the voltage v(¢) is expressed in volts and the current in amperes, then the
power is expressed in watis.

Three-terminal elements The digraph representation of two-terminal elements
discussed above can be extended to three-terminal elements. For a three-
terminal element as shown in Fig. 5.3, there are three node currents i,, i,, and
i,, and three voltages v, _;, v;_,, and v,_,. However, from KVL we know that
Vy_3+ Vs, + v,_; =0; and therefore only two voltages can be specified inde-
pendently. So let us choose arbitrarily node ® as the datum node and use the
node-to-datum voltages for nodes () and @ as the two independent voltages.
Similarly, from KCL, we know that i, + i, + i, = 0. Therefore, for the datum
node chosen at @, we use i, and i, as the two independent currents.

The digraph representation of a three-terminal element with node @ as
datum is shown in Fig. 5.4. Note that it contains fwo branches and three nodes.
The arrows indicate the current reference directions for i; and i,. The two
currents i, and i, are called the branch currents of the three-terminal element.
Using the associated reference directions for the voltages, we redraw the
three-terminal element as shown in Fig. 5.5 and define v, =v,_;and v, =v,_,

Dy ", D
® ®

Figure 5.3 A three-terminal element. Figure 5.4 The digraph representation of a
three-terminal element with node ® chosen
as datum.
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Figure 5.5 A three-terminal element with branch currents i, i,
@ and branch voltages, v,, v, using associated reference direc-
= tions.

as the two branch voltages of the three-terminal element. Thus by using the
digraph representation, we have extended the circuir variables: branch voltages
and branch currents from two-terminal elements to three-terminal elements.

Obviously, for a three-terminal element, there exist altogether three
possible digraph representations depending on which node is chosen as the
datum node. In addition to the digraph in Fig. 5.4 we have two other digraphs
as shown in Fig. 5.6.

n-Terminal elements We can easily generalize the above to n-terminal ele-
ments as shown in Fig. 5.7. Thus for an n-terminal element, we have an

. ®© 0 ® 0 0@ O

® ® ® @

() h)

Figure 5.6 Other digraph representations of a three-terminal element: (2) Datum node, @; ()]
datum node, ®.

Figure 5.7 An n-terminal element and its element graph with node () as datum node.
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element graph with n —1 branches and n nodes. There are n — 1 branch
currents and # — 1 branch voltages; and we always use the associated reference
directions and choose the current reference directions as shown, i.e., with
arrows entering the element at the nodes. The power delivered to the element
from the outside to the element at time t is therefore

n—1

p(t)= 2 v (£)i (1) (2

k=1

5.2 The Circuit Graph: Digraph

For a given circuit, if we replace each element by its element graph, the result
is a directed circuit graph, or simply a digraph.

For example, a digraph associated with the circuit in Fig. 4.3 is the one
shown in Fig. 5.1. We may now use the digraph instead of the circuit to write
equations of KVL and KCL. It js interesting to note that since the circuit
contains a three-terminal element, the digraph bears little resemblance to the
circuit. In fact, given the digraph, without specifying which nodes belong to the
three-terminal element, it is not possible to reconstruct the circuit. This
observation is not true if the circuit contains only two-terminal elements.

Exercise 1 Demonstrate that the op-amp circuit in Fig. 4.4 has its as-
sociated digraph shown in Fig. 5.8 if node ® is chosen as the datum node
for the op amp. ‘

Note that in the circuit there are seven two-terminal elements and one
four-terminal element. The total number of branches in the digraph is
equal to 7+(4—1)=10. (Remember for an n-terminal element, the
element graph has n — 1 branches.)

Exercise 2 Choosing note ® as the datum node for the circuit, show by
KVL that one can express all 10 branch voltages v, v, . . . , v, in terms of

Figure 5.8 Digraph associated with the circuit
in Fig. 4.4, The branches are numbered accord-
ing to the corresponding currents in Fig. 4.4.
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the four node-to-datum voltages e, e,, e;, and e, as follows:

v, =e¢

v,=e — e,

v, =e,

v, =e,

vs=e,—e,

s = B (5.3)
v,=e,

v, = e,

v, =€,

Vg = €3

Exercise 3 Show that KCL equations written for the four nodes @ to @) are
i +i,=0

—iy+ it i i =0 )
i+ i, =0 '

—ig— gt iyt ity =0

Exercise 4 Express Eqs. (5.3) and (5.4) in matrix form using the vectors v,
e, and i, e.g., v={v,,v,,...,v,,|’, where the superscript 7 denotes
matrix transposition.

Remark The fundamental concept of using a circuit graph instead of the
circuit itself in writing KVL and KCL equations is the following:

1. We convert circuit elements whether two-terminal, three-terminal, or
n-terminal into branches, thus we were able to define branch voltuges
and branch currents for any element in a circuit.

2. With a circuit graph we can define precisely the interconnection proper-
ties of a circuit using the branch-node incidence relation of a graph to
be discussed in Sec. 6.

Exercise 5 Show that if branch 3 in Fig. 4.4 is replaced by a short circuit
thereby coalescing nodes @ and ® into one node, then the digraph in Fig.
5.8 will contain a self-loop, i.e., a loop made of one branch and one
node.
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5.3 Two-Ports, Multiports, and Hinged Graphs

Up to now we have assumed that the circuit is connected. In Fig. 3.2b the
circuit, because of the presence of a two-winding transformer, is not connect-
ed. It turns out that we can easily take care of the situation; but before we do
so, we need to introduce a special class of four-terminal elements called
two-ports. A two-port is a circuit element or a circuit with two pairs of
accessible terminals. Thus a two-port may contain many circuit elements.

Two-ports In many engineering situations the terminals of a multiterminal
device are naturally associated in pairs: For example, in a hi-fi chain the input
pair is connected, say, to a microphone and the output pair to a loudspeaker
system. These pairs of associated terminals are calied ports. Another example
is a two-winding transformer: The two input terminals constitute a natural
input port and the two output terminals constitute a natural output port. In
either case, the typical connections to the four-terminal element have the form
shown in Fig. 5.9. Note the labeling of the nodes and the currents: the input
pair is @, ® and the output pair is @, @.

When we view the four-terminal element of Fig. 5.9 as a two-port, we
consider only the voltages v, and v, and the four terminal currents i,, |, i,, i5.
Naturally, v, is called the port voltage at port ®, k=1, 2. Now the gaussian
surfaces ¥, and ¥, shown in Fig. 5.9 and KCL impose the two current
constraints:

i =i and i, =1,
The point is that these two port constraints reduce the number of current
variables from four to two: i, and i,. The current i, is called the port current at
port ®.

Note that at each port the port voltage v, and the port current i, have
associated reference directions: Hence v, ()i, (¢) is the power entering port k at
time ¢. For example, the power delivered at time ¢, by the remainder of the
circuit fo the two-port of Fig. 5.9 is given by

v, ()i (1) + v, (0)iy(1)

Naturally, a two-terminal element may be viewed as a one-port. Thus, in
generalizing the digraph representation from a one-port to a two-port, we use
two branches and four nodes for its element graph as shown in Fig. 5.10.

——— % P
-~ —~ // ¥, ~
£ : N 2 @/ \\
/ + Hi-fi chain e \
{ i or |
vy | o 5 va |
i two-winding |
1 — 1 transformer = 3 /

NI O

Figure 5.9 Example of a two-port,
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O, @

@ @ Figure 5.10 The element graph of a two-part.

Therefore the port voltages v, and v, are also referred to as the branch voltages
of the two-port. Similarly, we can also call the port currents i, and i, the
branch currents of the two-port. This is in contrast to a four-terminal element
where there are three branches in its element graph, thus three branch voltages
and three branch currents.

Multiports We can generalize the concept of two-ports to multiperts. For
example, a three-winding transformer is a three-port as shown in Fig. 5.11. Its
element graph has three branches and six nodes as shown in Fig. 5.11c. The
three branch voltages and three branch currents are the port voltages and port
currents, respectively, for the three-port.

Hinged graphs The element graph of a two-port consists of two branches which
are not connected. It signifies that the port voltages or port currents at
different ports are not related because of connections but rather are coupled
because of physical phenomena within the element. For example, the trans-

iy g

@ Three-port 2\—-—;
O —® )® C@

® ® O P C

@ — () ®

(a) &)

©

Figure 5.11 (a) A three-winding transformer. (b) the corresponding three-port, and (c) its element
graph.

.

L | Figure 5.12 A model of a physical transformer which includes two parasitic
s | capacitors,
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former port voltages are coupled magnetically via the flux linkages among the
various windings. Therefore circuits containing two-ports or multiports have
circuit graphs which are often unconnected.’

To avoid an “unconnected” circuit graph, we can tie together the two
separate ports of a circuit graph at two arbitrary nodes by a branch. This is
illustrated in Fig. 5.13a, where nodes ® and (® are tied together by a branch k.
This connection does not change any branch voltage or current in the original
circuit. This is easily seen because, by using KCL with a gaussian surface which
encloses one of the separate parts of the graph and which cuts branch k, the
current i, is zero. If i, = 0, it amounts to an open circuit or no connection; thus
we have not changed the behavior of the circuit. Next, since voltages are
measured between nodes, we choose a datum node for each separate part. If
we choose nodes @ and & as the datum nodes for the separate parts, we may
“solder” together node @ and node ® as shown in Fig. 5.13b to make them
the common datum. The graph so obtained is called a hinged graph. With the
introduction of the concept of a hinged graph, we have generalized our
treatment so far to include two-ports and multiports, that is, we can always
assume without loss of generality that any lumped circuit and its circuit graph
are connected.

“Grounded” two-ports If a common connection exists between nodes @ and
@ of a two-port as shown by the low-pass filter in Fig. 5.14a, we call it, by
tradition, a “grounded” two-port. The word “grounded” does not necessarily
mean that the node is always set to zero potential. Rather, a “grounded”
two-port is essentially a three-terminal element with its datum node specified as
the common node of the two-port. Obviously, the element graph for a
“grounded” two-port consists of two branches which are tied together at the
common node shown in Fig. 5.14b.

Similarly, an n-terminal element can be viewed as a “grounded” (n —1)-
port if the datum is specified.

® : O 6

VA

{a} (b)

Figure 5.13 {a) Connecting nodes @ and ® by a branch k. (b) Soldering together nodes @ and ®
to obtain a hinged graph.

 An exception 1o this is, for example, in modeling a physical transformer; we may need to use
additional elements to tie the windings together as shown in Fig. 5.12.
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®._::_w_::_.@ © @
1 2 ! 2

. i 0

(@) (b)

Figure 5.14 (q) A “grounded’” two-port and () its element graph.

5.4 Cut Sets and KCL

A very useful graph-theoretic concept is the cut sct. Given a connected digraph
%, a set of branches € of % is called a cut set iff’ (a) the removal of all the
branches of the cut set results in an unconnected digraph, which means that the
resulting digraph is no longer connected, and (b) the removal of all but any
one branch of € leaves the digraph connected. Stated in another way, ()
implies that if any branch in the set is left intact, the digraph remains
connected.

For the digraph of Fig. 5.15, 4, = {B,, 8.}, €, = {B,, Bs, Bs}, and €, =
{B4s Bs, B,} form cut sets. Here, B, denotes “branch k.”

Exercise Refer to Fig. 5.15.

(@) Is { By, Bs. B, Bs, By} a cut set?
(b) List all cut sets of the digraph shown in Fig. 5.15.

REMARKS

1. Any cut set creates a partition of the set of nodes in the graph into two
subsets.

2. To any cut set corresponds a gaussian surface which cuts precisely the
same branches.

3. Similarly, to any gaussian surface corresponds either one cut set or a
union of cut sets (see ¥, in Fig. 5.15).

4. To each cut set we can define arbitrarily a reference direction, as shown
by the arrows attached to the cut sets in Fig. 5.15.

