
Thus a sinusoidal voltage with angular frequency w ,  applied to a linear 
time-varying resistor generates. in addition to a sinusoidal current with the 
same angular frequency W , .  two sinusoids at angular frequencies w + w,  
and w - W,. This property is the basis of several modulation schemes in 
communication systems. With linear time-invariant resistors. a sinusoidal 
input can only generate a sinusoidal response at the same frequency. 

2 SERIES AND PARALLEL CONSECTIONS 

In Chap. 1 we considered general circuits with arbitrary circuit elements. The 
primary objective was to learn Krrchhoff's current law (KCL) and Kirchhoffs 
voltage law (KVL). KCL and KVL do not depend on the nature of the circuit 
elements. They lead to tlvo sets of linear algebraic equations in terms of tivo 
sets of pertinent circuit variables: the branch crtrrents and the branch ~,oirages. 
These equations depend on the topology of the circuit, i.e.. howr the circuit 
elements are connected to one another. The branch currents and branch 

, voltages are in turn related according to the characteristics of the circuit 
elements. As seen in the previous section, these characteristics for two- 
terminal resistors may be linear or nonlinear, time-invariant or time-varying. 
The equations describing the v-i characteristics are called element eq~latiorzs or 
branch equations. Together with ihe equations from KCL and KVL. the]; give 
a complete specification of the circuit. The purpose of circuit analysis is to 
write down the complete specification of any circuit and to obtain pertinent 
solutions of interest. 

In this section we will consider a special but very important class of 
circuits: circuits formed by series and parallel connections of two-terminal 
resistors. First, we wish to generalize the concept of the v-i characteristic of a 
resistor to that of a two-terminal circuit made of two-terminal resistors. or 
more succinctly a resistive one-port. We will demonstrate that the series and 
parallel connections of two-terminal resistors will yield a one-port whose v-i 
characteristic is again that of a resistor. We say that two resistive one-ports are 
eqriivalent iff their v-i characteristics are the same. 

When we talk about resistive one-ports, we naturally use port volrage and 
port current as the pertinent variables. The v-i characteristic of a one-port in 
terms of its port voltage and port current is often referred to as the driving- 
point characteristic of the one-port. The reason we call it the driving-point 
characteristic is that we may consider the one-port as being driven by an 
independent voltage source v, or  an independent current source is as shown in 
Fig. 2.1. In the former. the input is v, = v, the port voltage; and the response is 
the port current i. In the latter, the input is is = i, the port current; and the 
response is the port voltage v. In the following subsections we will discuss the 
driving-point characteristics of one-ports made of two-terminal resistors con- 
nected in series, connected in parallel, and connected in series-parallel. 



Figure 2.1 X one-port N driven ( a )  by an independent voltage source and ( b )  by an independent 
current source. 

2.1 Series Connection of Resistors 

From physics we know that the series connection of finear resistors yields a 
linear resistor whose resistance is the sum of the resistances of each Iinear 
resistor. Let us extend this simple result to the series connections of resistors in 
general. 
G 

Consider the circuit shown in Fig. 2.2 where two nonfinear resistors 9, and 
3, are connected at node @. Nodes (0 and are connected to the rest of the 
cirfuit. which is designated by N. Looking toward the right from nodes (0 and 
B. we have a one-port which is formed by the series connection of rwo resistors 
2, and 3L. For our present purposes the nature of JV" is irrelevant. We are 
interested in obtaining the driving-point characteristic of the one-port with port 
voltage v and port current i. 

Let us assume that both resistors are current-controlfed, i.e., 

U, = C ,  (i,) and v, = Cz(iz) (2.1) 

These are the two branch equations. Next, we consider the circuit topology and 
write the equations using KCL and KVL. KCL applied to nodes @ and @ gives 

I "/ Figure 2.2 Two nonlinear resistors connected in series 
0n;gort together with the rest of the circuit ;V. 



