
CHAPTER 

FOUR 
OPERATf ONAL-AMPLIFIER CIRCUITS 

The operational anzplifier (op amp) is an extremely versatile and inespensive 
semiconductor device. It is the workhorse of the communication. control. and 
instrumentation industry. 

For low-fiqrtency applications, the op amp behaves like a four-terminal 
nonlinear resistor which can often be represented by an ideal up-amp model. 
This model greatly simplifies the analysis and design of op-amp circuits. In fact, 
one of the reasons why op amps are so popular is that. at low frequencies, they 
behave almost like the ideal model! Consequently. except in the last section. 
our methods of analysis in this chapter will be based on the ideal model. This 
choice is justified in Sec. 4 by analyzing a typical op-amp circuit (operating at 
low frequency) using a more complicated (finite-gain) op-amp model and then 
comparing the results with those predicted by the ideal op-amp model. 

Depending on the dynamic range of the input signals, an op amp may 
operate in the linear or nonlinear region. Section 2 is devoted to those circuits 
where the op amp is operating only in the linear region. This restriction allows 
us to simplify the (nonlinear) ideal op-amp model into a linear model. called 
the virtual short-circuit model. This model is used exclusively in Sec. 2 for 
analyzing both simple circuits by inspection, as well as complicated circuits via 
a systemaric method. 

The organization in Sec. 2 is followed in Sec. 3 for op amps operating in 
the nonlinear region. Here, it is necessary to use the (nonlinear) ideal op-amp 
model. 

1 DEVICE DESCRIPTION, CHARACTERISTICS, AND MODEL 

Operational amplifiers (op amps) are multiterminal devices sold in several 
standard packages, two of which are shown in Figs. 1.1 and 1.2. Because they 



E 
Figure 1.1 Eight-lead metal can. (a )  Side 

( b )  view. ( h )  Top view. 

Figure 1.2 A 14-lead DIP (dual in-line package). (a) Side view (b) Top view. 

are inexpensive (some cost less than 25 cents a piece), reliable, and extremely 
versatile, op amps have become the workhorse of the electronics industry. 

Over 2000 types of integrated circuits ( I C )  op amps are currently available, 
each containing nearly two dozen transistors. Figure 1.3 gives the schematic of 
the popular pA741, a second-generation op amp introduced by Fairchild 
Semiconductor in 1968. The seven terminals brought out through the package 
leads are labeled inverting input, noninverting input, output, E+, E-, and 
offser nuN (two of them). The remaining terminals of the package in Figs. 1.lb 
and 1.2b not connected to the IC are labeled NC (for no connection). 

Some op amps have more than seven terminals; others have less. For most 
applications, however, only the five terminals indicated in the standard op-amp 
symbol in Fig. 1.4a are essential. The additional terminals are usually connect- 
ed to some external nuliing or compensation circuit for improving the perfor- 
mance of the op amp. In order for the op amp to function properly its internal 
transistors must be biased at appropriate operating points. Terminals E+ and 
E- are provided for this purpose. In general, they are connected to a split 
power supply as shown in Fig. 1.4b, where E+ and E- denote the voltage 
with respect to the external ground. Typically, E+ = + 15 V and E- = - 15 V. 
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Figure 1.3 Schematic of the pA74l op amp. 
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Figure 1.4 Standard op-amp symbol and a typical biasing scheme. (a) The - and -i- signs inside the 
triangle denote the inverting and noninverting input terminals, respectively. ( b )  A "biased" o p  amp 
(enclosed within the triangle) can be considered as a 4-terminal device for circuit analysis and design 
purposes. 



After the power supply has been connected and after an external nuHing 
and/or compensation circuit has been connected to any additional terminals, 
only four terminals are available for external connections. Hence, from the 
circuit designer-S point of view. an op amp is really a four-terminal device, 
regardless of the originai number of terminals in the op-amp package. This 
four-terminal device Iies inside the dotted triangle in Fig. l.4b and will 
henceforth be denoted by the symbol shown in Fig. 1.5a.l Here, i- and i, 
denote the current entering the op-amp "inverting" and "noninvetting" termi- 
nals. respectively. Similarly. v-. v,. and U, denote respectively the voltage 
from the inverting terminal G, noninverting terminal 0, and output terminal 

A 
@ to ground. The variable v ,  = v +  - v -  is called the differential I'npnr volrage 
and will plav an important roIe in op-amp circuit anaIysis. 

To derive an exact characterization of an op amp would require analyzing 
the entire integrated circuit. such as the one shown in Fig. 1.3. Fortunately, for 
many low-frequency applications, the op-amp terminal currents and voltages 
have been found usperimerzrall~ to obey the following nppro.uimnre relation- 
ships: 

where 1,- and 1,- are called the input bias currents and f(u,) denotes the 
v,-vs.-U, transfer characteristic. Apart from a scaling factor which depends on 
the power supply voltage, f(v,,) follows approximately an odd-symmetric 

v,. v 

E w =  

(b )  

Figure 1.5 Experimental characterization of a typical op amp. 

' The op-amp symbol given in most electronics literature shows only three terminals with the 
ground terminal omitted. This is because the ground terminal in Fig. 1.4b does not exist physically 
as a pin in most modem op-amp packages, but is rather created externally through the dual power 
supply. We added this terminal because without it, KCL would give the erroneous relationship 
i- + i+ + i, =O. 
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function as shown in Fig. 1.5b (drawn for a t15-V supply voltage). Moreover, 
this function has been found to be rather insensitive to changes in the output 
current i, . 

The transfer characteristic in Fig. 1.5 b displays three remarkable prop- 
erties: 

1. v, and U, have different scales: one in volts, the other in millivolts. 
2. In a small interval - E  < ud < E of the origin, f(v,,) * A V ,  is nearly linear 

with a very steep slope A-called the open-loop volrage gain. 
3. f(v,) saturaies at v, = r E,,,, where E,,, is typically 2 V less than the power 

supply voltage (E,,, = 13 V in Fig. 1.5b). 

In most op amps using bipolar input transistors, such as in Fig. 1.3,1,- and 
I,, represent the dc base currents used to bias the transistors (typically, less 
than 0.2 mA). For op amps using FET input transistors, the input bias currents 
are much smaller. For example, the average input bias current I ,  = $(jIB,l + 
] 1,- 1 )  is equal to 0.1 mA for the pA741 but only 0.1 nA for the pA740 (which 
uses a pair of FET input transistors). 

The open-loop voltage gain A is typically equal to at least 100.000 (200.000 
for the pA741). On the other hand, the voltage E at the end of the linear 
region in Fig. 1.5 b is typically less than 0.1 mV. 

An ideal op-amp model In view of the typical magnitudes of I, - . I, + , A ,  and 
E ,  little accuracy is lost by assuming I,- = I,+ = E = 0 and A = X .  This 
simplifying assumption leads to the ideal op-amp model shown in Fig. 1.6a and 
b. Note that the transfer characteristic f(v , )  in this ideal model has been 
approximated by a three-segment piecewise-linear characteristic. For future 
reference, the three distinct operating regions are labeled Linear, + Saruration, 
and - Saturation, respectively, in Fig. 1.6. 

To emphasize that A = r: in the linear region, we add X inside the triangle 
to distinguish the ideal op-amp symbol in Fig. 1 . 6 ~  from other models. Unless 
otherwise stated, this ideal op-amp model will be used throughout this book. 

The ideal op-amp model can be described analytically as follows: 

Equations 
describing 
the ideal 
OP-="P 
model 

Because these equations are rather cumbersome and difficult to manipulate 
analytically, it is much more practical to represent each region by a simple 
equivalent circuit, as shown in Fig. 1.6c, d ,  and e, respectively. 

Note that these three equivalent circuits contain exactly the same infor- 
mation as Eq. (1.2). In particular, when the op amp is operating in the linear 
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Figwe 1.6 Ideal op-amp model. 

region. the ideal op-amp model reduces to that shown in Fig. 1 . 6 ~ .  Note that 
here. v, is constrained to be zero at all times while (U,] is constrained to be less 
than the saturation voltage E,,,. Hence, this circuit is described by Eqs. (1.2a), 
(1.2b), and (1 .2d) .  

The circuit in Fig. 1.6d is described by Eqs. (1 .2~) .  (1.2b), and (1 .2~)  with 
v,>O. Likewise, the circuit in Fig. 1.6e is described by Eqs. (1.2a), (1.2b). 
and ( 1 . 2 ~ )  with v, < O .  

The ideal op-amp model is therefore described by three equivalent circuits, 
one for each operating region. If an op amp is known, a priori, to be operating 
in only one of these three regions in a given circuit, then we sometimes abuse 
our fanguage by referring to the corresponding equivalent circuit in Fig. 1.6 as 
the ideal op-amp model. 

For most low-frequency applications, the ideal op-amp model has been 
found to be quite reaiistic. For some specialized low-frequency applications 
(such as precision instrumentation) or high-frequency applications (such as 
filters), various op-amp imperfections may become important. In that case, the 
ideal model can be refined by introducing additional circuit elements. 

Most op-amp circuits are designed so that the op amps operate only in the 
linear region. These circuits may contain both linear and nonlinear elements, 
and are studied in Sec. 2 using the equivalent circuit in Fig. 1 . 6 ~ .  Other 
op-amp circuits are designed to take advantage of the abrupt nonlinearities and 
are studied in Sec. 3 using all three equivalent circuits in Fig. 1.6. 
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Exercises 
1. The op-amp manufacturers' data sheets usually specify the typical value 
of the average input bias current I ,  A $ ( / I B +  I + 11,- I) and the &er current 

A 
I,,= /I,,[- /I,-I. Express IIB+I and II,-I in terms of I ,  and I,,. 
2. Calculate I,- and I,- for the following op amps: 

fiA709 LMlOl pA741 LXI3OlA LMlOlA 

Typical input bias 
current at 25°C ZOO nA 120nA 80 nA 70 nA 30 nA 

Typical offset current 
at 25'C 50 nA 40 nA 20 nA 3.0 nA 1.5 nA 

3. The data sheet for the @A741 shows a typical open-loop voltage gain of 
200,000. Calculate the value of E for the following power supply voltages 
(assume E,,, = magnitude of power supply voltage - 2 V): ( a )  + 15 V and (b) 
220 v. 

2 OP-AMP CIRCUITS OPERATING IN THE LINEAR REGION 

The methods to be developed in this section are valid only if the op-amp 
output voltage satisfies 

for all times t (see Fig. 1.6b). We will henceforth refer to the expression (2.1) 
as the validating inequality for the linear region. If this inequality is violated 
over any time interval [ t , ,  t , ] ,  the solution in this interval is incorrect and must 
be recalculated using the method in Sec. 3. 

2.1 Virtual Short Circuit Model 

Recall from Chap. 3 that a three-port or four-terminaI resistor is characterized 
by three relationships among the associated voltage and current variables. In 
the linear region, the ideal op-amp model in Fig. 1 . 6 ~  and b can be described 
analytically by three equationx2 

V i a l  
short circuit 
model 

Consequently, we can think of the ideal op-amp model in Fig. 1 . 6 ~  as a 
three-port or four-terminal resistor. For purposes of analysis, Eq. (2.2) is 

'These correspond to Eqs. (1.2a), (1.2b), and (1.2d). 
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equivalent to ( a )  connecting a short circuit across the op-amp input terminals, 
and ( b )  stipulating that rhe current through it is ZPXO SIC nil times. To emphasize 
the special nature of this short circuit, we will henceforth refer to Eq. (2.2) as 
the virt~lrai short circrtit model. Using this equivalent circuit, many op-amp 
circuits can be analyzed by inspection. 

2.2 Inspection Method 

This method usually requires no more than three calculations and is often 
implemented by invoking KCL and Eq. (1.2) mentally with perhaps an 
occasional scribble on the "back of the envelope." It is best illustrated via 
some useful op-amp circuits as examples. 

A. Voltage 'follower (buffer) The simplest op-amp circuit operating in the linear 
region is the voltage follower shown in Fig. 2. ln .  To illustrate the inspectiorz 
method, we first apply KCL at node @ and obtain 

- i in - i- = 0 (2.3) 

Applying next KVL around the closed node sequence @-@-@-@-@l. we 
obtain v,, - v,, + U,, = 0. Since v,, = 0, we have 

To complete the analysis, we apply the validrrting inequahy (2.1) and 
obtain 

- E,,, < U," < E,,, (2 .5 )  

This gives the dynamic range of input voltages beyond which the op amp no 
longer operates in the linear region. 

Note that Eqs. (2.3) and (2.4) define a unity-gain VCVS (Fig. 2.1 b). This 
circuit has an infinite input resistance because ii, = 0 and its output "dupli- 
cates" the input voltage, regardless of the external load. Consequently, it is 

Figure 2.1 The voltage follower circuit in (a )  is equivalent to the unity-gain VCVS in (b) .  
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usually called a voltage follower, a buffer. or an isol~tion amplifier. It is widely 
used between 2 two-ports as shown in Fig. 2.2 to prevent IV, from "loading 
down" N,. This isolation technique is one of the most useful tools in the 
designer's bag of tricks. 

Exercises 
1. (a )  Let h.', and N ,  denote two identical linear voltage dividers made of 
resistances R ,  and R, .  Find the transfer characteristic v(, = f(uin).  ( b )  
Repeat (a) without ihe buffer. 
2. ( a )  Let N I  and iY, denote the "half-wave rectifier circuit" (Fig. 6.3a) 
analyzed earlier in chap. 2. Find the v,, vs. vi, transfer characteristic. (b) 
Does your answer from ( a )  remain valid if N I  is connected directly to A',? 

B. Inverting amplifier To illustrate the inspection method for op-amp circuits 
containing linear resistors. consider the circuit shown in Fig. 3.3. Since v, = 0, 
we have U ,  = v,,, and hence i ,  = ui,/ R, .  Since i -  = 0. we have i ,  = i l ,  and 
hence v, = Rfi ,  = Rf(vi,IR, ). Applying KVL around the closed node sequence 
@-@-a-@, we obtain 

Figure 2.2 The above buffer greatly simplifies analysis and allows h', and N ,  to be designed 
separately. 

Figure 2.3 An inverting amplifier. 



Substituting Eq. (2.6) into the validating inequality (2.1) and solving for 
v,,, we obtain the dynamic range 

for which Eq. (2.6) is valid. 
Hence. so long as the input signal satisfies Eq. (2.7), this circuit functions 

as a voltage amplifier with a voltage gain equal to - R,/R, (assuming Rf > R,).  
Note that the negative sign means that for a sinusoidal input, the output is 
shifted in phase by 180". Consequently, this circuit is called an inverting 
amplifier. In the special case where R,  = R,, it is called a phase inverter. 
(Why?) 

Note that whereas i- = 0 and i+ = O  are imposed by the op-amp v-i 
characteristics. the "virtual short circuit" v, = 0 is achieved externally by 
"feeding back" the output voltage v, to the op-amp inverting terminal through 
the feedback resistor R,. The physical mechanism which automatically adjusts 
v, to a nearly zero voltage is discussed in Sec. 3.2B. 

Exercises 
1. Using a buffer and the circuit in Fig. 2.3 (assume R,  = 10 K), design a 
VCVS (c, = pv,,) with a controlling coefficient p = -1000. 
2. Repeat Exercise 1 with p = 1000. Hint: Add a phase inverter. 

C. Noninverting amplifier As a further iIlustration of the inspection method, 
consider next the circuit shown in Fig. 2.4. Since v, = 0, we have v, = v;,, and 
hence i, = v,,/R,. Since i- = 0, we have i, = i, = vi,/R,, and hence v, = 
(Rf lR ,)vi,. Applying KVL around the closed node sequence @-@a-@ and 
simplifying, we obtain 

0 C 
Figure 2.4 A noninverting amplifier. 
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Substituting Eq. (2.5) in the validating inequality (2.1) and solving for vi,, 
we obtain the dynamic range 

for which Eq. (2.5) is ~ a l i d .  
Hence. so long as the input signal satisfies Eq. (2.9). this circuit functions 

as a voltage amplifier Lvith a positive voltage gain ( R ,  + R,.)IR, .  It  is usually 
called a rzoninl-erring arnpl$er. Note that a voltage follower is simply a 
unity-gain noninverting amplifier obtained by choosing R ,  = X and R f  = 0. 

Exercises 
1. The circuit in Fig. 2.5 is called an algebraic srtntrner because v, = 
k , v ,  + k , v , .  Find k  and k ,  and identify the region in the U,-v, plane for 
which this-relationship is vilid. 
2. Using exactly trvo o p  amps and n + 3 resistors. design an n-input 
summer giving U,, = v ,  + v, + - - + v,,. 
3. ( a )  Explain why the resistor R, in Figs. 2.3 and 2.4 can be replaced by 
any one-port (except an open circuit) without affecting the value of i,. (b)  
Using a 3-V battery and either circuit in Figs. 2.3 and 2.1. design a dc 
current source having a terminal current of 30 mA. Hint: Use the property 
from ( a ) .  ( c )  Repeat ( b )  for a terminal current of -30 mA. 
4. Using only one op amp and one resistor, design a VCCS described by 
i, = kvi,,  where k > 0. Specify the maximum range of permissible "load" 
voltage across the current source. 

D. Resistance measurement without surgery T o  show that the "virtual short 
circuit" is not just a powerful tool for simplifying analysis, Fig. 2.6 gives a 
circuit which exploits this remarkable property in a practical design. The linear 
resistive circuit enclosed within the circle represents the portion of a circuit 
where the value of each resistance is to be measured without cutting any wires. 
This problem usually arises when a circuit breaks down and a faulty resistor is 
to  be identified by comparing its resistance with the nominal value. 

Figure 2.5 An algebraic summer 
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Figure 2.6 An op-amp fault detector. 

To show how this circuit works, suppose resistor R, is to be measured. (a) 
Connect the op-amp inverting terminal @ to one terminal of Rj (node @ in 
Fig. 2.6) and ground the second terminal of all other resistors connected to 
node @ (nodes m, 0. and @ in Fig. 2.6). (b) Connect the op-amp output 
terminal @ to the second terminal of Rj (node @ in Fig. 2.6). It follows from 
the virtual short-circuit property that except for Ri, the current through all 
resistors connected to node @ is zero. Moreover, since i, = EIR and i- = 0, we 
have i, = EIR and 0, = (EIR)R,. Hence, by measuring the voltage v,, we can 
calculate 

Note that without the virtual short circuit, Rj  would have to be cut before its 
value can be measured. 

E. Nonlinear feedback To illustrate that the inspection method holds even if 
the op-amp circuit contains one or more nonlinear resistors, consider the circuit 
shown in Fig. 2.7. By inspection, we note that i, = i, = vinlRI and v, = -v,. 

Figure 2.7 An op-amp circuit 
containing a nonlinear resistor. 
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Consequently 

To determine the dynamic range of vi, for which Eq. (2.11) holds, we apply 
the validating inequality (2.1) and obtain 

Equations (2.11) and (3.12) give the nonlinear transfer characteristic with 
the op amp operating in the linear region. Since this configuration is widely 
used in nonlinear applications, we will consider an example. 

Example Let R ,  = 1 klCl in Fig. 2.7. Let the nonlinear resistor represent the 
one-port shown in Fig. 2.8a. Using the graphic method from Chap. 2. we 
obtain the driving-point characteristic in Fig. 2.8b. where we have chosen 
v, as the vertical axis so that the curve represents v, = f(i,). It follows from 
E$. (2.11) that the transfer characteristic is obtainid by flipping this curve 
about the horizontal axis and then relabeling v, and i, with v, and v,,, 
respectively. The result is shown in Fig. 2 . 8 ~ .  

Assuming a 15-V supply voltage for the op amp so that E,,, = 13 V, we 
note that Eq. (2.12) is satisfied for all values of v,, because Iv,l = 
I-f(v,,l~,)I < 10 V in Fig. 2 . 8~ .  Hence, we have demonstrated that the op 
amp can operate in the linear region for all values of input voltages, even 
though the circuit contains two nonlinear devices (zener diodes in this 
example). 

An examination of Fig. 2 . 8 ~  shows that all input signal amplitudes 
exceeding 5 V will give a constant output of 210V. Consequently, the 
circuit in this example is called a limiter or clipper, and is widely used for 
overvoltage protection and other applications in communication circuits. 

Figure 2.8 (a) Circuit for realizing the nonlinear resistor 9?2 in Fig. 2.7. ( b )  Driving-point 
characteristic of the circuit in a. (c) Transfer characteristic of the circuit in Fig. 2.7 with 92 
replaced by the circuit in a, and assuming R ,  = l kQ. 

l0  V zener 
diode 

i2 a '  

2kSZ 

b +  v-  - 6  
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2.3 Systematic Method 

The izzspectior~ method often fails whenever it is necessary to solve two or 
more simultaneous equations. In such cases, it is desirable to develop a 
svstemntic ?zzerlrori for writing a system of linearly independent equations 
involving as few roriables as possible. The following example illustrates the 
basic steps involved. 

Example Consider the op-amp circuit shown in Fig. 2.9. where the op amp 
is modeled by a virtual short circuit (Fig. 1.6~). Although this circuit could 
be solved by inspection. we will solve it by the systematic method, and let 
the reader verify its answer by the inspection method. 

Step I. LabeE the nodes consecutively and f t e, denote as usual the voltage 
from node a to datum. j = 1 . 2 ,  . . . - 5 .  Express all resistor voltages 
and the differential op-amp voltage v, in terms of node-to-datum 
voltages via KVL: 

Srep 2. Express the branch current in each linear resistor in terms of 
node-to-datum voltages via Ohm's law: 

0' 
Figure 2.9 An opamp circuit for illustrating the systematic method. 



Step 3. Identify all other branch current variables which cannot be express- 
ed in terms of node-to-datum voltages, namely, the currents i s ,  and is? 
of the voltage sources and the current i, of the op-amp output 
terminal. Note that the op-amp input currents i- and I +  are not 
variables (assuming an ideal op-amp model) because they are equal to 
zero. Our objective is to write a system of Iinearly independent 
equations in terms of the node-to-datum voltages {e, .  e,. . . . .e,) and 
the identified current variables { is ,  , i,, . i,). 

Step 4. Write KCL at each node except the datum node in terms of 
. . 

{ e l ,  e2*  e3,  e4, e5 .  l s l ,  z s 2 ,  ia}: 

Node Q: 

Node @: 

Node @: 

Node @: 

Node @: 

e1 - e3 
p- i,, = 0 

RI 
e* - e4 . -- -0  

R3 
15 ,  - 

e3 - e5 e1 - e, - 0 
R2 RI 

e4 e2 - e4 = o  
R4 R3 

e3 - e5 
I ,  - - = o  

R2 

Step 5. Equation (2.15) consists of five equations with eight variables. 
Hence, we need to write three more independent equations. Since we 
have already made use of KVL (Step l), KCL (Step 4), and the 
resistor characteristics (Step 2), these three equations must come from 
the characteristics of the voltage sources and the op amp: 

Voltage sources: 

Note that v, = e, - e,. 
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Step 6. Together. Eqs. (3.15) and (2.16) constitute a system of eight 
linearly independent equations in terms of eight variables. Solving 
these equations for the desired op-amp output voltage e, by etimin- 
ation and substitution of variables. or by any other method, we obtain 

Note that only Eqs. ( 2 . 1 5 ~  and d)  and (3.16) are used to solve for U,,. 
The remaining equations (2.15a, b. and e )  are needed. however, to 
solve for the remaining variables is,. l , , ,  and i,. respectively. 

Step 7. Determine the dynamic range of the input voltages where Eq. 
(2.17) holds. i.e.. where the op amp is operating in the linear region: 

Hence. Eq. (3.17) holds at all times when the expression (2.18) is satisfied. 

Exercise Derive Eqs. (2.17) and (2.18) by the inspection method. 

Special case (differentia1 amplifier) Suppose R ,  / R ,  = R,/R, in Fig. 2.9, 
Then Eqs. (2.17) and (2.18) reduce to the following: 

Equation (2.19) defines a differential dc amplifier, a circuit widely used in 
instrumentation applications. 

The preceding systematic method is applicable to any op-amp circuit 
containing linear resistors, independent voltage and current sources, and op 
amps modeled by virtual short circuits. This method will be generalized in 
Chap. 8 [called the modified node analysis ( M N A )  method] for arbitrary 
resistive circuits. 

