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. . . Unwemtyof
AC Circuit Analysis B8 Reading
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Price: £36
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AC Circuit Analysis Syllabus B Rending

This course of lectures will extend dc circuit analysis to deal
with ac circuits

The topics that will be covered include:

AC voltages and currents

Complex representation of sinusoids

Phasors

Complex impedances of inductors and capacitors
Driving-point impedance
-requency response of circuits — Bode plots
Power in ac circuits

Energy storage in capacitors and inductors
Three-phase power
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AC Circuit Analysis Prerequities % Reading

You should be familiar with the following topics:

SE1EAS5: Electronic Circuits
Ohm’s Law
Series and parallel resistances
Voltage and current sources
Circuit analysis using Kirchhoff's Laws
Theévenin and Norton's theorems
The Superposition Theorem

SE1ECS5: Engineering Mathematics
Complex numbers
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. . . niversity of
AC Circuit Analysis B¥ Reading

Lecture 1

AC Voltages and Currents
Reactive Components
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niversity of
AC Waveforms &2 Reading

Sine waveform
(sinusoid)
Square waveform ‘

Sawtooth waveform
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niversity of
Frequency B2 Reading

The number of cycles per second of an ac waveform is known
as the frequency f, and is expressed in Hertz (Hz)

Voltage or
Current 6 cycles — f=6 Hz

NN NN NN

- A

Time

Vv V UV VUV V
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Frequency &2 Reading
Examples:
Electrocardiogram: 1 Hz
Mains power: 50 Hz
Aircraft power: 400 Hz
Audio frequencies: 20 Hz to 20 kHz
AM radio broadcasting: 0.5 MHz — 1.5 MHz
FM radio broadcasting: 80 MHz — 110 MHz
Television broadcasting: 500 MHz — 800 MHz
Mobile telephones: 1.8 GHz
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Period B¥ Reading

The period T of an ac waveform is the time taken for a
complete cycle:

. 1
period =
frequency
Voltage or
Current T=0.167 s
I I

VAN N

F

>

Time

vV VUV VY VY
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University of

Why Linear? B2 Reading

We shall consider the steady-state response of linear ac
circuits to sinusoidal inputs

Linear circuits contain linear components such as resistors,
capacitors and inductors

A linear component has the property that doubling the voltage
across it doubles the current through it

Most circuits for processing signals are linear

Analysis of non-linear circuits is difficult and normally requires
the use of a computer.
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Why Steady-State? B Rending

Steady-state means that the input waveform has been
present long enough for any transients to die away

Output V

V.

n

A%
-
) T Time

t
Vin=0 for <0 \/ \/ \/ \
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. . University of
Why Sinusoidal? B® Reading
A linear circuit will not change the waveform or frequency of a

sinusoidal input (the amplitude and phase may be altered)

Power is generated as a sinusoid by rotating electrical
machinery

Sinusoidal carrier waves are modulated to transmit
iInformation (radio broadcasts)

Any periodic waveform can be considered to be the sum of a
fundamental pure sinusoid plus harmonics (Fourier Analysis)
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. . niversity of
Fourier Analysis B8 Reading

A square waveform can be considered to consist of a
fundamental sinusoid together with odd harmonic sinusoids

Square wave—, ’/\/A/\‘<— Sum /\ﬂ\\/\

V V

X

Fundamental/ /\ /\

vV i v v
3rd harmonic7‘ \/ \/

5th harmonic
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. . . University of
Representation of Sinusoids B8 Reading
A sinusoidal voltage waveform v(t) of amplitude v, and of

frequency f: | _
V(t) =V sSin2TTft = vy sinwt

or: v(t) = vq cos21ft = vy cos wt

where w=2t11fis known as the angular frequency

v IT:1/f|

JAWAWANS
VAAVARVARV
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. . . niversity of

Representation of Sinusoids B® Reading
The sinusoid can have a phase term ¢:
v(t) = vp sin(wt + @)

A phase shift ¢ is equivalent to a time shift -¢@/w

AT
Y Y\ Y vosintun

The phase is positive so the red trace leads the green trace

James Grimbleby School of Systems Engineering - Electronic Engineering Slide 15



University of

Resistors B2 Reading

Ceramic tube
coated with
Conductive film

—__ Metal end
I

, cap
%
Film: carbon Resistance R
metal v=Ri
metal oxide

(Ohm’s Law)
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. University of
Resistors & Reading
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. niversity of
Resistors & Reading

v
> .
1
_J\/I\?/\/_‘_ Ohm’s Law: Vv =Ri
Suppose that: I,V
v(t) = vq sin(wt) | i< v
Then:
i(t) = @ ’ » 1
V—Osm(wt)
n

Current in phase with voltage
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. @ Unwersuty of
Capacitors Reading
I
- >
Insulating
dielectric
%
Conducting
electrodes
Dielectrics: air Capacitance C
polym_er L dv
ceramic g=LVv I= ba
Al,0; (electrolytic)
James Grimbleby School of Systems Engineering - Electronic Engineering Slide 20



. University of
Capacitors & Reading
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. niversity of
Capacitors & Reading

v,
RO
C dt
Suppose that: i v
v(t) = vqsin(wt) 1 i(<p v(t)
Then: ¢ /
i(t)= Cgvo sin(wt) / »
dt
= wCvq cos(wt)
o

= wCv siant + '—J
Current leads voltage by /2 (90°)
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. University of
Capacitors & Reading
Does a capacitor have a “resistance”?

Vli v(t) =vqsin(wt) i(t)=wCvqcos(wt)

Thus “resistance” varies between x«~: not a useful concept
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. University of
Capacitors & Reading

The reactance X of a capacitor is defined:

"4
Xo =2

I
where v, is the amplitude of the voltage across the capacitor
and i, is the amplitude of the current flowing through it

Thus:
Vo 1 1
XC = = — = —
wCvyg wC  2rfC

The reactance of a capacitor is inversely proportional to its
value and to frequency
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niversity of
Inductors & Reading

Magnetisable

core
Copper
wire
>
v
Core: air Inductance L
farr
_errlte di
Iron v=L—
silicon steel dt

James Grimbleby School of Systems Engineering - Electronic Engineering Slide 26



niversity of
Inductors B2 Reading

M,
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niversity of
Inductors B2 Reading

podl di
Y vy 9
L dt
Suppose that: iy
v(t) = vg sin(wt) 1 |
v(t) i(t)
Then: ~A N
. 1 .
i(t)= Zjvo sin(wt) | . f
= ~Y0 cos(wt) /
wL

B VO : / f 7T\
—HSIH W ) Current lags voltage by /2 (90°)
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Inductors ® Reading
The reactance X of an inductor is defined:
Xo =20
Io

where v, is the amplitude of the voltage across the inductor
and i, is the amplitude of the current flowing through it

Thus:
Xg = 0 — @l = 2nfL
Vo/(,UL

The reactance of an inductor is directly proportional to its
value and to frequency
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. University of
Resistance and Reactance B8 Reading

%
X=-9 N f s o0
Io

Resistance R R R R
_ 1 open short
Capacitance C wC circuit circuit
Inductance L wL s_horjc‘ o.per)‘
circuit circuit
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. . . niversity of
AC Circuit Analysis B¥ Reading

Lecture 2

AC Analysis using Differential Equations
Complex Numbers
Complex Exponential Voltages and Currents
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. . . niversity of
AC Circuit Analysis B¥ Reading

The ac response of a circuit is determined by a differential
equation:

i(t) Vin(t) = Ri(t) + v, (t)
vin(](~ é by i=ce®
l — l vint)=RC el Ly (1)
dvo(t) , velt) _Vin(t)
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. . . niversity of
AC Circuit Analysis B¥ Reading

Now suppose that the input voltage v, is a sinusoid of angular
frequency w

The output voltage v, will be a sinusoid of the same freqeuncy,
but with different amplitude and phase:

Vin(t) = vg cos(wt)

Vo (t) = vqicos(wt + @)
Expanding the expression for v,
Vo (t) =vqcoswtcos @ —visinwtsing = Acos wt + Bsinwt

dv(t)
dt

= — Awsinwt + Bw cos wt
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. . . niversity of
AC Circuit Analysis B¥ Reading

The differential equation becomes:

— Aw sinwt + Bwcos wt + icoswt + Es.inwt = V—Ocoswt
RC RC RC

Comparing the coefficients of sinwt and coswt on both sides of
the equation:

- AwRC+B =0
BwRC +A=vg

Solving these simultaneous linear equations in A and B:

A= 0

(,URCVO
- 2 52 A2 B =
1+ weR“C

- 1+ w?R2C?
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. . . niversity of
AC Circuit Analysis B¥ Reading

2 . wRCv
A=viCOSQ = B=-vqising =
1+ w?R2C? 1+ w?R2C?
Thus:
1
Vq = vo\/ tang =-wRC
1+ w?R2C2

At an angular frequency w=1/RC:

The output voltage lags the input voltage by /4 (45°)
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Y] University of

AC Circuit Analysis % Reading

1.0

& ;

2 07071 o]

> :

= :

T .

> :

0 :

c) |

=2 !

S i
0. | i | N

0 | | |
0.01/RC 0.1/RC 1/RC 10/RC  100/RC
Angular frequency w (rad/s)
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Complex Numbers: B Ko
Rectangular Form

Complex numbers can be represented in rectangular, polar or
exponential form

Rectangular form:
Z=X+Jy

where x is the real part, y is the imaginary part (x and y are
both real numbers), and

2=t =i

Complex numbers are often the solutions of real problems,
for example quadratic equations
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Complex Numbers: B Rending
Argand Diagram

Imaginary part
A
Z=X+Jy
___?_ -
Imaginary !
axis |
Y
l » Real part
O [ X g

Real axis
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Y] University of

Complex Numbers: Polar Form <> Reading

Polar form:
Z=r/6

where r is the magnitude, and 6 is the angle measured from

the real axis:
A

Imaginary
axis r

QD)

» Real axis

O
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Complex Numbers: B Rending
Exponential Form

Exponential form: |
z =rel”

Euler’s identity:

/9 =co0sBO+ jsin6
1
sin 6
6
© cos 6

The polar and exponential forms are therefore equivalent
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. niversity of
Complex Numbers: Conversion ¥ Reading

Z
r
y
6
O X
. o] _ J 2 .2
Rectangular to polar: r=zl=\x“+y
6=,z tanf=2
X
Polar to Rectangular: X =rcos6
y =rsin6
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. niversity of
Complex Numbers: Inversion B¥ Reading

If the complex number is in rectangular form:

1

- X+ Jy

_ X=Jy
(X+Jy)X—jy)

_ X=Jy

X2+y2

Z

If the complex number is in polar or exponential form:

1 1 '
=g /¥
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Y] University of

Complex Numbers: Conversion < Reading

When using the inverse tangent to obtain 6 from x and y it is
necessary to resolve the ambiguity of 1r:

y 4 Z=X+Jy
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. niversity of
Complex Numbers: Conversion ¥ Reading

When using the inverse tangent to obtain 6 from x and y it is
necessary to resolve the ambiguity of

1. Calculate 6 using inverse tangent:
6=tan 1Y
X

This should give a value in the range: -m/2 <06 < +1m7/2
(-90° < 6 < +90°)

2. If the real part x is negative then add 7 (180°) :

9=rr+tan_1z
X
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Y] University of

Complex Numbers: Conversion < Reading

Convert z=2 4% to rectangular form

Real part: X = Zcos(nj =2 X 1 =1
3 2

Imaginary part: y = 23in(gj =2 X f =/3

Thus: z=1+ /3
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. niversity of
Complex Numbers: Conversion ¥ Reading

7 =1+ j/3

Imaginary
axis

» Real axis

O 2

James Grimbleby School of Systems Engineering - Electronic Engineering Slide 47



. niversity of
Complex Numbers: Conversion ¥ Reading

Convert z= 11 to polar or exponential form:
+J
: \/12 + 02 1
Magnitude: r=\z = —
’ ‘ ‘ J12 +12 V2
Angle: 0=rLz=L1-Z(1+ )
— tan‘() — tan_1(1j -0 _m__m
1 4 4
1 1 i
- _imr
Thus: z=——/—— or z=-—¢e 4
J2© 4 J2
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. niversity of
Complex Numbers: Conversion ¥ Reading

4 0.5 Real axis
>

Imaginary
axis

0.5 1 S B
14 2
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. niversity of
Complex Exponential Voltages ¥ reading

We shall be using complex exponential voltages and currents
to analyse ac circuits:

v(t) = Vel

This is a mathematical trick for obtaining the ac response
without explicitly solving the differential equations

It works because differentiating a complex exponential leaves
it unchanged, apart from a multiplying factor:

iVejwt = jwVel¥!
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. niversity of
Complex Exponential Voltages =~ ¥ reading

Suppose that a complex exponential voltage is applied
across a resistor:

v(t) = Vel i(t) = @
> t
—N\/V—IQ v jwt
R ~R°

The current through the resistor is also a complex
exponential
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. niversity of
Complex Exponential Voltages ¥ reading

Suppose that a complex exponential voltage is applied
across a capacitor:

o ~dV(E)
v(t) _ Ve wt i(t)=C o
4
|| S0 _c 9 yeiut
dt
— jwCVel¥!

The current through the capacitor is also a complex
exponential
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. niversity of
Complex Exponential Voltages =~ ¥ reading

Suppose that a complex exponential voltage is applied
across an inductor:

, i(t)=1jv(t)dt
v(t) = Vet ﬁ
» ey jwt
e I(t) = [ve!dt
' Vejwt
/wL

The current through the inductor is also a complex
exponential
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. niversity of
Complex Exponential Voltages =~ ¥ reading

A complex exponential input to a linear ac circuits results in all
voltages and currents being complex exponentials

Of course real voltages are not complex

The real voltages and currents in the circuit are simply the real
parts of the complex exponentials

Complex exponential:  vo(t)=e/*!  (=coswt + jsinwt)

Real voltage: vV, (t) = cos wt
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. . . niversity of
AC Circuit Analysis B¥ Reading

Lecture 3

Phasors

Impedances
Gain and Phase Shift
Frequency Response
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Phasors % Reading
If the input voltage to a circuit is a complex exponential:

Vein(t) = VOejwt

then all other voltages and currents are also complex
exponentials:

Voq(t) = V1e/'(wt+§01) _ V1ejq01ejwt _ V1ejwt

iCZ(t) — izej(wt+§02) — ,-Zejqogejwt _ Izejwt

where V, and [/, are time-independent voltage and current
phasors:
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Phasors B¥ Reading

The complex exponential voltages and currents can now be
expressed: wt
Ver(t) = Vse

igo(t) = lpe*!

Phasors are independent of time, but in general are functions
of jw and should be written:

Vi(jw) 1 (jw)

However, when there is no risk of ambiguity the dependency
will be not be shown explicitly

Note that upper-case letters are used for phasor symbols

James Grimbleby School of Systems Engineering - Electronic Engineering Slide 57



niversity of
Impedance & Reading

The impedance Z of a circuit or component is defined to be the
ratio of the voltage and current phasors:

z-V
/
For a resistor:
Vo (t) = Vel | Ve(t)=Rig(t)
>IC(t):Ie'Ia)t VejCUt :Rle_/wt
— AN~
R V =RI
So that: Zp = v _ R
/
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niversity of
Impedance & Reading

For a capacitor:

: dv,(t
ve(t) = Vel o(=C jt( |
i (t) = 16/ et = ¢ 2 et
[} o
¢ le%t = jwcvel®t
| = jwCV

So that: . v ) L
|  jwC
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niversity of
Impedance B2 Reading

For an inductor:

wt Vc(l‘)=LdIC(t)
ve(t) =Vel” dt
_rvvv; iC' (t) =1 Vel W = Lglej‘”t
L . .
Vel = jwLie!
V = jwLl
So that: y
Z| = VT = JwL
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niversity of
Impedance & Reading

Z = \l/ f—>0 f > 0
Resistance R R R R
_ 1
Capacitance C A Z — oo Z—0
JwC
Inductance L JwL Z—>0 Z —> o
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niversity of
Impedance & Reading

All the normal circuit theory rules apply to circuits containing
Impedances

For example impedances in series:
V4 =Z1 -I-Zz -I-Z3 -I—Z4
and impedances in parallel:

1 1 1 1 1
— =+ —+—+
Z Zy Zo Z3 Z4

Other relevant circuit theory ruies are: Kirchhoff’'s laws,
Thévenin and Norton's theorems, Superposition
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niversity of
Impedance & Reading

Potential divider:
/ — Vin
Z1 / Z1 + 22
} A Vout = IZZ
_ VinZZ
Vin{ ZZ VOUt - Z1 + 22

‘ l Vout _ .
—l— Vin  Z41+42
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. . . niversity of
AC Circuit Analysis B¥ Reading

Suppose that a circuit has an input x(f) and an output y(?),
where x and y can be voltages or currents

The corresponding phasors are X(jw) and Y(jw)

The real input voltage x(f) is a sinusoid of amplitude x;:
x(t) = X cos(wt) = re(xge!®!) = re( Xe*!)

and the real output voltage y(t) is the real part of the complex
exponential output:

y(t) = yo cos(wt + @) = re(yoejq’ejwt ) = re(Yel®!)
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. . . niversity of
AC Circuit Analysis B¥ Reading

Thus: .