Figure 5.15 Digraph iltustrating cut sets.

" “iff" means “if and only if."
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KCL (cut-set law) For all lumped circuits, for all time ¢, the
algebraic sum of the currents associated with any cut set is equal
to zero.

Example For the digraph shown in Fig. 5.16, the cut set €=
{B,, B,, B;} is indicated by the dashed line cutting through these
branches. Let us assign a reference direction to € as shown by the
arrow; then the KCL applied to € gives

L)+ ()~ L()=0

The —i, comes about because the reference direction of i, disagrees
with the reference direction of the cut set €.

By now we have learned three forms of KCL, namely, in terms of (1)
gaussian surfaces, (2) nodes, and (3) cut sets.

KCL theorem The three forms of the KCL are equivalent. Symbolically,®

( KCL ) ( KCL ) ( KCL )
. < L=4
gaussian surface node law cut sets

Proor

(1)=(2) Simply use a gaussian surface that surrounds only the node in
question. For example, consider node ® in Fig. 5.15: For
gaussian surface &, KCL applied to &, is identical with KCL
applied to node &, namely,

i =iy =i, —ig— =0
(2)=>(3) Any cut set partitions the set of nodes into two subsets. Writing
the KCL equation for each node in such a subset and adding the

results, we obtain the cut-set equation, except for maybe a —1
factor. For example, consider the cut set €, in Fig. 5.15: If we

@ iq @ is @
Tt "/\f

iy iy rl'3

ig & Figure 5.16 Digraph illustrating the reference
@ @ @ direction of a cut set.

= means “implies”; < means “is implied by"; < means “is equivalent to.”
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add the KCL equations applied to nodes @ and @, we obtain
iy tig+ i, =0

(note that i, cancels out in the addition!), which is the cut-set
equation for %,.

(3)=(1) It is easy to demonstrate that the set of branches cut by a
gaussian surface is either a cut set or a disjoint union of cut sets,
So given any gaussian surface, let us write the KCL equation for
each of these cut sets; then adding or subtracting these equa-
tions, we obtain the KCL equation for the gaussian surface. For
example, consider gaussian surface &, of Fig. 5.15. It is the
union of cut set {B,, 8,} and cut set {8,, B;, Bs} whose equa-
tions are, respectively,

=i, ~i;=0
+i,+ig+i,=0
Subtracting the second equation from the first gives
—iy =iy ~dg= b~ =0

which is the KCL equation for gaussian surface . L

6 MATRIX FORMULATION OF KIRCHHOFF’'S LAWS

6.1 Linear Independence

Consider a set of m linear algebraic equations in n unknowns: For j=
1,2,...,m

fj(xu Xppeo s X,)= ;X tapx,t by, = 0 {6.1)

where the &, ’s are real or complex numbers. It is important to decide whether
or not each equation brings new information not contained in the others;
equivalently, it is important to decide whether the equations are linearly
independent. These m equations are said to be linearly dependent iff there are

constants k., k,, . .., k,, and not all zero such that
> kif(x, %5,...,x,)=0 forall x,x,,...,x, (6.2)
f=1

Clearly if these m equations are linearly dependent, then at least one equation
may be written as a linear combination of the others; in other words, that
equation repeats the information contained in the others!

It is crucial to note that the left-hand side of Eq. (6.2) must be zero for all
values of x,,x,,...,x

L
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Example Consider an example where m =3 and n = 4.
X, —Xx,+x;+3x,=0
2x, +3x, —x;—4x, =0
—4x, —11x, +5x;+ 18x, =0

Direct calculation shows that with &k, =2, k,=-3, and k,=—1 the
condition for Eq. (6.2) holds; in other words, these three equations are
linearly dependent.

The set of m linear algebraic equations (6.1) is said to be linearly
independent iff it is not linearly dependent.

In practice, we use gaussian elimination to decide whether or not a given
set of linear equations is linearly dependent.

6.2 Independent KCL Equations

For a given circuit, we can write many KCL equations by the node law, the
cut-set law, or using gaussian surfaces. How many of them are linearly
independent and how to write a complete set that contains all the necessary
information as far as KCL is concerned are the subjects of this subsection. We
will give a systematic treatment by means of the digraph of the circuit under
consideration: in particular, a list of nodes, a list of branches, and for each
branch the specification of the node it leaves and of the node it enters. This is
done by the incidence matrix A, of the digraph.

Let digraph % have n nodes and b branches, then A, has n rows—one row
to each node—and b columns—one column to each branch. To see how the
matrix is built up consider the four-node six-branch digraph shown in Fig. 6.1.
Let us write the KCL equations for each node:

i+ i, —i,=0
(N iyt i, (6.3)
= Iyl + i =0

>

== Lt =0

Figure 6.1 A digraph with four nodes and six hranches.
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In matrix form it reads

-1 1 0 0 0 -174 0
-1 0 -1 1 0 ] [
o “l=]° (6.4)
®>| 0 -1 1 0 1 o] i 0
@=L 0o 0 0 -1 -1 145 0
kN A L
branch 1 branch 6

The 4 X 6 matrix just obtained is called the incidence matrix A, of 4.

Exercise

{@) Demonstrate that the four equations in (6.3) are linearly dependent.

() Demonstrate that any three of the four equations in (6.3) are linearly
independent.

In general, for an s-node b-branch connected digraph 9 which does nof
contain seff-loops” the matrix A, is specified as follows: For i =1,2, ..., n and
k=1,2,...,b

+1 if branch & feaves node (i)
a, = { —1 if branch k enters node (& (6.5)
0 if branch & does not touch node

and the # node equations of % read

Ai=0 (6.6)

. W o ¥ o
where i=(i;,i,,...,1,) is called the branch current vector.

Remark Each column of A, has precisely a single +1 and a single —1;
consequently, if we add together the n equations in {6.6), all the variables
iy, b5, ..., {, cancel out; equivalently the n# KCL equations are linearly
dependent.

Suppose that for the connected digraph % we choose a datum node and we
throw away the corresponding KCL equation, then the remaining n — 1
equations are linearly independent. Since this is important we state it formally:

Independence property of KCL equations For any connected digraph % with n
nodes, the KCL equations for any n — 1 of these nodes form a set of n 1
linearly independent equations.

'The digraph of circuits containing multiterminal elements will contain self-foops whenever
one or more terminais are connected to the datum, as in the last exercise of Sec. 5.2,
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Proor We prove it by contradiction. Suppose that the first £ of these n — 1
equations are linearly dependent. More precisely, there are k real constants

Ys Yau v - - 2 Yoo RO all zero, such that
k
2 Yl iy i) =0 foralli iy, ..., i, (6.7)
i=1
Without loss of generality, we may assume that y, #0 fdrj: 1,2.... .k,

i.e., there are exactly k equations in the sum of Eq. (6.7).

Consider the two sets of nodes in 4, namely, the set which corresponds
to the k equations and that of the remaining nodes. Since the digraph is
connected, there is at least one branch which connects a node in the first
set to a node in the second set, Clearly the current in that branch appears
only once in the first £ node equations, hence that current cannot cancel
out in the sum of Eq. (6.7). This contradiction shows that forany k=n — 1
it is not the case that a subset of k of the KCL equations is linearly
dependent. That is, these n — 1 equations are linearly independent. L

If in A, the incidence matrix of the connected digraph 4, we delete the
row corresponding to the datum node, we obtain the reduced incidence matrix
A which is of dimension (n — 1) X b. The corresponding KCL equations read

Ai=0 (6.8)

As a consequence of the independence property just proved, we may state that
the (n — 1) X b matrix A is full rank, i.e., its n — I rows are linearly indepen-
dent vectors in the b-dimensional space. Stated in another way, (6.8) consists
of n— 1 linearly independent KCL equations.

6.3 Independent KVL Equations

Similarly, to write a set of complete linearly independent KVL equations in a
systematic way is of crucial importance. Let us write KVL for the four-node
six-branch digraph of Fig. 6.1. Using associated reference directions and
choosing node @ as the datum node, we obtain

v, = el “(’Z
v, = € €
Uy = e, tey
(6.9)
Uy = €:
U, = €,
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or in matrix form

v = Me (6.10)
where v=(v,,v,,...,v,) is the branch voltage vector, e = (e,. e, . . ., e, )
is the node-to-datum voltage vector, and M is a b X (n — 1) matrix. Thinking in
terms of KVL, we see that for k=1,2,...,bandi=1,2,... ,n—1

—1 if branch & enters node &) (6.11)

+1 if branch k leaves node (O
mkr =
0 if branch £ does not touch node ()

Comparing Eq. {6.11) with (6.5), we conclude that
M=A’
and more usefully, KVL is expressed by the equation
v=A'e (6.12)

With a connected digraph % A has n — 1 linearly independent rows, and
consequently A” has n — 1 linearly independent columns.

REMARKS

1. Note that, in the digraph, (a) we choose current reference directions,
(&) we choose a datum node and define the reduced incidence matrix'A,
{c) we write KCL as Ai=0, (d) then we use associated reference
directions to find that KVL reads v= A”e. Thus whenever we invoke
this last equation, we automatically use associated reference directions
for the branch voltages. We also assume the same datum node is used in
writing KCL and KVL.

2. When we deal with digraphs which are not connected, we could either
use the concept of the hinged graph to make the digraph connected or
treat each separate part independently. In the latter, each separate part
will have its own incidence matrix and datum node.

7 TELLEGEN’S THEOREM
Tellegen’s theorem is a very general and very useful theorem. We’ll use it

repeatedly in this text. Tellegen’s theorem is a direct consequence of Kirch-
hotf’s laws.

7.1 Theorem, Proof, and Remarks

Example Consider the digraph shown in Fig. 7.1. Choose arbitrarily the
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@@

4 6

@ Figure 7.1 A digraph with four nodes and six branches.
values of the currents i,, i,, i, and calculate i,, i, ig so that KCL is
satisfied: Let
ih=1 i, =2 iy=3

hence i,=—3 is=-—1 ig=4
Now choose arbitrarily v,, vs, and v, and calculate v,, v,, v; so that KVL is
satisfied (note that we use associated reference directions). Let

v,=4 vg=25 v, =0
hence v, = -2 v, =1 u,=—1

Note that {,,1i,,...,i, obey KCL and v, v,,..., v, obey KVL for the
circuit under consideration. Now it is easy to verify that

6
> i =0
k=1

This result is surprising since the i,’s and the v,’s seem to bear so little
relation to each other.

Tellegen’s theorem Consider an arbitrary circuit. Let the digraph
% have b branches. Let us use associated reference directions. Let i=

(i, iy ..., i,)" be any set of branch currents satisfying KCL for % and let
v={(v,,v,,...,0,)" be any set of branch voltages satisfying KVL for ¥,
then
b .
2 v, =0  orequivalently v'i=0 (7.1)
k=1

Proor For the connected digraph %,'° choose a datum node; hence its
reduced matrix A is defined unambiguously. Since i satisfies KCL., we have

Ai=0 (7.2)

' We again use a hinged graph to take care of graphs which are not connected.
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Since v satisfies KVL and since we use associated reference directions, for
some node-to-datum voltage vector e, we have

v=A"e (7.3)

Using these two equations we obtain successively,
vi=(ATe)i=e (A i=e"(Al)=0 (7.4)
where in the last step we used Eq. (7.2). "

REMARKS

1. The v and the i in the theorem need not bear any relation to each other:
v must only satisfy KVL and i must erly satisfy KCL, and we must use
associated reference directions.