The KVL equation for the node sequence 0-0-0-0 leads to 

v = v,  + v, (2.3) 

Combining Eqs. (3.1). /2.2) ,  and (2.3). we obtain 

v = G,(i)  + f i , ( i )  (2.4) 

which is the v-i characteristic of the one-port. It states that the driving-point 
characteristic of the one-port is again a current-controlled resistor 

v = ;(i) ( 3 . 5 ~ )  
A 

where C )  = ( i )  + ( 1 )  for all i (2.5b) 

Exercise If the two terminals of the nonlinear resistor 2, in Fig. 2.2  are 
turned around as shown in Fig. 2.3, show that the series connection gives a 
one-port which has a driving-point characteristic: 

Example 1 (a battery model) A battery is a physical device which can be 
modeled by the series connection of a linear resistor and a dc voltage 
source, as shown in Fig. 2.4. Since both the independent voltage source 
and the linear resistor are current-controlled resistors, this is a special case 
of the circuit in Fig. 2.2. The branch equations are 

v ,  = R i ,  and v ,= E (2.6) 

Adding v, and u2 and setting i,  = i, we obtain 

v = R i + E  

Or, we can add the characteristics graphically to obtain the driving-point 
characteristic of the one-port shown in the i-v plane in the figure? The 

l 

0 

+ 

- Figure 2.3 Series connection of 9, and 9z with the terminals of 9, 

o turned around. 

3 We use the i-v plane to facilitate the addition of voltages. 



Figure 2.4 (a)  Series connection of a linear resistor and a dc voltage source. and ( b )  its 
dr~iing-pninr characteristic 

heavy line in Fis. 2.4b gives the characteristic of a battery with an internal 
resistance R. Usually R is small. thus the characteristic in the i-v plane is 
reasonably flat. However, it should be clear that 2 real battery does not 
behave like an ~ndependent voltage source beca~se  the port voltage v  
depends on the current i. If we connect the real battery to an external load, 
e.g.. a linear resistor with resistance R ,  the actual voltage across the load 
will ie El?. 

::.me a battery is used to deliver power to sin external circuit, we 
usually prefer to use the opposite of the associated reference direction 
when the battery is connected to an external circuit. The characteristic 
plotted on the i t - v  plane where i' = - i  is shown in Fig. 2.5 together with 
the external circuit. 

Example 2 (ideal diode circuit) Consider the series connection of a real 
battery and an ideal diode as shown in Fig. 2.6. Since the ideal diode is not 
a current-controlled resistor, we cannot use Eq. (2.5) to add the voltages 
directly. Instead, we consider each segment of the ideal diode characteris- 
tic independently. Recall the definition of the ideal diode, for i,> 0, 
v, - = 0. Since by KCL, i, = i, = i, we have 

v = v ,  =Ri+ E for i > O  (2.8~) 

In other words. in the right half of the i-v plane (i >O), the one-port 

Ex temal 
circuit 

Figure 2.5 Characteristic of a real 
connection. 

battery plotted on the i'-v pIane and the external circuit 



Figure 2.6 Series connection of a battery with an ideal diode and the driving-point characteristic of 
the resulting one-port. 

characteristic is identical with that of Fig. 2.4, i.e.. a straight line starting at 
the point (0, E) with a slope R. Next. for U, < 0. i, = 0, i.e., the ideal 
diode is reversed biased, and its characterisnc requires that i = i, = 0. 
Therefore there is no current flow. Hence v ,  = E. and thus 

v = E + v, - and i = 0 for v, 5 0  (2.8b) 

In other words, when the diode is reversed biased. the one-port charact- 
eristic consists of the vertical half line lying on the v axis below the point 
(0, E). (See Fig. 2.6.) 

Exercise Determine the v-i  characteristic of the series connection of the 
same three elements as in Fig. 2.6 except that the diode is turned around. 

Example 3 (voltage sources in series) Consider m independent voltage 
sources in series as shown in Fig. 2.7. Since voltage sources are current- 
controlled, we only need to add the voltages of each independent source to 
obtain an equivalent one-port, which is an independent voltage source 
whose voltage is given by the sum of the m voltages. 

Example 4 (current sources in series) Next, consider independent current 
sources in series as shown in Fig. 2.8. Applying KCL at nodes @, 0, etc., 

Figure 2.7 m Independent voltage sources in 
series. 
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Figure 2.8 t n  Indepcndcnt current 
sources in series. 

we note that the m independent current sources must have the same 
current. i.e.. i, = i, = . . - = i,,J. Otherw~se, we reach a contradiction be- 
cause (a) by definition. an independent current source has a current i, 
irrespective of the external connection and ( b )  KCL cannot be violated at 
any node of a circuit. Therefore we conclude that ( a )  the only possibility 
for the connection to make sense is that all currents are the same and (6) 
the resulting one-port is a current source with the same current. 

Example 5 (graphic method) Graphic methods are extremely useful in 
analyzing simple nonlinear circuits. Consider the series connection of a 
linear resistor and a voltage-controlled nonlinear resistor as shown in Fig. 
2.9. The branch equations for the two resistors are 

v, = R,i, and i, = &(v2) (2.9) 

First, we wish to find out whether the nonlinear resistor 3, is also 
current-controlled. Since, for I, 5 i 5 I,, the voltage is muitivalued, we 
know 9, is not current-controlled. ~ h e r k f o r e  we cannot solve the problem 
analytically as before [see Eqs. (2.1) and ( 2 .5 ) ] .  However, it is possible to 
add the voltages v, and u2 graphically point by point on the two curves. 

connection 
ofg, andW2 q A  

Figure 2.9 Series connection of a linear resistor 9, and a voltage-controlled resistor 2,. 



Thus for I, 5 i 5 I,. the sum of v ,  and v, is multivalued. What is of interest 
is to note that thh resulting characteristic is neither voltage-controlled nor 
current-controlled. 

REMARK Figure 2.9 shows that d, is voltage-controlled. i.e.. i2 = ;.(v,) and - - a, is both voltage-controlled and current-controlled. The characteristic of 
the series connection is neither voltage-controlled nor current-controlled 
but may be described by the ptrratnetric representation: 

U = R , ~ ~ ( u , )  + u2 

i = i , (u2)  

where v, plays the role of a parameter. 

Summary of series connection The key concepts used in obtaining the driving- 
point characteristic of a one-port formed by the series connection of two- 
terminal resistors are 

1. KCL forces all branch currents to be equal to the port current. 
2. KVL requires the port voltage u to be equal to the sum of the branch 

voltages of the resistors. 
3. If each resistor is current-controlled, the resulting driving-point characteris- 

tic of the one-port is also a current-controlled resistor. 

2.2 ParaIlel Connection of Resistors 

Consider the circuit shown in Fig. 2.10 where two resistors %l and 9, are 
connected in parallel at nodes @ and @ to the rest of the circuit designatid X. 
The nature of ,\'is immaterial for the present discussion. We wish to determine 
the driving-point characteristic of the one-port defined by the two nodes @ and 
@ looking to the right. i.e., the parallel connection of 3?Z1, and 3,. We assume 
that the resistors are both voltage-controlled, i.e., 

i = ( v )  and i2 = i 2 ( u 2 )  

X - Q U1 
"1 

U2 

- - - 
" 

Figure 2.10 Two nonlinear resistors in parallel 
oneport together with the rest of the circuit .V. 
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Picking node @ as the datum node, we have, from KVL 

u = u 1 = u 7  (2.11) 

Applying KCL at node a. we have 

i = i, + i2 (2.12) 

Combining the above equations, we obtain 

i = ;,(v) + b(u) (2.13) 

Equation (2.13) states that the driving-point characteristic of the one-port is a 
voltape-cuntrollrd resistor defined by 

i = i (v)  (2.14a) 

where U )  ( v )  + ( v )  for all u (2.14 b) 

Duality It is interesting to compare the two sets of equations: (2.1) to (2.5) for 
the series connection and (2.10) to (2.14) for the parallel connection. If we 
make the substitutions for a11 the v's with i's and for a11 the i's with v's in one 
set of equations, we obtain precisely the other set. For this reason, we can 
extend and generalize the concept of duality introduced earlier for resistors to 
circuirs. 

Let us redraw the two circuits of the series connection and of the parallel 
connection of two nonlinear resistors as shown in Fig. 2.11. Let us denote the 
series-connection circuit by h* and the parallel-connection circuit by X". 
Comparing Eqs. (2.1) to (2.5) with Eqs. (2.10) to (2.14) one by one together 
with the two circuits in Fig. 2.11. we can learn how to generalize the concept of 
duality. First. for the branch equations (2.1) and (2.10), note that substituting 
all the v's with i's and ali the i's with v's in one equation, we obtain the other. 
This. however, requires that the function v^,(.) be the same as c(.) and the 
function v*,(-) be the same as î ,(-). In other words, the nonlinear resistor 2 T in 
.\-" must be the dual of the nonlinear resistor 3, in X, and similarly 8 ;  in K* 
must be the dual of $ in JV. Next, compare Eqs. (2.2) and (2.3) with Eqs. 

Figure 2.11 A circuit N a n d  its 
dual ,V*. 