X0 X

The voltage gain g is the ratio of the output amplitude to the
iInput amplitude:

7 Xg |X
and the phase shift is:
A VA
?=4x)
X
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. . . niversity of
AC Circuit Analysis B¥ Reading

Using the potential divider formula:

R V.,  Zc
- Vin  Zc +Zr

—VV\/
V. C.l. V. _ 1/ jwC

1/ jwC +R
1
1+ JwCR
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. . . niversity of
AC Circuit Analysis B¥ Reading

R
AA——

v 1
AR
'”{ c ’ V,, 1+ jwCR

_;_ .

Ve
Vin

1
1+ w2C?R?
Phase shift: Q= 4(\\5‘3 ] —tan" 10 —tan" ' wWCR
\vVin/

Voltage gain: g =

— _tan 'wCR
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Frequency Response (RC = 1) B Resding

1.0
€ 07071 oo N
(qV) I
0 :
O I
(@)) I
& :
: s
0.0 | | | —
0.01 0.1 1 10 100

Angular Frequency (rad/s)
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Frequency Response (RC = 1) & Reading

Angular Frequency (rad/s)

t 0.1 1 10 100

0 F— i = -

o M 450y L] e :
g 4 ) ; ;
L I
Al |
T |
(900 A T '
(-90°) _
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Frequency Response

g University of
Reading

1

g= — _tan"]

J1+w2C2R2 ¢=-tan "wCR
w—0 g —1 @ — 0(0°)
1 1 T
= — = — = — —450

“Tcr N p=my 45

T
W —> © g—0 cp—)—E(—QOO)

This is a low-pass response
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niversity of
Frequency Response B8 Reading

Vc—)\/,'n Vc—)o
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. . . niversity of
AC Circuit Analysis B¥ Reading

I

Z
A Vr =Vin R
ZR +ZC
| RS | e ;
=Vin g 1/
I +1/ jwC
-_ wCR
VR :Vin / :
1+ JwCR
VR B ijR
\/. AL iR
Vln I_I__IW\JI\
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. . . niversity of
AC Circuit Analysis B¥ Reading

i

>

V_R _ JwCR
Vin K’“) R VR V., 1+ jwCR
i VR wWCR
Voltage gain: g =—"{=
Vin \/1 + w2C2R2

Phase shift: ¢ = 4(\‘?] —tan oo —tan” WCR

n

:%— tan~1 wCR
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Frequency Response (RC = 1) B Resding

1 Q- mm e
c 07071 - /
© :
O.) |
O :
(@) I
8 :
: a
0.0 | | | >
0.01 0.1 1 10 100

Angular Frequency (rad/s)
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Frequency Response (RC = 1) & Reading

V'

m e
5 (90°%)

_ (450) 1

Phase shift

0 | |
0.01 0.1 1 10 100
Angular Frequency (rad/s)
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niversity of
Frequency Response B8 Reading

B wCR T t » o
= =——tan ' w
W+ w2c2r? |97
T
w—0 g—0 q0—>§(90°)
1 1 T
w=—— = — (45°
CR N ¢ =4 (459
W —> o0 g —>1 @ — 0(0°)

This is a high-pass response
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niversity of
Frequency Response B8 Reading

o
oy T e

<) S

| —1- | —L—

VR—)O VR—)V,'n
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. . . niversity of
AC Circuit Analysis B¥ Reading

Lecture 4

Driving-Point Impedance
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niversity of
Impedance & Reading

The impedance Z of a circuit or component is defined to be the
ratio of the voltage and current phasors:

/(j(:))

V( jw)T @ AC Circuit Z(jw)= \I/((jj:))))

Impedance Z is analogous to resistance in dc circuits and its
units are ohms

When Z applies to a 2-terminal circuit (rather than simple
component) it is known as the driving-point impedance
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niversity of
Impedance & Reading
Z can be written in rectangular form:
Z(jw)=R(jw)+ jX(jw)

where R is the resistance and X is the reactance

Thus: Z|=R? + X?
/L = tan_15
R
and: R=/Zcos/Z
X=Zsin/Z
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. . niversity of
Symbolic and Numeric Forms &2 Reading

Symbolic Form — R
1+ JwCR
Substitute component
values
Numeric Form 7 — 80

14 jwx8x107°
Substitute frequency
value

Value at a given frequency Z =24+ j40

-—ru
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niversity of
Example 1 & Reading

Determine the driving-point impedance of the circuit at a
frequency of 40 kHz:

L=~2Zp+.Z; -
1 —— —
—R+—— C =200nF
JwC -
1
=25+~ 3 5 R =25Q
j2rr x40 x 103 x 200 x 10~
=25 1
/0.05027
- 25_19.89 Q)
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niversity of
Example 1 & Reading

Z =25-j19.89 Q

]

7| =252 +19.892 C =200nF
-31.930
R = 250
/7 =tan” —19.89
25

~0.6720 (~-38.5°)
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niversity of
Example 1 & Reading

What will be the voltage across the circuit when a current of
5 A, 40 kHz flows through it?

V=IZ
=95x(25-,19.89)
=125-,99.45V

In polar form:
V=IZ

—~ (5x31.93)/—0.6720 (~38.5°)
—159.7V / —0.6720 (-38.5°)
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niversity of
Example 2 & Reading

Determine the driving-point impedance of the circuit at a
frequency of 20 Hz:

1 1 1
= +
Z Zp Zc °
1 . — —— —
= o+ jwC R =80Q C = 100uF
B 1 o
1/R+ jwC
B R
1+ JwCR
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niversity of
Example 2 & Reading

z-_ R

1+ JwCR C = 100uF
) 80 . -

1+ j2Ir x 20x100x 1070 x 80

30 R=800< mmm

~1+/1.005 .

80(1- j1.005)

12 +1.0057

- 39.79 - j40.00 Q
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Example 2 B¥ Reading

Z =39.79 — j40.00 Q

7|=39.79%2 +40.002  °
=96.42Q) R=80Q. === C =100uF
@
7 —tan-1 —-40.00
39.79
——0.7880 (—45.2°)
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niversity of
Example 2 & Reading

What current will flow if an ac voltage of 24 V, 20 Hz is applied
to the circuit?

v v
Z Z
B 24 B 24
- 39.79- j40.00 - 56.42./-0.7880
~ 24(39.79 + j40.00) =0.4254 A £0.7880 (45.2°)
39.792 + 40.002 =0.3+j0.3016 A

-0.3+0.3016 A
— 0.4254A £0.7880 (45.2°)
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. niversity of
Phasor Diagrams B® Reading

Where voltages or currents are summed the result can be
represented by a phasor diagram: V =V, +V, + V4

Imaginary part

Vo

F----3

, Real
Vi part

V3
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Y] University of

Example 2 % Reading

I =§§=0.3A Ic = j2m x20x100x107% x 24 = j0.3016 A

0.3A =

0.2A -

Imaginary part

0.1A

, Real

O'  041A 02a 03A part

. A
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niversity of
Example 3 & Reading

Determine the driving-point impedance of the circuit at a
frequency of 50 Hz:

ZZZR+ZL+ZC R
. 1 24 Q)
=R+ jwL +——
JwC
1 L
=24+ j2T x50x 36 x 107> + 5 ;36mH
j2Ir x50%x120x107°
— 24+ j11.31- j26.53 Q e C
- = 120 F
_24-j15.220Q
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Example 3 B¥ Reading

Z=24-15.22Q)

2 2
7| =+/24% ~15.22 s
=28.42 Q) 24 Q
L
/7 = tan_1{_15'22} 36 mH
24
= —0.5652 (-32.4°) —— C
m— 120 uF
._

Z = 28.42Q / —0.5652 (—32.4°)
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niversity of
Example 3 & Reading

What voltage will be generated across the circuit if an ac
current of 10 A, 50 Hz flows though it?