2, Suppose that for the given connected digraph %, let v' and v" satisfy
KVL, and let i and i¥ satisfy KCL. Then Tellegen's theorem usserts that

vii=0 vTir=0 v'ir=0 v7Ti"'=0 (7.5)

H

Equation (7.5) is of particular interest. Note that v, ¥*, i, and i" are not
related other than by the fact that they pertain to the same digraph and that
they each independently satisfy Kirchhoff's faws. Clearly, Tellegen’s theorem
depicts only the interconnection properties of the circuit or the fopology of the
digraph. We will demonstrate later that this general form of Tellegen’s theorem
can be used to prove some general results in circuit theory.

7.2 Tellegen’s Theorem and Conservation of Energy

Consider a lumped connected circuit and let us measure, at some time ¢, all its
branch voltages v,(¢) and all its branch currents i (¢), k=1,2,..., b. Obvi-
ously v(r) and i(t) satisfy KVL and KCL, hence, by Tellegen's theorem

4]

vi) iD= 2 v ()i (=0 (7.6)

k=1

Now, since we use associated reference directions, w ()i, (¢) is the power
delivered, at time ¢, fo branch k by the remainder of the circuit; equivalently,
v, ()i, (1) is the rate at which energy is delivered, at time ¢, fo branch k by the
remainder of the circuit. Hence Eq. (7.6) asserts that the encrgy is conserved.
Thus, for lumped circuits, conservation of energy is a consequence of Kirch-
hotf’s laws.

To appreciate the fact that Tellegen’s theorem is far more general than
conservation of energy, work out the following exercise:
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Exercise Consider an arbitrary circuit with digraph %. Suppose that, for all
=0, v(t) satisfies KVL for % and i(?) satisfies KCL for %. Show that for ali

1, =0
b b
2 0 t)in(R) =0 X u(6)i(t) =0 (7.74)
b - ]
21 vt (22) =0 Fund 0p(t)iy (1) =0 (Z-1h}
2 o)) =0 X 8()ix(n)=0 (7.7¢)

where 3,(f) denotes dv,/di(t) and 7,(¢) denotes di,/dt(t).

7.3 The Relation between Kirchhoff’s Laws and Tellegen’s Theorem

In circuit theory there are two fundamental postulates: KCL and KVL. We
have proved that KCL and KVL imply Tellegen’s theorem. It is interesting to
note that any one of Kirchhoff’s laws together with Tellegen’s theorem implies
the other. More precisely we have the following properties:

Properties
1. If, for all v satisfying KVL, v'i=0 then i satisfies KCL.
2. If, for all i satisfying KCL, v’i=0, then v satisfies KVL.

ProOF
1. For all e let v= ATe, and thus v satisfies KVL. By assumption,

0=v'i=e"Ai

Now since e is an arbitrary node-to-datum voltage vector, the last
equality implies Ai=0, i.c., i satisfies KCL.

2. Let £ be an arbitrary loop in the graph 4. Consider the i obtained by
assigning zero current to all branches of % except for those of loop ¢;
depending on whether the reference direction of branch j in loop ¢
agrees with that of loop £, we assign i, to be 1 A or —1 A. The resulting
i satisfies KCL at all nodes of ¥. Tellegen’s theorem gives

b
Yui= 2 *uy=0
j=1

br;’r‘:zlzes

in loop £
thus the algebraic sum of the branch voltages around loop £ is zero, i.e.,
KVL holds for loop ¢. Since ¢ is arbitrary, we have shown that KVL
holds for all loops of 4. m
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7.4 Geometric Interpretation'’

In this section we shalt use linear vector space to interpret the significance of
Kirchhoff's laws and Tellegen’s theorem. We will use the standard notations.
For example, “R®" means “a b-dimensional vector space,” ‘€ means ‘“is a
member of,” etc.

Tellegen’s theorem requires that v satisfy KVL and i satisfy KCL for the
given digraph 4. Let % be connected and have b branches and n nodes. From
Sec. 6.3, we have

KCL: Ai=0 (7.8)
KVL: v=A"e (7.9)

We state the following properties based on the discussion of linear indepen-
dence of equations,

KCL properties
1. The (n ~ 1} x b matrix A is full rank, i.e., its 1 — 1 Tows are
linearly independent vectors in the b-dimensional space R". (7.10)
2. Ai(t) = 0 the b-dimensional current vector i(f) satisfies KCL. (7.11)
3. The set of all branch current vectors i that satisfy KCL form a
subspace, called the KCL solution space, and we label it K,. (7.12)
4. Since K; is obtained by imposing n 1 linearly independent
constraints on the b-dimensional current vector i, the dimension
of K;isb—n+1. (7.13)

The above implies

ieR’
satisfies | (Ai=0)S(iEK)) (7.14)
KCL

KVL properties
1. A" has full column rank, i.e., its # —1 columns are linearly

independent vectors in the b-dimensional space R, (7.15)
2. For some (n — 1)-dimensional vector e(?), v(¢) = A’e(r) & the
b-dimensional vector v(¢) satisfies KVL. (7.16)
3. The set of all v's satisfying KVL form a (n - 1)-dimensional
subspace which we call the KVL solution space K,. (7.17)
4, Since the subspace K, is spanned by n — 1 linearly independent
vectors, the dimension of K, is n— 1. (7.18)

! Advanced topic, may be omitted without loss of continuity.
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The above implies

vER" v=Ae
satisfies | < | forsomee | &S (veE K,) (7.19)
KVL in R""'

Now Tellegen’s theorem says that for any such v &€ R’ and any such i€ R”,
v'i=0, i.e., the vectors v and i are orthogonal.

So viewing the subspaces K, and K; as subspaces of the same vector space
R®, Tellegen’s theorem asserts that every vector in K, is orthogonal to every
vector of K,. This is denoted by

K, LK, (7.20)

i.e., the subspaces K, and K, are orthogonal. The orthogonality of K, and K, is
illustrated in Fig. 7.2.

Recalling that the dimension of K, is b — n + 1 and that of K is n — 1, the
sum of their dimensions is b. “onsequently the subspaces K, and K, are not
only orthogonal, but also have their direct sum equal to R”. In other words,
any vector in R” can be written uniquely as the sum of a vector in K; and a
vector in K.

To illustrate the equivalences in Eqgs. (7.14) and (7.19) we consider two
simple examples.

Example 1 ¥ is the digraph of a two-node three-branch circuit shown in
Fig. 7.3; we see that A is a 1 X 3 matrix, namely,

A=[111]
So Ai=00 +i,+i,=0 (7.21)

1 2 3
0
Figure 7.2 Figure illustrating the orthogon- Figure 7.3 A digraph with twoe nodes and
ality of the subspaces K, and K, where K is three branches.

the set of all i’'s satisfying KCL and K, is the
set of all v's satisfying KVL.

®
4

®



KIRCHHOFF'S LAW 33

U, 1
v=ATes| v, [=|1 e (7.22)
Uy 1

K, is a two-dimensional subspace; i, i,, i, are constrained by one equation,
the KCL at node @, Eq. (7.21). K, is shown in Fig. 7.4.

K, is a one-dimensional subspace: There is only one degree of
freedom, namely, the node voltage e,. [See Eq. (7.22).] K, is shown in
Fig. 7.5. Note that the vector (1, 1, 1)" which spans K, is orthogonal to K,
as required by Tellegen’s theorem.

Example 2 % is the digraph of a three-node four-branch circuit shown in
Fig. 7.6. Now A is a 2 % 4 matrix, namely

o1 0 1 1]
A—[O 1 —1 -1 (7.23)
KCL, namely Ai=0, reads

i, +i,+i,=0

iy—iy—i, =0

(7.24)

f)
/\j Figure 7.4 The two-dimensional KCL solution space

of Example 1.
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Figure 7.5 The one-dimensional KVL solut- Figure 7.6 A digraph with three modes and

ion space of Example 1. four branches considered in Example 2.