Exercises 
1. Generalize the steps in the preceding systematic method for a connected 
n-node circuit containing linear resistors, k voltage sources, f current 
sources, and m op amps. 
2. (a)  Show that in the linear region, the ideal op-amp model is equivalent 
to a linear two-port resistor described by a transmission matrix T which 
specifies the port variables v, and i -  (associated with port 1) in terms of 
the port variables v, and i, (associated with port 2). (b) Use the 
"linearity" property from ( a )  to show any circuit made of linear resistors, 
independent sources, and ideal op amps operating in the linear region can 
be analyzed by solving only linear equations. 
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3 OP-AMP CIRCUITS OPERATING IN THE 
NONLINEAR REGION 

There are many applications where the op amp operates in all three regions of 
the ideal op-amp model in Fig. 1.6. This occurs whenever the amplitudes of 
one or more input signals are such that the validating inequality in each region 

is violated over some time intervals. In this case it is necessary to revert to the 
nonliriear model in Fig. 1.6 and we say the op amp is operating in the nonlinear 
region. Fortunately. since the characteristic in Fig. 1.6b is pieceivise linear. the 
circuit in each region can be easily analyzed as a linear circuit. 

3.1 + Saturation and - Saturation Equivalent Circuits 

In the + Saturation region, the ideal op-amp model in Fig. 1.6 can be 
described analytically by three equations: 

+ Saturation 
characteristics 

These equations are applicable provided the following validating inequalit)? 
holds: 

Note that the crucial difference between the "+ Saturation characteristics" and 
A 

the previous "linear characteristics" is that here, v, = v, - v- # 0 and v, is 
now "clamped" at a fixed positive voltage equal to E,,,. In this region, we can 
replace the op amp by the equivalent circuit shown in Fig. 1.66, which is 
redrawn in Fig. 3.1 for convenience. 

In the - Saturation region, the ideal op-amp model in Fig. 1.6 can be 
described analytically as follows: 

- Saturation 
characteristics 

Figure 3.1 The + Saturation model. 
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Figure 3.1 The - Saturation model. 

These equations are applicable provided the following validating inequaliry 
holds : 

(3.4) 
2, 

Again. in sharp contrast to the "linear characteristics." here U, = v +  - v -  f 0 
and U, is -'clamped" at a fixed negative voltage equal to -E,,,. In this region, 
we can replace the op amp by the equivalent circuit shown in Fig. 1.6e, which 
is redrawn in Fig. 3.2 for convenience. 

Analogous to Eq. (2.11, we will henceforth call Eqs. (3.2) and (3.4) the 
validating ineqrrnlie for the + Saruration and - Saturation regions, respec- 
tively. 

Corresponding to the three regions in the ideal op-amp model of Fig. 1.6, 
we have three simplified equivalent circuits defined by Eqs. (2.1) and (2.2), 
(3.1) and (3.21, and (3.3) and (3.41, respectively. The correct equivalent circuit 
to rise in a given situation depends on, and only on, which of the three validating 
inequalities (2.1). (3.2), or (3.4) holds. 

3.2 Inspection Method 

Most op-amp circuits which operate in the nonlinear region have a single input 
and a single output of interest. For this class of circuits, the basic problem is to 
derive the driving-point characteristic or the transfer characteristic. Once these 
characteristics are found, the output waveform due to any input waveform can 
be easily obtained either graphically or by direct substitution. The method for 
deriving these characteristics is best illustrated via examples. 

A. Comparator (threshold detector) The simplest op-amp circuit operating in 
the nonlinear region is the comparator circuit shown in Fig. 3.30. Replacing 
the ideal op-amp model by the virtual short circuit, + Saturation, and - 
Saturation equivalent circuits, respectively, we obtain the corresponding linear 
circuit shown in Fig. 3.4a, b, and c, respectively. 

Consider first the circuit in Fig. 3.4a. Since v,  = vin - E,  = 0, the op amp 
can operate in the linear region if and only if vin = ET. In such a case, we find 
ii ,  = O (Fig. 3.3b) and -E,,, < v, C E,,, (Fig. 3 . 3 ~ ) .  

Consider next the circuit in Fig. 3.4b. Since v,  = vin - E, > 0, the op amp 
operates in the + Saturation region if and only if vin > E,. In such a case, we 
find iin = 0 (Fig. 3.3b) and v, = E,,, (Fig. 3 . 3 ~ ) .  
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i In 

t Linear region 

- Saturation I / + % a n t i o n  

+ Saturation 
E,, -- 

Linear 
region 

in 

- Saturation 

Figure 3.3 (a) Comparator. (b) Driving-point characteristic. (c) Transfer characteristic. 

Figure 3.4 Linear circuit for each region. 

i i n  

U,, > o  
, + 

v iT=: IeU0 - E ,  - E*, 

1 
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It remains to consider the circuit in Fig. 3.4~.  Since v, = v,, - E, < 0, the 
op amp operates in the - Saruration region if and only if U,,  < E,. In which 
case, we find i,,, = D (Fig. 3.3 b )  and U, = - E,,, (Fig. 3 . 4 ~ ) .  

An examination of the transfer characteristic in Fig. 3 . 3 ~  shows that the 
circuit "compares" the input signaI with a prescribed threshold voltage E, and 
responds by jumping abruptly from one level to another. Consequently, it is 
calIed a cornpnrafov or a threshold detector. In the special case where E, = 0, 
the circuit becomes a zero-crossing defector. Comparators are so widely used in 
digital circuits that they are mass produced (with "bells and whistles" added for 
improved performance) and soZd under the name "comparator." 

B. Negative vs. positive feedback circuit Consider the circuit shown in Fig. 
3.5a. Note that this is just the voltage follower in Fig. 2.1 studied earlier. 
There; we found that U,, = v , ,  provided Iuin1 < E,,,. By inspection, we found 
U,, = ES3, whenever uin ) E and v ,  = -Es, ,  whenever v,, < -E ,,,. The com- 
plete transfer characteristic is therefore as shown in Fig. 3.5b. 

This circuit is said to have a "negative" feedback because the output 
voltage is fed back to the inverting input terminaI. 

What happens if we interchange the inverting and noninverting terminals 
as shown in Fig. 3.6a? By inspection, we found U, = U,, provided / v , , [  < E ,,,. 
Hence, in the linear region, the transfer characteristic for this "positive" 
feedback circuit is identical to that of the negative feedback circuit in Fig. 3.5a. 

+ Saturation 

*'in 

- Saturation 

Figure 3.5 ( a )  A negative feedback circuit and (6 )  its transfer characteristic. 

Figure 3.6 ( a )  A positive feedback circuit and ( b )  its transfer characteristic. 
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In practice, however, they d o  not behave in the same way: One functions as a 
voltage follower. the other does not. T o  uncover the reason. let us derive the 
transfer characteristics in the remaining regions. 

When the op amp is in the + Saturation region. ive can replace it by the 
equivalent circuit shown in Fig. 3.70. The validating inequality (3.3) requires 
that c, = E,,, - v,, > 0 or  v,, < E,,,. Hence. the transfer characteristic in this 
region is given by v,, = E,,, whenever v,, < E ,,,. as shown in Fig. 3.6h. 

Conversely. when the o p  amp is in the - Saturation region, the equivalent 
circuit shown in Fig. 3.7b holds and hence we obtain c,, = -E,,, whenever 
v,, > -E ,,,, as shown in Fig. 3.6b. 

Note that the complete transfer characteristics in Figs. 3.5 and 3.6 are quite 
different. Even if the op  amp is operating in the linear region (Iv,,l < E,,,), 
there are three distinct output voltages for each value of v,, for the positive 
feedback circuit. Uslng a more realistic op-amp circuit model augmented by a 
capacitor, and the method to be developed in Chap. 6 ,  ive ~vill show that all 
operating points on the middle segment (linear region) in Fig. 3.6b are 
unstable. The important concept of stability and instability will be discussed in 
detail in Chap. 6.  In the present context, having unsmble operating points in 
the middle region means that even if the initial voltage v,,(O) lies on this 
segment, it will quickly move into the + Saturation region if c,,(O) > 0. or  into 
the - Saturation region if u,,(O) < 0.  

We can also give an intuitive explanation of this rrrzsmble behavior by 
referring back to the nonideal op-amp characteristics shown in Fig. 1.5b. where 

in the linear region. Equation (3.5) shows that the output voltage v, decreaes 
(respectively, increases) whenever the potential v- at the inlyerting (respectively 
noninverting) node increases, and vice versa. 

Since physical signals can only propagate at a finite velocity, changes in the 
input voltage are not felt instantaneously at the output terminal, but at some 
moments [say 1 picosecond (ps)] later. Now suppose v, = v,, - v, = l nV at 
t = 0. whereupon vi, is increased slightly in both circuits in Figs. 3.5 and 3.6. 

For the negative feedback circuit, v, will increase initially in accordance 
with Eq. (3.5). However, since this signal is fed back to the inverting terminal 

- 
'in * i -  = O  

Figure 3.7 (a )  Equivalent circuit in + Saturation region. ( 0 )  Equivalent circuit in - Saturation 
region. 
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in Fig. 3 . 5 ~ .  v, = v +  - v-  will decrease a short moment Eater. Hence, the 
operating point in the middle scgment of Fig. 3-56 will tend to return to its 
original position. The negative feedback circuit is therefors said to be "stable" 
because it tends to restore the original equilibrium position in the presence of 
small disturbances. 

Exactly the opposite happens in the positive feedback circuit in Fig. 3 . 6 ~ .  
Here. the slightest disturbance is arnptified strongly-in view of the high gain 
.cl-as the signal goes around the feedback loop in finite time, This increase in 

causes a further increase in v, the next time around the loop. This 
.*unstable" phenomenon is repeated In rapid order until the output is driven 
into saturation: thereafter. the model must be replaced by either Fig. 3.1 or  
3 . 2 .  

C .  Negative-resistance converter The circuit shown in Fig. 3.80 incorporates 
both a*tregaii~.e feedback path (via R,.) and a positi~le feedback path (via R,) .  

+ Saturation 1 Eul 
i 

E n e a r W '  
region P 

- Saturation 

y r  

L i n r ~ r  
region ,F 'lope = (+) 
-PE,, ,=U, 

Figure 3.8 A negative-resistance converter and its driving-point and transfer characteristics. Here, 
P 2 R,I(R,  + R?) .  
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Our problem is to derive its driving-point and transfer characteristics. As 
before. we replace the op amp in Fig. 3.8a by its three ideal models as shown 
in Fig. 3.9. 

Linear region By inspection of the equivalent circuit in Fig. 3.90. we note that 
R ,  and R,  form a voltage divider so that 

R,  
U: = R ,  + R, v,, = P v,, 

where p 2 R I I ( R ,  + R?) .  Substituting v I  = U into Eq. (3.6). we obtain 

Figure 3.9 Equivalent circuit in (a) linear region, (b)  + Saturation region, (c) - Saturation region, 
and (d) typical negative-resistance characteristic measured from an actual opamp circuit. 
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Applyins KVL around the closed node sequence @-a-@-@. we obtain 

U = R,i + U,, (3.8) 
Substitutinp Eq. (-7.7) into Eq. (3.8) and solving for i. we obtain 

Equations (3.9) and (3.7) are drawn as the middle segment in Fig. 3.8b and c,  
respectively. To determine the boundary of these segments. substitute Eq. 
(3.7) into the validatins inequality (2.1) and obtain 

- P E , , ,  < U < W,,,  (3.10) 

+ Safriration region By inspection of the equivalent circuit in Fig 3.96. we 
found 

v = Rfi + E,,,, (3.11) 

To determine the range of v for which Eqs. (3.11) and (3.12) are valid, we 
solve for v, by applying KVL around the closed node sequence @-@-@-B: 

R2 
v', = 

R ,  + R, 'sat - V = PEsat - v 

Applying the validating inequaIity (3.2) and solving for v ,  we obtain 

c < PE,,, (3.14) 

Equations (3.11). (3.12),  and (3.14) define the lower segment in Fig. 3.8b and 
the upper segment in Fig. 3 . 8 ~ .  

- Saturdon region By inspection of the equivalent circuit in Fig. 3 . 9 ~  and 
following the same procedure as above, we obtain 

v = Rfi - Esat (3.15) 

' 0  = -'sat (3.16) 

v > -PE,,, (3.17) 

Equations (3.15) and (3.17) define the upper segment in Fig. 3.8b whereas 
Eqs. (3.16) and (3.17) define the lower segment in Fig. 3 . 8 ~ .  

Figure 3.9d shows a typical driving-point characteristic measured from the 
op-amp circuit in Fig. 3 . 8 ~ .  The slopes and breakpoints of this nearly 
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piecewise-lineur characteristic have been found to agree remarkably well with 
those prediced by Eqs. (3.9). (3.11 ). and (3.15)." 