V =21
=10Ax(24 - j15.22)Q
=240-j152.2V
In polar form:
V =21

=(10x28.42)/—-0.5652 (-32.4°)
=284.2V £ -0.5652 (-32.4°)
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Y] University of

Example 3 % Reading
4 V = VR + VL + VC
200V T
Imaginary )\ R
part :
V| |
VR | __, Real
— |
200V 400v Part
vV
Ve
-200V—
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niversity of
Example 4 B2 Reading

Determine the driving-point impedance of the circuit at a
frequency of 400 Hz:

111
/ ZR+ZL ZC ° ?
. R
= + JwC
R+ jwl "’ - 20
Z= L 200 pF =T ¢
1/(R + jwlL)+ jwC L
. R+jwl 1 mH
1+ JwC(R + jwL) —o
R + jwL

1+ jwCR-w?LC
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Example 4 B2 Reading
. R+jwl
1+ jwCR - w?LC
24+ j21Ir x400x 1073

4

14 j21T x 400 x 200 x 1070 x 2 — (217 x 400)? x 1073 x 200 x 10~°

242513
1+ j1.005-1.263

. 2+j2513
~0.2633 + j1.005

(2+ j2.513)x(~0.2633 — j1.005)
0.26332 + j1.0052
~1.852 — j2.474
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Example 4 B¥ Reading

Z =1.852— j2.474

o ®
7| =11.8522 +2.4747 -
=3.091 20
C —
1 2.474 200 Wk ¢ L
/7 =tan  —————
1.852 1 mH
_ _0.9282 (-53.2°) o

Z =3.091Q /—0.9282 (-53.2°)
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niversity of
Exam P le 4 @ Eeadiag

What current will flow if an ac voltage of 120 V, 400 Hz is
applied to the circuit?

v v
7 V4
- 120 B 120
- 1.852- j2.474 - 3.091~/-0.9282
- 120x(1.852+ j2.474) ~38.82 A £0.9282
1.8522 1 2.474% - 23.26+ j31.08
2224+ j297.0
~ 9.556

~23.26 + j31.08
— 38.82A £0.9282 (53.2°)
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Example 4
| = IRL + IC
| 120
RL= 5 —
LRI
= 23.27 - j29.23
120
lo = —
Zc
= j60.32

James Grimbleby

g University of
Reading

Imaginary part

V'

50A1
Ic

L Real
50A part
School of Systems Engineering - Electronic Engineering Slide 99



. niversity of
Admittance & Reading
The admittance Y of a circuit or component is defined to be
the ratio of the current and voltage phasors:
l(jg))

V( jw)T @ AC Circuit Y(jw)= \I/((jj(:)) = Z(jw)

Admittance Y is analogous to conductance in dc circuits and
its unit is Siemens

Y(jw)=G(jw)+ jB(jw)

where G is the conductance and B is the susceptance
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. niversity of
Admittance B2 Reading

Y = \I/ f—0 f— oo
. 1 1 1
Resistance R = = =
Capacitance C JwC Y -0 Y -5
1
Inductance L A Y 5> Y >0
JwL
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University of

Admittance B8 Reading

All the normal circuit theory rules apply to circuits containing
admittances

For example admittances in series:

1 1 1 1 1
=—+—+—+
Y Yy Yo Yy Yy

and admittances in parallel:

YZYI-I—YZ -I-Y3 -|-Y4

Other relevant circuit theory rules are: Kirchhoff’'s laws,
Thévenin and Norton's theorems, Superposition
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niversity of
Example 5 & Reading

Determine the driving-point admittance of the circuit at a
frequency of 400 Hz:

® ®
1 R
Y=Y+
C 1/YR+1/YL C 2 Q)
_jwC+ 200 uF =T ,
R+ jwL o
m
® @
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niversity of
Example 5 B2 Reading

Determine the driving-point admittance of the circuit at a
frequency of 400 Hz:

' -3
Y = j2r x 400% 200x 1076 4 /2T ¥ 40010 2
2+ j2ir x400x10~

| 1
— j0.5027 +
/ 2+ j2.513 —
_ jo.5027 + 2712518 R
2 +2.513 o 2 Q)
_ j0.5027 + 212913 200 uF =T
10.32 L
— j0.5027 +0.1939 — j0.2436 1 mH
- 0.1939 + j0.2590 S - 4
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. . . niversity of
AC Circuit Analysis B¥ Reading

Lecture 5

Resonant Circuits
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. . University of
Resonant Circuits B® Reading
Passive resonant circuits must contain a resistor, capacitor
and an inductor

The behaviour of resonant circuits changes rapidly around a
particular frequency (the resonance frequency)

Resonant circuits can be characterised by two parameters:
the resonance frequency and the Q-factor

There are two basic resonant circuit configurations: series and
paraliel
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. . niversity of
Resonant Circuits &2 Reading

do o dw g6
at at L

O w

» L
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. . niversity of
Resonant Circuits &2 Reading

I

diL:VC dVC:_IL
Ivc L gt L dt C

I, V 4

» I
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. . niversity of
Parallel Resonant Circuit B8 Reading

[ _ @ /l
E——
R — L
C
[ _ @
1 1 1 1 5 _ JWLR
= + + - 2
Z Zp Zc Z; jwL —w“LCR +R
wL
:1+ij+_i = — / 5
R JwL JWLIR —w”LC +1
 jwL-w’LCR+R _ jwlL
- JWLR 1+ jwlL /R - w?LC
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. . niversity of
Parallel Resonant Circuit B8 Reading

M ( | Impedance is a
§ maximum
C=1uF % L =1H (resonant

R =5kQ
frequency)
° when:

7 L w—L

Z = o JLC

1+ JwL/R-w*“LC 1
= ‘Ia)‘ — — B '/10—6

1+ jwx2x107" —w* x107° 103
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. . niversity of
Parallel Resonant Circuit B8 Reading

Z —>0 -0
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. . niversity of
Parallel Resonant Circuit B8 Reading

® @ /I
- 7 - Jwl
R = L 1+ jwl /R - w?LC
® @
w—0 z—>f“1)L jO
1 jwl
Resonant frequency: w=— /2= —
AHEney JLC jwL /R
woo  Zo 0% TS jo
—w°LCc wC
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. . niversity of
Parallel Resonant Circuit B8 Reading

A A

T
OKQ ===z - {~~ """t ——5(900)
/7
/7
Z
_____________________ AT I
Tr o
0.0 :E(—90 )
100 10000

Angular frequency (rad/s)
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. niversity of
Quality Factor B8 Reading

The standard form for the denominator of a second-order
system is: 5. 5
1+ jw /! woQ - w* [ wy

Compare this with the impedance Z:

JwL
Z = 5
1+ JWL/R -—w”LC
So that:
1 R
wo_«VLC Q_(,.UL

UN
\V

where Q is the quality-factor and w, is the resonant frequency
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. niversity of
Quality Factor B8 Reading

wp = 1 = 1 -103
LC \107°
R 5000
Q = = =5
wol  1x10°
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. niversity of
Quality Factor B2 Reading

w
—Aw =2

0 e

o
o

Wo
Angular frequency (rad/s)
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. niversity of
Quality Factor B8 Reading

V' V'S

2kQ - - (90°)
2
/7
Z
0
o _T (—90°)
0.0 | 5 (7907
100 1000 10000

Angular frequency (rad/s)
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Quality Factor

V' V'S

@ University of
Reading

10kQ - (90°)

2
______________________ B U I

7T 0]

0.0 = | AR
100 1000 10000

Angular frequency (rad/s)
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. . niversity of
Parallel Resonant Circuit B8 Reading

L
I IR Yle 1L
W) R=5kQ 2> C=1yF = ;L:1H
|
1 1 _4
Resonance occurs in Ir = R 5000 2x10
parallel resonant circuits 1
because the currents in lc =——=JwC = jw><10_6
1/ jwC

the capacitor and _ |
inductor cancel out j, = T _—-J_—-J
JwL wL w
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. . niversity of
Parallel Resonant Circuit B8 Reading