(2.11) and (2.12). While Eq. (2.2) states KCL imposed by the series connec- 
tion of 2, and 2, in ,\'. Eq. (2.11) states KVL imposed by the parallel 
connection of 9 /i; and in ,t'*. Similarly, Eq. (2.3) is KVL which sums the 
two ~ol tages  v ,  and v ,  in .\'. while Eq. (2.12) is KCL which sums the two 
currents i; and i: in .\". Finally, Eqs. ( 2 . 5 ~ )  and (2.55) specify the driving- 
point characteristic of the one-port obtained by the series connection of two 
current-controlled resistors .d, and 8, as a current-conrrolled resistor. Equa- 
tions (2.11o) and (2.14b) specify the-driving-pint characteristic of the one- 
port obtained by the parallel connection of two voltage-controlled resistors 9; 
and 3: as a voltage-controlled resistor. 

In Table 2 .1  \\e list t\vo sets of terms S and S' which we have encountered 
and mhich are said to  be dual to one another. With these terms, we can 
generalize the concept of duality to define a dual circuit. Two circuits .\' and 
.l" are said to be drlnl to one another if the equations describing circuit . \ 'are 
identical to those describing circuit A'* after substituting every term in S for ,k' 
by the corresponding dual term in S". 

In this section we can take advantage of the duality concept in discussing 
the parallel connections of resistors. In later chapters. we shall enlarge the set 
of dual terms as we learn more about circuit theory. 

Exercise Show that the parallel connection of m linear resistors gives a 
linear resistor whose conductance G is equal to the sum of the conductan- 
ces of the m linear resistors. 

Example 1 (dual one-port and equivalent one-port) Consider the parallel 
connection of a linear resistor with conductance G and an independent 
current source i, as shown in Fig. 2.12. The branch equations are 

i, = Gv, and i2  = i3 

Adding i, and i,, and setting v, = v, we obtain 

Table 2.1 Dud terms 

Branch voltage 

Current-controlled resistor 

Resistance 

Open circuit 

Independent voltage source 

Series connection 

KVL 

Port voltage 

-- - - - -- 

Branch current 

Voltage-controlled resistor 

Conductance 

Short circuit 

Independent current source 

Parallel connection 

KCL 

Port current 



Figure 1.12 ( c l )  Parriilrl connection of a linear resistor and an independent current source. (b )  The 
driving-point chriractrristic of rhe resulting one-port. 

The characteristic is shown in Fig. 2.12. Comparing Eq. (2.7) with Eq. 
(2.16) and Fig. 2.4 with Fig. 2.12, we know that the two circuits are dual to 
one another provided i, = E and G = R. 

We also wish to use this example to illustrate the concept of equivalent 
one-ports. Recall two resistive one-ports are said to be equivalent if they 
have the same driving-point characteristics. Let R' = IIC. Multiplying 
both sides of Eq. (2.16) by R' we obtain 

R'i = v + R'i, (2.17) 

Let v: = R'i,; then the above equation can be writren as 

v = R'i - v: (2.18) 

This equation can be represented by a series connection of a linear resistor 
with resistance R' and an independent voltage source v: as shown in Fig. 
2.13a. The driving-point characteristic is plotted in the i-v plane, which is 
shown in Fig. 2.13b. In order to compare it with the circuit in Fig. 2.12, we 
wish to plot the characteristic also in the v-i plane. This can be done by 
first drawing a straight line (dashed) passing through the origin with an 
angle 45" from the axis as shown in Fig. 2.13~. Next, taking the mirror 
image of the characteristic in Fig. 2.13b with respect to the 45" line, we 
obtain the characteristic in the v-i plane, which is exactly the same 
driving-point characteristic as that of Fig. 2.12. Therefore the two one- 
ports in Figs. 2.12 and 2.13 are equivalent. This particular equivalence 
turns out to be extremely important in circuit analysis. It allows us the 
flexibility of changing an independent voltage source in a circuit to an 
independent current source yet preserving the property of the circuit. We 
shall see later that the one-port in Fig. 2.13 is the Thkvenin equivalent 
circuit and the one-port in Fig. 2.12 is the Norton equivalent circuit. 

Example 2 (more on the ideal diode) Consider the parallel connection of a 
linear resistor, an independent current source, and an ideal diode as shown 
in Fig. 2.14. We wish to determine the driving-point characteristic of the 
one-port. Figure 2.15a, b,  and c shows the branch characteristics. Note 
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Figure 2.13 The one-port in (a) is equivalent to that of Fig. 2 . 1 3 ~  since they have the same 
driving-point characteristics. 

- Figure 2.14 Parallel connection of a linear resistor, 
a current source, and an ideal diode. 

that the characteristic of the ideal diode in Fig. 2 . 1 5 ~  with the diode turned 
around is the mirror image with respect to the origin of that given in Fig. 
1.8. In order to add the three branch currents we again consider the two 
individual segments of the ideal diode separately. Note that for v > 0, the 
summation of the current yields a half line with slope G, starting at the 
point (0, is) as shown in Fig. 2.15d. For v <O, we use a limiting process. 
First, consider that the ideal diode has a finite but very large slope G, for 
the purpose of adding the three currents and observe that id dominates the 
other two currents. Then, we let G, CO, and the resulting characteristic 
becomes a half line on the i axis, which meets the other portion of the 
characteristic at (0, is), as shown in Fig. 2.15d. 
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Figure 2.15 Brnnch L,-i  characteristics of ( U )  a linear res1s:or. (h') a current source. and (c) a n  ideal 
diode. ( d )  T h e  resulting one-port characteristic. 

Id i 
A 

Comparing the characteristic of this one-port with that shown in Fig. 
2.6. we recognize that the two one-ports are dual to one another if E = is 
and R = G. 

E 

Slope j 
I 

Gd4-=-+  
i 

Exercises 
1. What is the duaI of an ideal diode? 
3. Determine the driving-point characteristic of the one-port in Fig. 2.14 

with [he terminals of the ideal diode turned around. 
3. Repeat the above with the terminals of the independent current source 

turned around. 

Example 3 (parallel connection of current sources) In Fig. 2.16 there are m 
independent current sources connected in parallel. This is the dual of m 
independent voltage sources connected in series. By KCL, it is clear that 
the parallel connection gives an equivalent one-port which is an indepen- 
dent current source whose current is is = i,.. 

* v d  0 

Figure 2.16 m Independent current sources in 
parallel. 

* v  
0 
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Example 4 (parallel connection of voltage sources) The parallel connection 
of independent voltage sources violates KVL with the exception of the 
trivial case where a11 voltage sources are equal. 

Summary of paraIlel connection The key concepts used in obtaining the 
driving-point characteristic of a one-port formed by the parallel connection of 
two-terminal resistors are 

1. KVL forces all branch voltages to be equal. 
2. KCL requires the port current i to be equal to the sum of the branch 

currents of the resistors. 
3. If each resistor is voltage-controlled, the resulting driving-point characteris- 

tic of the one-port is also a voltage-controlled resistcr. 

2.3 Series-Parallel Connection of Resistors 

We now extend the ideas introduced in the last t~vo secrions to series-parallel 
connections of two-terminal resistors. Let us give three examples to illustrate 
the method of analysis. 

Example 1 (series-parallel connection of linear resistors) Consider a ladder 
circuit, i.e., a circuit formed by alternate series and parallel connection of 
two-terminal circuit elements, such as the one shown in Fig. 2.17. This 
ladder is made of four linear resistors with resistances. R, ,  R,. R,. and R,. 
respectively. The branch currents and branch voltages are indicated on the 
figure, and we wish to determine the driving-point characteristic of the 
one-port defined at terminals and 0. We shall proceed to solve this 
problem from the back end of the ladder. Since the series connection 
forces i, = i,, we can express the voltage v, by adding the voltages: 

v, = v, + v, = ( R ,  + R,)i, (2.19) 

This equation specifies the characteristic of an equivalent linear resistor 
with resistance R, + R,. We next consider the parallel connection of the 
resistor with resistance R, and the equivalent resistor just obtained. For a 
parallel connection, we ahd the currents; using Eq. (2.19). we obtain 

- Figure 2.17 A ladder circuit with linear resistors. 
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where G, = l lR, .  We next consider the series connection of the resistor 
with resistance R ,  and the equivalent resistor specified by Eq. (2.20). 
Adding the voltages v ,  and v:, and uslng Eq. (2.201, we obtain 

Since i ,  = i, we conclude that the driving-point characteristic of the one- 
port at @ and @ is given by 

where 

Is the resistance of the equivalent linear resistor. 

Exercise Determine the resistance R of the one-port shown in Fig. 2.18. 

ExampLe 2 (series-parallel connection of nonlinear resistors) Consider the 
circuit in Fig. 2.29, where 2, is connected in series with the parallel 
connection of 3, and 9,. All three resistors are nonlinsar, and the 
problem is to determine the equivalent one-port resistor, 9. We will use 
the method of successive reduction from the back of the ladder as 
ilIustrated in the figure. Thus 2 * is equivalent to the parallel connection of 
92, and 9,, and 9 is equivatent to the series connection of 9, and 9*. 