The circuit in  Fig. 3.Str is called a rzegclrive-resismtlce cotriserter because it 
converts positil-e resistances R , .  R , .  and R,. into a i1egatir.e resisrnrtce equal to 
- (R ,R , IR , )  I1 in the linear region. We will show in Chap. 6 how this circuit 
can be easily transformed into an oscillator or a flip-flop. 

D. Concave and convex resistors The circuit in Fig. 3.10 contains a pn-junction 
diode described by5 

in its feedback path. Our objective here is to show that ~vhen the op amp is 
operating in the linear and + Saturation regions. the resulting driving-point 

( c )  
Figure 3.10 (a) Practical realization of a nearly ideal concave resistor characteristic. (b) Predicted 
characteristic for o < E, ,  where E, 2 E + R$E + E,,,). provided E < E,,,. (c) Measured charac- 
teristic. 

' For more examples of practical negative-resistance op-amp circuits, see L. 0. Chua and F. 
Ayrom. "Designing Nonlinear Single Op-Amp Circuits: A Cookbook Approach," Int. J. Circuit 
Theory Appl . ,  pp. 309-326, October 1985. 

We assume i, = 0 for v, < 0 to simplify our analysis. 



characteristic is identical to that defining a concave resistor for all U < E, ,  
where 

provided E < E,,,. The two equivalent circuits corresponding to these regions 
are shown in Fig. 3 . 1 1 ~  and b. respectively. 

Linear region From Fig. 3.1 l a ,  we note that v, = 0 implies e, = E, and hence 

v = R i + E  (3.20) 

To determine the rznge of i for which Eq. (3.20) is valid. we note first that 
i = i, E 0 in view of Eq. (3.18). To determine the upper boundary, note that 

-Ebar < U, = - U ,  + E < E,,[ (3.21) 

in the linear region. Hence, 

E -  E,,,<u,<E+E,,, 

Since [(v,) in Eq. (3.18) is a strictly monotone increasing function, it follows 
from Eq. (3.22) that 

A 
i, 4 ;(E + E,,,) = I ,  (3,23) 

where $E + E,,,) denotes the diode current evaluated at v, = E + E,,,. Hence 

O':i<I, (3.24) 

Using Eqs. (3.20), (3.23) ,  and (3.24), the corresponding boundary in terms of 

( a )  ( b )  

Figure 3.11 Equivalent circuit in (a) linear region and (b) + Saturation region. 



v is seen to be 

where 

Equations (3.20) and (3.24) or Eqs. (3.25) and (3.26) define the right segment 
in Fie. 3:lOb. 

+ Saturation region Consider the equivalent circuit of Fig. 3.11 b where c, = 

E - v + Ri. Since v ,  > 0 in the + Saturation region, we have 

Applying KVL around the closed node sequence @-@-@-@-@l and making 
use of Eq. (3.27) we obtain 

= E - E,,,, < 0 (3.28) 

because E < E,,, by assitmption. Hence, the diode is reversed biased when the 
op amp is in the + Sariirntion region. It follows from Eqs. (3.18) and (3.27) 
that 

i = 0  (3.29) 

Equations (3.29) and (3.30) define the left segment in Fig. 3.10b. 
A typical v-i characteristic measured from the op-amp circuit in Fig. 3.10a 

is shown in Fig. 3 .10~ .  Note that the "corner" at the breakpoint is remarkably 
sharp. 

Special case Observe that in the limiting case where R+O and E- 0. the 
driving-point characteristic in Fig. 3.10b rsduces to that of an ideal diode. 
as shown in Fig. 3.126. Laboratory measurements show that even though 
A < X in a real op amp, the resulting driving-point characteristic still nearly 
approaches that of an ideal diode. Figure 3 . 1 2 ~  shows a typical pn-junction 
diode characteristic. and Fig. 3.12d shows the nearly "ideal" diode charac- 
teristic measured from the op-amp circuit in Fig. 3.12a with this pn- 
junction diode connected in the negative feedback path. 

Convex resistor realization Using the above observation, we can design a 
nearly ideal convex resistor by first transposing the pn-junction diode in 
Fig. 3.12a to obtain the "dual" ideal diode shown in Fig. 3.13. 

Substituting this circuit in place of the "transposed" ideal diode in Fig. 
2.14 of Chap. 2, we obtain the op-amp circuit in Fig. 3 . 1 4 ~  which realizes 
the "ideal" convex resistor characteristic in Fig. 3.14b. The driving-point 
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Figure 3.12 (a)  Op-amp circuit realization of an ideal diode. (b) Limiting characteristic from Fig. 
3. lob when R-(l and E 4  0. ( c )  Characteristic of the pn-junction diode in the op-amp circuit. (d) 
>leasued drivinp-point characteristic. 

Figure 3.13 Opamp realization of a transposed ideal diode. 

characteristic measured from the circuit in Fig. 3.14a is shown in Fig. 
3 .14~.  Again, note the sharp corner at the breakpoints. 

Using the above concave and convex resistor realizations, any 
monotone increasing piecewise-linear driving-point characteristic can be 
designed with high precision. 
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Figure 3.14 (a) Op-amp circuit realization of a convex resistor. [ h )  Ideal convex resistor 
characteristic. (c) Measured characteristic. 

Exercises 
I .  Derive the remaining portion of the driving-point characteristic in Fig. 
3.10b for v > E,. 
2. Derive the complete driving-point characteristic of the convex resistor 
circuit shown in Fig. 3.14a. 

3.3 Systematic Method 

For more complicated circuits which cannot be analyzed by the above method 
(e.g., feedback circuits containing several op amps), the systematic method 
presented in Sec. 2-3 can of course be used to derive the segment of the 
driving-point or transfer characteristic when the op amp is operating in the 
linear region. This systematic method is a special case of the modified node 
analysis method to be presented in Chap. 8. 

For the + Saturation or - Saturation region, the same procedure can be 
easily modified for the corresponding equivalent circuits. In fact, the analysis in 
these regions is easier because the op amp is modeled by a battery. 
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Exercises 
1. Give the procedure for carrying out the systematic method for the 
+ Saturation and - Saturation regions. 
2. Use the systematic method to derive the driving-point and transfer 
characteristics of the negative-resistance converter shown in Fig. 3.8a. 