At resonance:

V'

_1n3 -
w=10"": 4 TmA L .
Ip =2x1074A e
Imaginary
. _ part
I = jwx107° il | _Real
- /103A OliR I qpa P2
iy Iy
="1
W -1mMA-T
- —j10°A
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Parallel Resonant Circuit

Below resonance:

w=05x10°:
Ip =2x1074A
lc :ij10_6

— j0.5x1073A
/L:Z)f

- _j2x1073A

James Grimbleby

Ic

g University of
Reading

/ R , Real

. O
Imaginary

part

-1mA

I

C———

-2mA

School of Systems Engineering - Electronic Engineering
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Y] University of

Parallel Resonant Circuilt < Reading

2mA -
Above resonance: m I
w=2.0x103" Ilc !
IR =2x107*A 1mA -
: _6 :
Ilc = jwx10 Imaginary | | |
— j2.0x103A part | /1]
_ ' Real
_—J )l | ,
L= n OllR 1nfl‘./-\ part
~ _j0.5x103A L]
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. . . niversity of
Series Resonant Circuit B8 Reading

o—
Z = ZR -I-ZC -I-ZL
1 R
=R+ —+jwL
JwC
B jwCR +1-w?LC L
JwC
1+ jwCR-w?LC —
jwC -
P
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. . . niversity of
Series Resonant Circuit B8 Reading

Z_1+ijR—w2LC —
JwC A
T _—J
w—0 Z > = = — Joo
JwC wC L
1 JwCR
W=— ZLZ=""—_—=
~NLC JwC c
2
W — © Z—\_w LC=jUJ!_=cho o—
JwC
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. . . niversity of
Series Resonant Circuit B8 Reading

1+ jwCR — w?LC
JwC
1+ jwx200x107° —w? x107°
jwx107°
:1+jw><2><10_4 —w?x107°

jwx1076 :

Z = R =200 Q

C=1uF
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. . . niversity of
Series Resonant Circuit B8 Reading

V' V'S

T
] - (90°
1kQ 5 (90°)
/7
Z
-0
200Q-
Tr @]
0Q | 5 (—90°)
100 1000 10000

Angular frequency (rad/s)
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. . . niversity of
Series Resonant Circuit B8 Reading

The standard form for the denominator of a second-order
system is:
1+jw/on—w2/w§

Compare this with the admittance Y (= 1/2):

JwC
Y = 5
1+ JWCR - w”LC
So that:
1 1
“Y=Tc 9T wcr

where Q is the quality-factor and wy is the resonant frequency
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. . . niversity of
Series Resonant Circuit B8 Reading

1
Y= e )
_ 1 R =200 Q
J1x1076 x 1
=1O3 rad/s
L =1H
1
S
w0CR
: m—C =1pF
103 x1x 1078 x 200 ‘
-5
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. . . niversity of
Series Resonant Circuit B8 Reading

Resonance occurs in

series resonant circuits
because the voltages VR{ R =200 0O
H

across the capacitor and 1A
inductor cancel out @

V L=1H
Ve =1x R = 200 L
1 —j —j10°
¢ JwC wC w VC{—C :
VL:1><ij=jw
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Series Resonant Circuit

At resonance:

w=10°"
Ve =200V
4 O
— /10
V —
C w
= —j10°%V
\"/l'_ ;jw
- j103V

V'

g University of
Reading

1KV = &
Vi
Imaginary
art
P T
O Vi
Ve
-1kV T

, Real
part

1kV
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niversity of
Crystal Resonator & Reading
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niversity of
Crystal Resonator & Reading
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niversity of
Crystal Resonator B8 Reading

Equivalent circuit:

f, = 8.0 MHz
¢ R=340
- L,=0.086 mH
C,=4.6 pF
C, =42 pF
L = Co
E w _ 1 Q = 1
0 \/E w0CR
—_C =5.03x10"  =1270
——o—
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. . . niversity of
AC Circuit Analysis B¥ Reading

Lecture 6

Frequency-Response Function
First-Order Circuits
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. niversity of
Frequency-Response Function — ®reading

Input XT TY Output

Frequency-response function:  H(jw)= Y(j.w)

X(jw)
Voltage gain g: g= Y(/.w) = H(jw)

X(jw)
AV IE VIR
Phase shift ¢: Q = LL YU,w)J = /H(jw)
X(jw)
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. University of
Frequency-Response Function — ®reading

The order of a frequency-response function is the highest
power of jw in the denominator:

First order: H(jw) = : 1
1+ jw/wg

Second order: H(jw)= 1 2
1+V2jw/ wy + (jw! wg)

1
1+ jw/ wg +(jw/wo)2+(jw/w0)3

Third order: H(jw) =

The order is normally equal to (and cannot exceed) the
number of reactive components
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Example 1 B¥ Reading

Using the potential divider formula:

R

Ve _ Zc o
Vin Zc+ZR Vv 4

1/ jwC +R |

H(jw) = 1 _l_
= jweR
1 b ]
= . wnere:. wp=_—_—<
1+ jw/wg RC
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Example 1 B¥ Reading

1 R
H(jw) = !
(j ) 1-|—j0.)/(1)0 4
N 2, 2 |
1+ w* /wyj —
Gain: g=H(jw)=
\/1+w [ wj

Phase shift: ¢ =/ZH(jw) tang=-w/wy
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Example 1 B¥ Reading

5L

w—>.(/ mee \ij

= =

g—1 g—0
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Decibel ¥ Reading
The decibel is a measure of the ratio of two powers P,, P, :

L]

dB —1Olog10 2
2

It can also be used to measure the ratio of two voltages V,, V.:

2
dB =10logqq V12/R =10logqg —- V1
V5 IR V$
A V,
db = Z2Ulog1g —
V2
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Decibel B¥ Reading

Power ratio Decibels

1000000 60 dB
100 20 dB
10 10 dB

4 6 dB

2 3 dB

1 0dB
1/2 -3 dB
1/4 -6 dB
0.01 -20 dB
0.000001 -60 dB
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Decibel B¥ Reading

Voltage ratio Decibels
1000 60 dB
10 20 dB
V10 = 3.162 10 dB
2 6 dB
V2 =1.414 3 dB
1 0 dB
1/N2 = 0.7071 -3 dB
1/2=0.5 -6 dB
0.1 -20 dB
0.001 -60 dB
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Example 1

Circuit is a first-order low-pass filter:

g University of
Reading

1
B 2, 2 @ =tan - w/wy
\/ 1+ w” /wyj
W << W g ~1(0dB) @ ~ 0 (0°)
W = Wy g= ' (-3dB) — " (~45°)
2 4
w / N 1N 7/ L\ ~ 7T
w>>wy | g~"0 (6dBloct) | @7 (-90%)
w
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Example 1 B¥ Reading

. 1
Gain: g =|H(jw) =
\/1+(,u2/‘|06
DhacAa chift: ~ s1 1/ =\ Lmn A IAI'\3
FTidase silit. g=/ZA(jw) t@ng=-w/1vu
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Y] University of

BOde PIOt <% Reading
Gain(dB) Phase(rad)
0 dBf=—=———————===z - m oo 10

-10 dB
_n
-20 dB- : 1
-30dB+ -6 dB/octave”
5 -
-40 dB | | | -
10 100 1000 10000 100000

Frequency (rad/s)
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Example 2 %2 Reading
Using the potential divider formula:

L

VR V4 R Y'Y R

V., Zp+7Z
in R T4 VinKv A Ve
B R
R + jwL _L

| 1
H(jw) =
Uw) = WL IR

1 R
= _ where: wgp=—
1+ jw/wg L
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Example 2 B¥ Reading

YL
)
w—0 _l_ W —> o©
~ ~
= =
g—1 g—0
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Example 3 B¥ Reading

Using the potential divider formula:

Vc ZR

W:ZRJFZC ” t
R Vm[é\/) R Ve

"1/ jwC+R | I
. JWCR —
H(jw) =

1+ jwCR
jwlwg 1
~ WIICIC . (UO —

:1+jw/wo RC
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Example 3 & Reading
. w/w C
H(jw) = 2="20
1+ jw/ wy I I
A
1
— V: V.
- jwp /w " I@ & R
1+ jwp /w | !
1+ wg | w? =3
. 1
Gain: g = H(jw) =
\/ 1+ wg | w?
Phase shift: ¢=/ZH(jw) tang=wqy/w
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Example 3 B¥ Reading

L L
g—;O g-—>1
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Example 4 B¥ Reading

Using the potential divider formula:

R
Vi 4 R
Vi, Z; +Z
" L. & Vm[ Y L é Vi
JwL

G

" jwL+R
. wL/R
Hjw) =
1+ JwL/R
jwlwg . _R
= . 2 wnere:. wqp=-—
1+ jw/ wy L
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Example 4 B¥ Reading

g—->0 Q:>1
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Example 4 &2 Reading
Circuit is a first-order high-pass filter:
g = 1 1
\/1+w(2)/w2 @=tan wp/w
w<<wy | g~ w (6dB/oct) Q ~ T (90°)
Wo 2
1 T,
W = W g:ﬁ(—3dB) ¢=Z(45)
w >> Wy g ~1(0dB) @ ~0(0°)

James Grimbleby
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Y] University of

BOde PIOt <% Reading
Gain(dB) Phase(rad)
V' A 77.
0dBF=====z---------------a----===
B3dBT NN e e 2
-10 dB-
m
20dBT - N T 2
=30 dB* * 6 dB / octave
-40 dB | | | = 0
10 100 1000 10000 100000

Frequency (rad/s)
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Example 5 B¥ Reading

Using the potential divider formula:

R
Ve  Ro+1/jwC 1
Vin Rz + 1/](UC + R1 V. R2 V
 jwCRy +1 ’”T = out
JWCRy +1+ jwCRy C T
. 1+ JwCR *
H(jw) = - JWCR2 L
+ j(UC(R1 + Rz) —
_HIW/Wa e Wy = 1 w2=L
1+ j(,U/U.)1 C(R1 + Rz) CR2
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Example 5 B¥ Reading

Ry

. 1+ jw/w 2

H(jw) =~ 02
+ Jw [ w1 R,
VinT’\/ Vout

C

. 1+ w? | w2 I o
9=H(/w)=J — I
\/1+w [ W} =
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Example 5 B¥ Reading

v/
w—>V N)‘—)oo

s L

51 g— Rz
9 R1+R2
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Example 5

Assuming that w1 << w»>:

James Grimbleby

\/1+w /(1)2

J1+w /w1

W << W1

~ %1 (_6dB/oct)

W <<W <<Wsy g
w
w R
w >> w2 g~ = 2
) R2—|-R1

School of Systems Engineering - Electronic Engineering

3

University of

Reading
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Example 5 B¥ Reading

H(jw):1+jw/w2
1+ jw [ w1
Ry =9000Q
Wy = 1
1 C(R1-|-R2)
_ 1 R, =1000
107°(900 + 100)
3 C =1uF
=10° rad/s _1_
1 1 1
Wo = —

CR, 107%x100
— 107 rad/s
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Bode Plot B8 Reading
Gain(dB) Phase(rad)
0 dB==—————===z - m oo -0

-10 dB-

220 dB—---mmmm e e e e e N T .

-30 dB—

-40 dB | | | R
10 100 1000 10000 100000
Frequency (rad/s)
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. . . niversity of
AC Circuit Analysis B¥ Reading

Lecture 7

Second-Order Circuits
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niversity of
Example 1 & Reading

R

VinT’\/ i C = |V

This circuit must be simplified before the frequency response
function can be determined

A Thevenin equivalent circuit is created of the components to
the left of the red line
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Example 1 B¥ Reading

Thévenin equivalent circuit:

R Z
AN —
ACREE I
| |- | .
v VjwC T 1 . . 1+ jwCR
~in 1/ iwC + R S =g tiwl=—7
1+ JwCR 1+ JwCR
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Example 1 B¥ Reading

R
1+ JwCR R
—\\\ 11—
\//n —
1+ jwCR K’\S Comm |VC
| , .
Ve = \/, y 1/ jwC -
1+ JwCR 1/ jJwC + R + :
1+ JwCR
Ve 1
_ in % L
1+ JwCR 1+ jwCR + JWCR
1+ JwCR
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Example 1 B¥ Reading

Frequency-response function:

V, Vi X 1
C — : :
1+ JwCR 1+ jwCR + ja{CR
1+ JwCR
_ Vi
(1+ JwCR)x(1+ JwCR)+ jJwCR
. 1
H(jw) =

1+ 3jwCR — w?C?R?

R=1KkQ, C=1uF:

H(jw) = 1

1+j(,u><3><10_3—(,4)2><1O_6
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Example 1 B¥ Reading

AN
1 ©
=+ =

g—1 g—0

(H.yl i y‘%w
I
l
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Bode Plot B8 Reading
Gain(dB) Phase(rad)
(o ———— T PP 10

-10 dB-

-20 dB—

-30 dB-

-40 dB | | | -
10 100 1000 10000 100000
Frequency (rad/s)
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Example 2 B¥ Reading

This circuit must be simplified before the frequency response
function can be determined

A Thévenin equivalent circuit is created of the components to
the left of the red line
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Example 2 B¥ Reading

Vi
o - X R
1+ JjwCR piq/jwc+
1+ JwCR
R
JWCR
1+ JwCR
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Vin Jw

= X
1+ JwCR

O

JWCR +1+




Example 2 B¥ Reading

Frequency-response function:

v Vi y JWCR
R — : -
1+ JwCR 1+ jwCR + ja{CR
1+ JwCR
_ VinJwCR
(1+ JwCR)x(1+ JwCR)+ jJwCR
. wCR
H(jw) = :

1+ 3jwCR — w?C?R?

R=1KkQ, C=1uF:

. '(,u><10_3
H(jw) = /

1+ jwx3x107° —w? x107°
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Example 2 B¥ Reading

52 |

w—0

?
T 13 56:4 .

g—0 g—0
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Y] University of

Bode Plot %> Reading
Gain(dB) Phase(rad)
T
0dB 5
-10 dB-
-20 dB- T
-30 dB
-40 dB- | | | )
10 100 1000 10000 100000
Frequency (rad/s)
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Example 3 B¥ Reading

Using the potential divider formula:

L R
VC B 1/ jwC \—/\/\/\/ N
Vi, 1/ jwC+ jwL+R _L
in J 1/ V’”T ~ C T V.

H(jw)= _
1+ JwCR -w*“LC

1 —

1 jwl(wpQ) - w? ] w?

where : wO:; and: Q= F
JLC (1)0CR VC
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Example 3 B¥ Reading

Y'Y

VA SRV V
as an

g—1 g—0
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Example 3

Circuit is a second-order low-pass filter:

g University of
Reading

. 1
H(jw) = g =|H(jw)
1+jw/(w0Q)—w2/w§ ‘ ‘
W << Wy H(jw) =1 g =1(0dB)
W= Wo Hjw)=-/Q g=Q
_I:IZ (,Ur% A~ o
W >> Wy H(jw) ~_ U g= —‘é (—1£db/0Ct)
w? w
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Example 3 B¥ Reading

L=400mH R =200Q
U\/\/\/_L R

VmT ) C=25pF T

L

1 1 1
JLC  \/400x1073x2.5x10°% +107®

\/ 400107 1 g q05 g
“R\C 200“25x1o—6 200
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Bode Plot B¥ Reading

A

20 dB

Gain(dB)

0 dB-

-20 dB—

-40 dB
10

James Grimbleby

I I
100 1000 10000 100000

Frequency (rad/s)
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Bode Plot %2 Reading
Phase(rad)
04

—1IT

— I
10 100 1000 10000 100000
Frequency (rad/s)
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Example 4 B¥ Reading

Using the potential divider formula:

A [,
v,-an»B

V,, 1/ jwC+ jwL +R
, L v,
- wLC
1+ jwCR - w?LC I

H(jw) =

—wz/wg

14 jw/(weQ) - w2/ wd

L 1 A 1 1 [L
WIICIC . wO = —— dlll . u:w CR:R\/C
0

JLC

)
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Example 4 B¥ Reading

Q” WVg
My 1 Q
—AAA— AMA
Q S
RE hE

w\_}o@

I

l
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Example 4 B¥ Reading

Circuit is a second-order high-pass filter:

2 2
. —ww .
H(jw)=— | g9=H(w)
1+ jw/(weQ) — w” / wy
2 2
w << Wy H(jw) = ‘w“; g = :’)2 (12dB/oct)
0 0
W = wp H(jw) = jQ g=Q
w >> Wy H(jw) ~ 1 g =1(0dB)
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Bode Plot B¥ Reading