Figure 2.18 A ladder with four linear resistors. 

Figure 2.19 Reduction of a ladder circuit with nonlinear resistors. 
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We assume that the characteristics of $3, and 3, are voltage-controlled 
and specified by 

i, = i 2 ( u Z )  and i3 = i 3 ( v3 )  

The parallel connection has an equivalent resistor 32 * which is voltage- 
controlled and specified by 

where i* and v *  are the branch current and branch voltage, respectively, of 
the resistor 3 *. The parallel connection requires U* = v, = U, and i' = 
i, + i,. Therefore we have the characteristic of $2 ' which is related to that 
i f  91? and 9'3 by 

g(u')  = i2(vf)  + L3(v') for all v' (2.236) 

The next step is to obtain the series connection of 2, and %*.  Let us 
assume that the characteristic of 92, is current-controlled and specified by 

In order to proceed with the series connecrion of 3, and 9 * we must also 
express 9 * as a current-controlled resistor. This calls for finding just the 
inverse of the function g(-)  in Eqs. (2.23a) and (2.236), which is given by 

~ * = ~ - ' ( i * )  fora l l i*  

The series connection of 9 * and B, requires i = i, = i" and v = U, + v*. 
Thus we obtain the characteristic of 3: 

where ( ) = ( ) + ( i )  f o r a l l i  (2.24b) 

In this problem, one key step is the determination of the inverse function 
The question is therefore whether the inverse exists. If it does not, 

the-characteristic of 59 cannot be written as in Eq. (2.24) because it is not 
current-controiled. One simple criterion which guarantees the existence of 
the inverse is that the v-i characteristic is strictly monotonically increasing, 
i.e., the slope, g'(v*)  is positive for all U* 

REMARK The characteristic of the one-port shown in Fig. 2.19 can always 
be represented parametrically. Indeed, we have 

i =  il = i* and U = V ,  + V *  

Hence, using v* as a parameter, we obtain 

i = g(v *) 

U = ;,[g(.*)] + v* 



Example 3 (zener diode circuit) Consider the circuit shown In Fig. 2.20 
where two zener diodes are connected back to back. The symbol of the 
zener diode and its characteristic are shown in Fig. 2.21. where E- is called 
the breakdoan voltage. The breakdown voltage depends on the doping 
impurity. For a heavily doped diode, E: is in the neighborhood of 5 to 6 V. 

For this circuit. we will use the approximate characteristic shown in 
Fig. 2 . 3 2 ~ .  The characteristic of the second diode wish the terminals turned 
around is shown in Fig. 2.22b. We add the voltages to get the characteristic 
of the back-to-back connection of the diodes as shown in Fig. 2.22c, The 
next step is to consider the parallel connection of the linear resistor with 
negative conductance G, whose characteristic is shown in Fig. 2.22d. The 
resulting curve shown in Fig. 2.22e is the characteristic of the one-port. 
This characteristic is obtained by adding the currents i, and i, in Fig. 2 . 2 2 ~  
and d ,  respectiveIy. The vertical portions of the characteristic need some 
explanation. When we consider the vertical portions of the characteristic in 
Fig;. 2 . 2 2 ~ .  we may use the limiting process by first assuming that they each 
have a positive slope G, and let G, + X .  Thus addlng the current i, = 
-CV. we note that G, - G also approaches X .  Therefore we have the two 
venicai portions of the characteristic in Fig. 2 . 2 2 ~ .  

Exercise Consider the one-port shown in Fig. 2.231.1 which consists of two 
tunnel diodes and two dc voltage sources. The v-i characteristic of the 
tunnel diode is given in Fig. 2.23b. Determine the driving-point charac- 
teristic of the one-port in Fig. 2 . 2 3 ~ .  

3 PECEW2SE-LINEAR TECHNIQUES 

The method of piecewise-linear analysis is extremely useful in studying circuits 
with nonlinear resistors. We have seen in the last section that nonlinear v-i 
characteristics can be approximated by linear segments. This allows us to make 
simple calculations. In this section we will present some useful techniques 
which will be used later in piecewise-linear analysis. But, first we will introduce 
two ideal piecewise-linear models which are used as building blocks. 

Figure 2.20 A series-parallel circuit with two Figure 2.21 Symbol for a zener diode and 
back-to-back zener diodes. its characteristic. 