4 COblPLARtSON WITH FINITE-GAIN MODEL 

Inverting 
input 

The ideal op-amp model used so far in our analysis assumes that the open-loop 
voltage gain A in the linear region is infinite. When A < X ,  the model and 
equivalent circuits in Fig. 1.6 should be modified as shown in Fig. 4.1. We will 
henceforth refer to this model as the finite-gain op-amp model. 

Using the pieceu7ise-linear representation given by Eq. (3.9) in Chap. 2, we 
can describe this model analy~ically as fo~lows: 

Noninverting + 
input I-C" - 

Linear region w ~ t h  finite 

/ 

u d = u + - U -  

( 4 . 1 ~ )  

(4. l b )  

(4. l c) 

Finite-gain 
0P-a'"p 
model 

i- = o  
i, = O  

.l A A 
U o Z f ( v d ) =  - ] v d +  2 E ( - ~  Ivdd(I  

Figure 4.1 Finite-gain op-amp model. ~ 

0 i - = 0  
CC- 

@ 
- - 
y d < f  

_L 
+ 

( T j T  

i E=t 

Vd -E 

(e) Equivalent circuit 
for - Saturation 
region 

@ = o  @ - - 
A"d + 

Vd 

i - F 
@ i + = 0  

B d I < €  

(C) Equivalent circuit 
for linear region 

0 i - = 0  
C-C 

- L- 
v,, > E  5 E s t  

+ 
@ C-t i+ = o  

I 
Vd > E  

( d )  Equivalent circuit 
for + Saturation region 
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Note that unlike Eq. ( 1 . 2 ~ )  of the ideal model, Eq. ( 4 . 1 ~ )  is a well-defined 
function for all values of v , ,  including v, = 0. 

Since i- = 0 and i, = 0 in both Figs. 1.6 and 4.1. we can write i- = - i +  and 
interpret both the ideal and the finite-gain op-amp model as a two-port. For 
example, the model in Fig. 4.1 can be redrawn as shown in Fig. 4.2. where 
f(v,) is given by Eq. (4. l c). In the linear region. the finite-gain model reduces 
to  a linear voftage-controlled voltage source as shown in Fig. 4.3. 

In order to compare the answers obtained from using the ideal and the 
finite-gain models, let us consider an example. 

Example Let us analyze the inverting amplifier circuit in Fig. 2.3 using the 
finite-gain model. Since the op amp in this circuit is known to be operating 
in the linear region with a dynamic range given by Eq. (2.7). let us replace 
the op amp by the linear two-port model shown in Fiz. 4.3b. The resulting 
circuit is shown in Fig. 4.4. We can calculate v,, by the inspection method as 
follows: 

Figure 4.2 Equivalent nonlinear two-port model. 

Figure 4.3 Equivalent linear two-port model (valid only if the op amp is operating in the linear 
region). 

i 2 R f 

i- = O  
A .  - 
0 - 

t 

Vd 

+ v 0  

l - Figure 4.4 Inverting amplifier cir- 

0 
4 

cuit with op amp modeled by Fig. - - 4.36. 
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KCL at node a: 

KVL at the closed node sequence 0-@-@-a: 

Solving for v,, in Eq. (4.33. we obtain 

Substituting Eq. (4.4) into v, = AV,,, we obtain 

As a check, note that as A+=, Eq. (4.4) implies v,,+ 0 and Eq. (4.5) 
reduces to Eq. (2.6). An analysis of Eqs. (4.4) and (4.5) shows that since 
A > 10' in a typical op amp, the more accurate answers given by Eqs. (4.4) 
and (4.5) are nearly equal to those calculated using the ideal op-amp 
model. The same concfusion has been found to hold for the other circuits 
as well. Indeed, the measured driving-point characteristics in Figs. 3.9, 
3.10, 3.12, and 3.14 all agree remarkably weIf with those predicted by the 
ideal op-amp model. This observation justifies our choice of the ideal 
op-amp model since the resulting analysis is usually much simpler. 

Exercises 
1. (a )  Show that the linear two-port op-amp model in Fig. 4.3 has a hybrid 
representation. (b)  Show that the ideal op-amp model in the linear region 
does not have a hybrid representation. 
2. Some more accurate op-amp models used for high-precision circuit 
analysis has i- # -i+ in order to account for the small but nonzero 
currents entering the inverting and noninverting op-amp terminals. In  this 
case, can you redraw the model as a two-port? 
3. ( a )  Derive the driving-point and transfer characteristics of the negative- 
resistance converter circuit in Fig. 3.8 using the finite-gain op-amp model. 
(b)  Show that the characteristics from ( a )  tend to those given in Fig. 3.8b 
and c as A + m .  

SUMMARY 

m The op amp is a versatile four-terminal device which behaves like a 
nonlinear four-terminal resistor at dc. For low-frequency circuit appli- 
cations, it can be modeled realistically by the ideal op-amp model. 
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The ideal op-amp model is described by the following equations involving 
only its terminal voltages and currents (hence it is a four-terminal resistor by 
definition): 

Ideal i- = o  
op-amp 
equations i- = o  

A 
where v, = v- - v-. 
The ideal op-amp model has three distinct operating regions 

Linear region: - E,,, < v,, < E,,, 
+ Saturation region: v, > 0 
- Saturation region: v, < 0 

The ideal op-amp model can also be uniquely represented by three eqrtiva- 
lent circzlirs (see Fig. 1.6). each one corresponding to one operatins region. 
In the linear region, the ideal op-amp model is described by 

Ideal 
op-amp 
equations 
in the 
linear 
region 

This model is equivalent to a linear two-port resistor where the input port 
behaves like an open circuit (zero input current) and a short circuit (zero 
input voltage) simultaneously. Hence, it .is called a virtual short-circuit 
model. The output port behaves like a VCVS with an infinite gain. 
The output voltage v, of the ideal op-amp model is not defined at v, = 0 
because it can assume any value between -E,,, and E,,,. The actual output 
voltage is determined only by the external circuit constraints. Consequently, 
we say the output voltage v, of the ideal op-amp model is a multivalued 
function of the input voltage v,. 

m In some situations where it is awkward to deal with multivalued functions, it 
may be more convenient to use the finite-gain op-amp model defined by 

Finite-gain i- = C l  
op-amp 
model i+ = o  