Gain(dB)
20 dB+
0 dB+---------=--------f- :
-20 dB+ i
.12 dB / octave
-40 dB | | | |
10 100 1000 10000 100000

Frequency (rad/s)
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Bode Plot %2 Reading
Phase(rad)

T -

0

10 100 1000 10000 100000
Frequency (rad/s)
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Example 5 B¥ Reading

Using the potential divider formula:

C L
YYY
VR _ R I I A
Vi, 1/ jwC + jwl + R V""T@ R Ve
. wCR
H(jw)=—1 I

1+ jwCR — w?LC
_ Jw I(wpQ)
1+ jw (wWeQ)— w? [ wé

where : (,uozL and: Q= 1 :1E
JLC woCR R\ C
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Example 5 B¥ Reading

w—0 _T_ W — o

) )
L L

g0 g—0

|
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Example 5

g University of
Reading

Circuit is a second-order band-pass filter:

H(jw) =

jw /(on)

1+jw/(on)—w2 /wg

g = H(jw)

: Jw w
H(jw)~ —— ~—— (6dB/oct
W << Wy (Jw) woQ g wOQ( )
W= Wo H(jw) = g =1(0dB)
 — Wwn Wn _
W >> Wy H(jw)~ ———~ g~-——(—6dB/oct)

wQ

James Grimbleby

School of Systems Engineering - Electronic Engineering
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Bode Plot B Reading
Gain(dB)
0 dB—- - = s e

i :
i J2
-20 dB+ !
-40 dB | |
10 100 1000 10000 100000

Frequency (rad/s)
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Bode Plot B¥ Reading

Phase(rad)
7T V'

10 100 1000 10000 100000
Frequency (rad/s)
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Example 6 B¥ Reading

Using the potential divider formula: R
A

VC B 1/ij+j(UL

V,, 1/ jwC + jwlL+R V"”T’\’ L A

. 1-w?LC
H(jw)= , 5 C -

1+ JwCR -w*“LC ?
1-w?LC =

) 1+jw/(w0Q)—w2/w§

e T A 1 1 [L
wnere. wp=-——= 4dinda. u:wCR:E\/E
0

JLC
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Example 6 B¥ Reading

w — 0 " &‘—mo

! .
mm mm
g—1 g —1
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Example 6 B¥ Reading

Circuit is a second-order band-stop filter:

. 1- w? | wf .
H(jw)= — o g =|H(jw)
1+ jw (weQ) — w* [ wy
W << Wy H(jw)~1 g ~1(0dB)
W = Wqp H(jw) =0 QZO(—OOdB)
W >> W H(jw)~1 g ~1(0dB)
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Bode Plot B8 Reading
Gain(dB)
0 dB

-20 dB—

-40 dB | | | |
10 100 1000 10000 100000
Frequency (rad/s)
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Y] University of

<% Reading

Bode Plot

Phase(rad)
7T V'

I I I
10 100 1000 10000 100000
Frequency (rad/s)
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. . . niversity of
AC Circuit Analysis B¥ Reading

Lecture 8

Power in AC Circuits
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. . . niversity of
Power in AC Circuits B8 Reading

To calculate the power in a circuit we shall need to make
use of some trigonometric identities:

cos(A+B)=cosAcosB-sinAsinB
cos(A—B)=cosAcosB+sinAsinB

Adding:
cos(A+B)+cos(A—B)=2cosAcosB
cos AcosB = ;{COS(A +B)+cos(A-B)}

so that:

cos? A = ;{COSZA +cos 0} :;-I—;COSZA
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niversity of
rms Voltages and Currents B¥ Reading

The average power in a resistor is given by:

17
. jv(t)/(t)dt i(t)
>
1Tv2<t> t
TI - dt V( )T ~ R
0
.
;1jv (t)alt
= "%”S where: V. = H?vz(t‘)a’t
= - Vrms = 4|+
R \/To
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niversity of
rms Voltages and Currents B¥ Reading

The root-mean-square voltage V/,,,,. determines the power
dissipated in a circuit:

2
_ Vims

R

P

There is a similar expression for the power dissipated when
a current /. flows through a circuit:

P-RIZ,

These expressions apply to any waveform
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niversity of
rms Voltages and Currents B¥ Reading

The rms value of a sinusoid of amplitude (peak) value vj:

Vims = \/1}- vA(t) dt

0
1T
j Ocos (wt)
O
-
:\/v§1j 1 1(:os(2wt)dt
Tg2 2
ﬁ \ Averages to zero over
=,/70 _ Y0 a complete cycle:
\/ 2 2 T=21mw
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niversity of
rms Voltages and Currents B¥ Reading

The UK mains power was until recently supplied at 240 V rms
and that in Europe 220 V rms

On 1 January 1995 the nominal voltage across Europe was
harmonised at 230 V rms.

This corresponds to an amplitude of:

Vo = V2 x Vims

= J2x230
=325V
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niversity of
rms Voltages and Currents B¥ Reading

A mains power (230 V rms) electric fire has a resistance of
52 Q:

_Vims _ 2307

P =1.017 kW

An audio amplifier which drives a 4 Q loudspeaker at up to
150 W must supply a sinusoidal output voltage:

V2.« =P.R=150x4 =600
Vs =245V

This corresponds to a sinusoid of peak value 34.6 V
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niversity of
rms Voltages and Currents B¥ Reading

Square wave of amplitude v,

VO —

_VO —

1T 1T/2 1
Vims = IV (t)dt = |— I VO at+ |- I( VO) dt
0 12
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niversity of
Crest Factor & Reading

The ratio between the peak voltage and the rms voltage is
known as the crest factor:

of — Vpeak

VI’ ms

For a sinusoid the crest factor is V2; for a square wave the
crest factor is 1

For audio signals the crest factor depends on the source but
IS commonly 2 or higher

peak voltages of 50 V or greater
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. . niversity of

Power in a Reactive Load B8 Reading
Capacitors and inductors store energy, but do not dissipate

power

IR "IC
1OOVrmsT
50Hz |\ R < =
250 200uF
100
lp=——"=4A
R~ o5
100 -6
/C=ﬁ=100x2ﬂx50><200><10 A=06.28 A
C
1002

P=—=400 W
25
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niversity of
Instantaneous Power B8 Reading

For sinusoidal voltages and currents:

i(t)
v(t) = v cos(wt) >
i(t) = ig cos(wt + @) V(t)T é} ~
Instantaneous power:

p(t) = v(t)xi(t)
= v cos(wt )ig cos(wt + @)

= Volo COS(U)t)COS(wt + §0)

= ;Voi() {cos(2wt + @)+ cos ¢}
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niversity of
Average Power B2 Reading
Average power:

P 15 t\d
S t
Tgp()

-
= 71_ Jvg cos(wt)ig cos(wt + @)dt
0
—1v I 1?cos(sz‘+cp)dt+1v ] 17]-COS§0dl‘
If T>>1/w: 1 1T
P =—vqping— |cos@dt
2 Ooré v
—1v In COS @
2 0’0
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niversity of
Average Power B2 Reading

P = ;voio Cos @
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University of

Average Power B2 Reading

Average power: 1
P = 5voio COS @

For a resistor:

1 . v 1.0
=0 > P=—vjhig==—-L=—Ri
v 2007 720
For a capacitor:
go:% > P=0
For an inductor:
=T 5 pP=0
? 2
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niversity of
rms Voltages and Currents B¥ Reading

Power expressed in terms of rms voltages and currents:

P = ;voio COS @

= ;Vrms@ lrms N2 COS @

=VimsIrmscos@ (W)
2
Vims

z

rms‘Z COSQ

P:

COS
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Example 1

Determine the average power dissipated in the circuit:

James Grimbleby

230VrmST R =380Q
~

50 Hz
C =20uF

—

Z —R+_
JwC
1
j2rr x50 x 20x107°

-80-j159.2 Q
~178.1./-1.105 (-63.3°) Q

School of Systems Engineering - Electronic Engineering

=380+

3

University of

Reading

Slide 213



Example 1 B¥ Reading

230V rms R =800
50 Hz
C 20uF
V2
P =-S5 cos ¢
Z
2
= 2?9 -cos—1.105
178.1
=133.4 W
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University of
Example 2 & Reading
Determine the average power dissipated in the circuit:

-
R

) e=z= 9
. 200 yF [

1 mH

—o

The driving-point impedance of this circuit at 400 Hz
(calculated prn\nm |QI\/\ IS

VMIVMIMLV\J

Z=3.091Q £-0.9282
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University of

Exam P le 2 @ Reading

Z=3.0910 ~-0.9282

e L L3
T

400 Hz ——
2
P:Vrms COS ¢ 200 uF L
\Z\ 1 mH
2 o

= 80 cos—0.9283
.091
=1241W
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niversity of
Example 2 & Reading

Determine the average power dissipated in the circuit

Since no power is dissipated in the capacitor we only need
to calculate the power in the inductor-resistor leg

-
80V rms § R
Zip =R+ jwL 400 Hz 50
— 24 j2mrx400x 1073 Kx) o —
=2+ 2513 200 uF g |
=3.212 £0.8986 t| 1 mH
4
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Example 2 B¥ Reading

Z/ p =3.212 £0.8986

-
R
2 Q
5 80V rms —
p - Vims COS 400 Hz T ) O
B \Z\ @ 200 yF [
802 ; 1 mH
= c0s0.8986 D
3.212
=1241W
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. . . niversity of
AC Circuit Analysis B¥ Reading

Lecture 9

Power Factor
Three-Phase Electric Power
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niversity of
True and Apparent Power B® Reading
The apparent power P, in a circuit Is:

Pa = Vrms Irms

Apparent power is measured in VA

The true power P dissipated in a circuit is:

P =Vims lrms COS ¢

True power is measured in W
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niversity of
Power Factor B2 Reading

The power factor is the ratio of the true power to the apparent
power:

of = P Vimslrms COS @ — COS @

Pa Vrms Irms

where g is the phase difference between voltage and current.

It does not matter whether g is phase of the current with
respect to the voltage, or voltage with respect to the current,
since:

COS( = COS— @
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niversity of
Example 1 & Reading

Determine the power factor, apparent power and true power
power dissipated in the circuit:

Z=4+15.08Q)
—~15.60Q £1.312 (75.1°)
R =4Q
80Vrms, 400Hz T@
pf =cos1.312 =.2559 E [ =6mH
2
_ VrmS

Pa :Vrms IrmS = |7| :4103VA
=

P =pfxP, =105.0 W
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. University of
Power Factor Correction B8 Reading

Most industrial loads have a poor (pf << 1) power factor
Examples are induction motors and inductor-ballast lighting

Power factor can be corrected by connecting a reactance in
parallel with the load

This reduces the apparent power and the rms current
without affecting the load

This is obviously desirable because it reduces the current
rating of the power wiring and supply
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. niversity of
Power Factor Correction B8 Reading

Power factor is normally corrected by connecting a reactive
element Z in parallel with the load Z; :

Is o
> >
Supply current: / } I
Load current: /; VST ~ 7 ~
Correction current: /. : L C

A unity overall power factor will be obtained provided that Vg
and /s are in phase:

Is =GZ0=G+ /0 (real)
Vs
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. niversity of
Power Factor Correction B8 Reading

Is I le _gy o

= / /
Vg Vg Vg >S % CE
LR L
Z/_ ZC VsT v ZL ZC
EANRSEA l
Z| imag Zc imag

If /; leads VS then an inductor is used for correction

If I, lags Vg then a capacitor is used for correction
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. niversity of
Power Factor Correction B® Reading
Correction of a lagging power factor load with a capacitor:

V'S

4 IS = IL + IC
Ic
Current | C t
(imaginary — S — urren
part) ! (real part)
I
IL :

Note that the magnitude of the supply current /g is less than
that of the load /;
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Example 2 B¥ Reading

Choose a suitable power factor correction component for the
circuit:

R = 40
80Vrms, 400Hz T<’\>
[ —6mH

Z, =4+ j15.080 Q
22901643 - j0.06195
Z;  4°+15.08

Thus: 1 =+,0.06195
Zc
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Example 2 B¥ Reading

R = 40
80Vrms, 400Hz K«} m— C _ 2.465F

EL_GmH

A 1j0.06195 = jwC
Zc
C_ 006195 , o0 o
211 x 400
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Example 2 B¥ Reading

80

"z

— 80(0.01643 — j0.06195)

_1.314— j4.956

Ic = 2(3 80VrmsT</\/> = 4Q__ C=
_80xj0.06195 00?2 | —emp | 2465uF
_ j4.956 g

Is =1 +1g

—1.314— j4.956 + j4.956

_1.314

I
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Y] University of

Example 2 <~ Reading
5A *
IS = IL + IC
Imaginary
part Ic
Is _, Real
N T | art
! 5A P
|
I
l
I i
-5A T
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niversity of
Example 3 & Reading

An electric motor operating from the 50 Hz mains supply has
a lagging current with a power factor of .80

The rated motor current is 6 A at 230 V so that the magnitude
of 1/Z, is:
1

Z|

I, 6

=L - > -0.02609
Vs 230

and the phase of 1/Z; is:

4 il —cos™ 0.8 =+0.6435

4

(<L)
Since the current lags the voltage the negative phase is used
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Example 3 B¥ Reading

21 _ 0.02609./ —0.6435 = 0.02087 — j0.01565
L
A 4j0.01565 = jwC
Zc
c = 001965 _ g 80uF
21T x50
Before correction: After correction:
P, = 230x6 = 1380 P =F,=1104
P = pfxP, =0.8x1380 o= 2110446
1104 Vs 230
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Example 3

Imaginary
part

James Grimbleby

V'

SA |

-5A T

School of Systems Engineering - Electronic Engineering

Y] University of

<> Reading
IS = //_ + IC
Ic
5A

Is | Real

! part
l
I i
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. niversity of
Three-Phase Electric Power B8 Reading

Most ac power transmission systems use a three-phase
system

Three-phase is also used to power large motors and other
heavy industrial loads

Three-phase consists of three sinusoids with phases 211/3
(120°) apart

This allows more power to be transmitted down a given
number of conductors than single phase

A three-phase transmission system consists of conductors for
the three phases and sometimes a conductor for neutral
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. niversity of
Three-Phase Electric Power B8 Reading

X\\\ /q(\\ //><\\ /
| \X// \\X/ \\X/

Three-phase Three-phase
generator Y load
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Y] University of

Three-Phase Electric Power < Reading

Phase-to-neutral voltage v

Phase-to-phase voltage Vo
7T | o
74 //
P VO

Vp =2vgsin-_ \/\ -

27 0

. J3 vy —(1207)
2
= VO\/é
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. niversity of
Three-Phase Electric Power B8 Reading

UK domestic supply uses three -phase with a phase-to-
neutral voltage v, of 230 V rms (325 V peak)

This corresponds to a phase-to-phase voltage Vo of 400 V
rms (563 V peak)

Each property is supplied with one phase and neutral

If the phases are correctly balanced (similar load to neutral on
each) then the overall neutral current is zero

The UK electricity distribution network operates at 275 kV rms
and 400 kV rms
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. . . niversity of
AC Circuit Analysis B¥ Reading

Lecture 10

Energy Storage
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niversity of
Energy Storage B2 Reading

Reactive components (capacitors and inductors) do not
dissipate power when an ac voltage or current is applied

Power is dissipated only in resistors
Instead reactive components store energy

During an ac cycle reactive components alternately store
energy and then release it

Over a complete ac cycle there is no net change in energy
stored, and therefore no power dissipation
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The voltage across a capacitor is increased from zero to V
producing a stored energy E:

.
E = [v(t)i(t)dt

James Grimbleby

I 0 ' /
T
_ v(tyc 2 at II -
0 ot o
4
— C I 74 dV I — ﬂ
0 dt
E=_CV?
2
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Example: calculate the energy storage in an electronic flash
capacitor of 1000 yF charged to 400 V

E-lcv2
2

:;x1000x10_6x4002

=380 J
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The current in an inductor is increase from zero to /
producing a stored energy E:

, T
1) E = [v(t)i(t)dt
I 0 4 > I
I T A LYY Y
= 1% ityat L
o dt
/ i
—L[idi V=L
0
E= 11/
2
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Example: calculate the energy storage in a 2 mH inductor
carrying a current of 10 A

E=_[j°

— _x2x1073 x102
~0.1J
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