News:
  • Welcome


General Information:

Lecturer:                  Reza Sarvari (office EE221)  

Classes:                   TT  1:30-3:00    ;  cw

Text:  
Mark Lundstrom, "Fundamentals of Nanotransistors", 2017
Supriyo Datta, "Lessons from Nanoelectronics" , 2018
Kwok K. Ng, "Complete Guide to Semiconductor Devices", 2nd Ed., 2002
Brennan and Brown, "Theory of Modern Electronic Semiconductor Devices", 2002
Sze and Ng," Physics of Semiconductor Devices", 3rd Ed., 2006 
Wong, "Beyond CMOS Technologies for Next Generation Computer Design," 2019

Other Suggested Books:
Rhoderick and  Williams, "Metal-Semiconductor Contacts",  1988
Sze, "High Speed Semiconductor Devices", 1990
Sze, "Modern Semiconductor Device Physics", 1998
Wang, "Fundamentals of Semiconductor Theory and Device Physics", 1989
Taur and Ning, "Fundamentals of Modern VLSI Devices", 2009 
Li, "Semiconductor Physical Electronics", 2006 
Yariv, "Quantum Electronics",  1975
Bergh and Dean, "Light-Emitting Diodes", 1976 
Weisbuch and Vintner, "Quantum Semiconductor Structures", 1991
Singh, "Physics of Semiconductors and their Heterostructures", 1994
Singh, "Semiconductor Optoelectronics", 1995
Liu, "Fundamentals of III-V Devices", 1999
Mishra and Singh, "Semiconductor Device Physics and Design", 2008
Roblin and Rohdin, "High-speed Heterostructure Devices", 2002

Syllabus:                

Grades(tentative):      25%   Homework and Project
                                 35%   Mid-term and Quizes
                                 40%   Final Exam



Lectures:  Utube )

          Lecture05  (  Lecture05 ) Overview
          Lecture06  (  Lecture06 ) Overview 2
          Lecture07  (  Lecture07 ) 


Homeworks/Exams and solutions:

            homework 1 ;   solution 1





Lecture Notes:

Slides:
             SSD_01
             SSD_02
             SSD_03
             SSD_04
             SSD_05
             SSD_06
             SSD_07
             SSD_08
             SSD_09
       
             Purdue-lectures 8
             Purdue-lectures 9
             Purdue-lectures 10
             Purdue-lectures 11
             Purdue-lectures-T3
             Purdue-lectures-T4

             Solarcell Chapter
             DattaBookChapters




_________


Review of 25772: 
  • Surface Potential
  • Schottky diode 
  • MOS Cap
  • Threshold Voltage
  • Short/Narrow Channel Effects    
  • Drain Induced Barrier Lowering (DIBL)
  • Gate Induced Drain Leakage (GIDL)
  • Channel Length Modulation  
  • Hot Carriers
  • CCD Basics
  • CCD Appplications   
  •  



Moden FETs: 
  • Silicon-on-Insulator
  • SOI versus Bulk
  • SIMOX
  • Bonded
  • Eltran
  • Partial/Full Depletion
  • Floating Body Effects
  • Silicon-Germanium
  • Band Gap Offsets
  • Strained Layers
  • Mobility Enhancement
  •   
  •   
  •  




Memories: 
  • Nonvolatile Memories
  • EPROM/EEPROM/Flash
  • MNOS Memories
  • Ferroelectric Memories
  • Electrolyte Memories
  • Volatile Memories
  • SRAM
  • DRAM
  • Sense Amplifiers
  •   
  •   
  •  





Semiconductor heterojunctions : 
  • band offsets
  • carrier redistribution
  • pseudomorphic structures 
  • vertical transport via thermionic emission
  • field-aided thermionic emission
  • field emission
  • diffusion theory
  • two-dimensional carrier gases
  • modulation doping
  • lateral transport
  • applications of heterojunctions and Schottky diodes      






Bipolar and heterojunction bipolar transistors:
  • operational principle and basic theory
  • high level injection
  • Ebers-Moll and Gummel-Poon models
  • secondary effects
  • high frequency behavior
  • use of heterojunctions to enhance device characteristics 
  •  
  •  
  •  


Junction and metal-semiconductor field effect transistors : 
  • comparative analysis
  • gradual channel theory
  • high frequency behavior
  • velocity saturation effects
  • noise properties
  •  
  •  



pnpn : 
  • Shockley Diode
  • Thyristor
  • Breakdown Voltage
  • Switching
  •  
  •  
  •  






Negative Resistance Devices : 
  • Negative Resistance Concept
  • Tunnel Diodes
  • IMPATT Diodes
  • Gunn Effect Devices
  • Power-Frequency Limitations
  • BARITT and TRAPATT diodes
  •   
  •   
  •  





Light-emitting diodes:
  • nature of optical transitions
  • Recombination / Emission
  • materials considerations
  • internal and external quantum efficiencies
  • modulation
  •  White Light Emitters
  •  

Semiconductor lasers : 
  • spontaneous and stimulated emission
  • Einstein A and B coefficients
  • optical modes
  • criterion for lasing
  • heterostructures
  • device structures and geometries
  • single-frequency lasers and applications to fiber-optic communications
  • modulation
  •  Side vs Vertical Emission
  •  


Photodetectors and solar cells: 
  • Light Absorption
  • photoconductive and photovoltaic detectors
  • noise considerations
  • device structures and quantum efficiency
  • avalanche photodiodes
  • solar cell efficiency
  • surface recombination effects
  • tandem structures
  • materials systems
  • Avalanche Photodiodes

Photodetectors and solar cells: 
  • photoconductive and photovoltaic detectors
  • noise considerations
  • device structures and quantum efficiency
  • avalanche photodiodes
  • solar cell efficiency
  • surface recombination effects
  • tandem structures
  • materials systems
  •  

Nanoelectronic Devices: 
  •  
  •   
  •   
  •   
  •   
  •   
  •  






Same Course at Other Schools!

                Berkeley ;
                Cornel ;
                RPI ;  RPI2
                Washington
                UCSB
                Michigan State
                Dresden
                Buffalo
               
               
 



Useful Links: